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Abstract
Despite tremendous progress, the neural circuit dynamics underlying hippocampal mnemonic

processing remain poorly understood. We propose a new model for hippocampal function—the

simulation-selection model—based on recent experimental findings and neuroecological consid-

erations. Under this model, the mammalian hippocampus evolved to simulate and evaluate

arbitrary navigation sequences. Specifically, we suggest that CA3 simulates unexperienced navi-

gation sequences in addition to remembering experienced ones, and CA1 selects from among

these CA3-generated sequences, reinforcing those that are likely to maximize reward during off-

line idling states. High-value sequences reinforced in CA1 may allow flexible navigation toward a

potential rewarding location during subsequent navigation. We argue that the simulation-

selection functions of the hippocampus have evolved in mammals mostly because of the unique

navigational needs of land mammals. Our model may account for why the mammalian hippocam-

pus has evolved not only to remember, but also to imagine episodes, and how this might be

implemented in its neural circuits.
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1 | INTRODUCTION

The hippocampus is known to play a critical role in encoding certain

forms of memory. Despite many years of effort, however, the neural

circuit mechanisms underlying the storage and retrieval of memory in

the hippocampus remain unclear. Of the numerous theories proposed

to explain hippocampal circuit operations so far, the most influential

was originally proposed by Marr (1971) and further developed by

other investigators (McNaughton & Nadel, 1990; Rolls, & Treves,

1998). In this “standard model”, CA3 stores associative memories

based on massive recurrent collateral projections (Amaral, Ishizuka, &

Claiborne, 1990) and Hebbian synaptic plasticity (Harris & Cotman,

1986). The dentate gyrus (DG) functions in pattern separation based

on expansion recoding (Albus, 1971), which increases the memory

storage capacity of CA3. Although this model has been influential for

a long time, it is limited in that it does not account for the role of CA1,

another major component of the hippocampal tri-synaptic circuit.

Although subsequent studies have proposed numerous functions for

CA1 such as match-mismatch comparison (Hasselmo & Wyble, 1997;

Lever et al., 2010; Lisman & Otmakhova, 2001; Vago & Kesner, 2008)

and temporal processing (Gilbert, Kesner, & Lee, 2001; Mankin et al.,

2012; Rolls & Kesner, 2006), there is no general consensus because of

the lack of definitive experimental evidence for one CA1 function

over another.

In addition, the standard model, in its current form, is insufficient

to explain new experimental findings that suggest a role for the
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hippocampus in imagining hypothetical episodes (Buckner, 2010;

Gaesser, Spreng, McLelland, Addis, & Schacter, 2013; Mullally &

Maguire, 2014; Schacter et al., 2012). Amnesic patients with bilateral

damage in the medial temporal lobes have trouble imagining future

episodes (Andelman, Hoofien, Goldberg, Aizenstein, & Neufeld, 2010;

Hassabis, Kumaran, Vann, & Maguire, 2007; Mullally, Intraub, &

Maguire, 2012; Race, Keane, & Verfaellie, 2011). Also, as part of the

default mode network, the hippocampus is activated not only during

autobiographic memory recall, but also while envisioning the future

(Addis, Pan, Vu, Laiser, & Schacter, 2009; Addis, Wong, & Schacter,

2007; Botzung, Denkova, & Manning, 2008; Brown et al., 2016; Has-

sabis, Kumaran, & Maguire, 2007; Okuda et al., 2003; Spreng, Mar, &

Kim, 2009; Szpunar, Watson, & McDermott, 2007). In rats, hippocam-

pal place cells go through rapid sequential discharges (replays) that

may reflect experienced as well as unexperienced trajectories in asso-

ciation with sharp-wave ripples [SWRs; large-amplitude negative

potentials (sharp waves) associated with brief high-frequency oscilla-

tions (ripples) (Buzsaki, 2015)] during slow-wave sleep and awake

immobility (Carr, Jadhav, & Frank, 2011; Diba & Buzsaki, 2007; Dra-

goi & Tonegawa, 2011; Foster & Wilson, 2006; Gupta, van der Meer,

Touretzky, & Redish, 2010; Lee & Wilson, 2002; Olafsdottir, Barry,

Saleem, Hassabis, & Spiers, 2015; Pfeiffer & Foster, 2013). These

results provide converging evidence for the involvement of the hippo-

campus not only in encoding episodic memories, but also in imagining

hypothetical episodes. A new model of the hippocampus, whether it is

a revised version of an existing model or an entirely new one, should

be able to account for this important aspect of hippocampal function.

In this article, we propose the simulation-selection model to

account for the role of CA1 in memory and imagination. Briefly, the

simulation-selection model posits that CA3 generates both experi-

enced and unexperienced navigation sequences and CA1 selects from

among these CA3-generated sequences, reinforcing those that are

likely to maximize reward. The model is speculative at this stage, still

requiring significant empirical evidence. Nevertheless, this model is

consistent with many of the known features of the hippocampus, pro-

vides a new perspective on the role of CA1, and may explain why the

mammalian hippocampus has evolved not only to remember, but also

to imagine episodes.

2 | SIMULATION-SELECTION MODEL

Our model builds on the proposal that the hippocampus generates

novel activity patterns for the prediction of future events during

offline rest/sleep states (Buckner, 2010; Gershman, Moore, Todd,

Norman, & Sederberg, 2012; Gupta et al., 2010; Molter, Sato, &

Yamaguchi, 2007; Pezzulo, van der Meer, Lansink, & Pennartz, 2014).

Our model concerns only CA3 and CA1, leaving out the first

component of the tri-synaptic circuit, the DG (see Lee & Jung, 2017

for an alternative account of DG function apart from pattern separa-

tion). In our model, CA3 neurons generate firing sequences that match

previously experienced events (episodic memory recall) as well as

novel ones (imagination of hypothetical episodes) based on their

recurrent collateral projections. As such, CA3 plays the role of a “simu-

lator”. CA1 neurons preferentially pass on and reinforce high-value

firing sequences based on value-dependent firing, making CA1 more

of a “selector” (Figure 1).

2.1 | CA3 as a simulator

In our model, both experienced and unexperienced firing sequences

are generated in CA3. A neural network with sufficient interconnec-

tions among its elements should be able to generate such firing

sequences. In particular, a larger number of weak synapses would be

more useful than a smaller number of individually strong synapses for

generating variable (rather than fixed) sequences. CA3 is the area in

the hippocampus most consistent with these features. Specifically,

individual neurons in CA3 are connected with one another via a large

number of recurrent collateral projections (Amaral et al., 1990)

(Figure 1) that are individually weak (Miles & Wong, 1986) even when

fully potentiated (Debanne, Gahwiler, & Thompson, 1999). In the

rodent hippocampus, place cells often exhibit rapid replays of sequen-

tial firing patterns during SWRs, and physiological studies indicate that

sharp waves initiated in CA2/CA3 propagate to CA1 (Behrens, van

den Boom, de Hoz, Friedman, & Heinemann, 2005; Buzsaki, 1989;

Csicsvari, Hirase, Mamiya, & Buzsaki, 2000; Maier, Nimmrich, &

Draguhn, 2003; Oliva, Fernandez-Ruiz, Buzsaki, & Berenyi, 2016;

Ylinen et al., 1995). Furthermore, SWR-associated hippocampal

replays may reflect both experienced and unexperienced trajectories

(Dragoi & Tonegawa, 2011; Gupta et al., 2010; Olafsdottir et al.,

2015) with the direction of a replay proceeding as either a forward or

backward version of a recently experienced navigation (Csicsvari,

O'Neill, Allen, & Senior, 2007; Diba & Buzsaki, 2007; Foster & Wilson,

2006; Lee & Wilson, 2002; Wikenheiser & Redish, 2013). These

results are consistent with a role for CA3 in generating experienced as

well as unexperienced firing sequences.

SWR events occurring during offline rest/sleep states provide an

opportunity for CA3 to generate spike sequences largely based on

internal network dynamics rather than external sensory inputs

(Buzsaki, 2015). Replay sequences are perhaps shaped by multiple fac-

tors such as anatomical connectivity, current sensory inputs,

experience-dependent synaptic plasticity, recent firing history, and

global modulatory signals (e.g., acetylcholine or dopamine) that vary

across behavioral states (Atherton, Dupret, & Mellor, 2015; Foster,

2017; Roumis & Frank, 2015). The hippocampus shows strong theta-

frequency oscillation of local field potentials during active exploration

of an environment. The spiking of place cells moves earlier in phase

relative to the theta oscillation as the animal navigates (theta phase

precession; O'Keefe & Recce, 1993; Skaggs, McNaughton, Wilson, &

Barnes, 1996). The combination of theta phase precession and spike

timing-dependent plasticity (STDP; Bi & Poo, 1998; Markram, Lubke,

Frotscher, & Sakmann, 1997) is thought to facilitate the formation of

cell assemblies that tend to fire according to previously experienced

discharge sequences (Lengyel, Huhn, & Erdi, 2005; Melamed, Gerst-

ner, Maass, Tsodyks, & Markram, 2004). In conventional STDP, synap-

tic weight increases with pre-postsynaptic spike pairing and decreases

as the firing sequence reverses (asymmetric STDP). A recent study,

however, showed that recurrent collateral synapses in CA3 are poten-

tiated by both forward- and reverse-ordered spike pairing (symmetric

STDP) within a relatively broad time window (~150 ms) (Mishra, Kim,
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Guzman, & Jonas, 2016). If that is the case, during navigation,

symmetric STDP would promote profuse associations among CA3

cells with overlapping place fields based on their anatomical connec-

tivity regardless of navigation trajectory. This may facilitate the activa-

tion of CA3 cells in diverse sequences during SWRs, including

sequences unrelated to experienced navigation trajectories. Together,

its massive recurrent collateral projections, individually weak synap-

ses, and symmetric STDP all make CA3 an ideal substrate for the gen-

eration of diverse neural activity patterns, both experienced and

unexperienced, during offline states.

2.2 | CA1 as a value-dependent selector

We propose that CA1 acts as a selective reinforcer, preferentially

strengthening high-value sequences among diverse sequences gener-

ated in CA3. Neural activity in CA1 is modulated strongly by both

reward (Breese, Hampson, & Deadwyler, 1989; Eichenbaum, Kuper-

stein, Fagan, & Nagode, 1987; Hollup, Molden, Donnett, Moser, &

Moser, 2001; Holscher, Jacob, & Mallot, 2003; Kobayashi, Nishijo,

Fukuda, Bures, & Ono, 1997; Smith & Mizumori, 2006; Tabuchi,

Mulder, & Wiener, 2003; Watanabe & Niki, 1985; Wirth et al., 2009)

and punishment (Berger, Alger, & Thompson, 1976; Berger, Rinaldi,

Weisz, & Thompson, 1983; McEchron & Disterhoft, 1997; Moita,

Rosis, Zhou, LeDoux, & Blair, 2003; Moita, Rosis, Zhou, LeDoux, &

Blair, 2004; Munera, Gruart, Munoz, Fernandez-Mas, & Delgado-Gar-

cia, 2001; Segal, Disterhoft, & Olds, 1972). Extending these findings,

we discovered that reward value strongly modulates CA1 neural activ-

ity in rats performing a dynamic foraging task (Lee, Ghim, Kim, Lee, &

Jung, 2012) (Figure 2). Surprisingly, the strength and characteristics of

CA1 value signals are indistinguishable from those found in other

brain regions implicated in value processing, such as the orbitofrontal

cortex and striatum (Kim, Lee, & Jung, 2013; Kim, Sul, Huh, Lee, &

Jung, 2009; Sul, Kim, Huh, Lee, & Jung, 2010). This suggests CA1 neu-

rons convey value information just as strongly as other value-related

brain structures do. Furthermore, CA1 value signals show temporal

overlap with choice and reward signals as the outcome of the rat's

choice is revealed. This indicates all the signals necessary for comput-

ing reward prediction error (Sutton & Barto, 1998) and updating

reward value converge in CA1 (Figure 2d). Brain imaging studies also

found BOLD signals correlated with value (Bornstein & Daw, 2013;

FIGURE 1 Summary of the simulation-selection model of the hippocampus. (a) Experienced (solid arrows) and unexperienced (dashed arrows)

navigation sequences to two locations where reward was or was not obtained (high-value and low-value sequences, respectively) are indicated in
different colors. (b) CA3 generates both experienced and unexperienced navigation sequences regardless of value. Of these, CA1 preferentially
reinforces high-value sequences, both experienced and unexperienced. The schematic diagram below shows the basic circuit organizations of
CA3 and CA1. The numbers indicate the average number of synapses for each projection pathway for each CA3 and CA1 pyramidal neuron
(Amaral et al., 1990). Massive, individually weak recurrent collaterals in CA3 allow the CA3 neural network to generate experienced (remembered)
as well as unexperienced (novel) sequences. CA1, which lacks recurrent collateral projections, but conveys strong value signals, preferentially
selects and reinforces high-value sequences [Color figure can be viewed at wileyonlinelibrary.com]
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Tanaka et al., 2004) in the human hippocampus, although their subre-

gional localization is unclear.

When we compared value-related neural activity among the

subregions of the hippocampus in rats, we found significantly stron-

ger correlates in CA1 than in CA3 (Lee et al., 2017) or the subiculum

(Lee et al., 2012). The fact that CA1 conveys stronger value signals

than its neighboring input and output structures suggests CA1 plays

a more important role in valuation than the other hippocampal sub-

regions. This is consistent with the finding in rats that CA1 neurons,

but not CA3 neurons, remap their place fields when rewarding loca-

tions are reconfigured (Dupret, O'Neill, Pleydell-Bouverie, & Csics-

vari, 2010). Moreover, chemogenetic inactivation of CA1, but not

CA3, CA2 or DG, of the dorsal hippocampus impairs value learning

without affecting value-dependent action selection in mice perform-

ing a dynamic foraging task in a modified T-maze (Jeong et al., 2018).

Although additional studies will be required to reveal the details of

value information processing in the hippocampus, these results make

a strong case for CA1’s role in valuation. Together with the findings

that support a role for the hippocampus in imagination (Buckner,

2010; Gaesser et al., 2013; Mullally & Maguire, 2014; Schacter et al.,

2012), these findings imply that the contents of remembered and

imagined episodes are modulated by value in CA1. We argue that

this feature distinguishes CA1 from the other subregions in the

hippocampus.

In support of our proposal, ample evidence suggests CA1 replays are

biased toward reward locations. Although the frequency of SWR-

associated CA3 reactivation is enhanced by reward, there is no preferen-

tial reactivation of CA3 neurons with place fields near reward locations

(Singer & Frank, 2009). In contrast, CA1 neurons with place fields near

reward locations show a stronger tendency to fire together during SWRs

than those with place fields farther from reward locations (Dupret et al.,

2010). Furthermore, trajectories reconstructed from replays of CA1 place

cells are preferentially directed toward previously visited as well as unvis-

ited (but observed) reward locations (Foster & Wilson, 2006; Gupta et al.,

2010; Olafsdottir et al., 2015; Pfeiffer & Foster, 2013; Singer & Frank,

2009). This may relate to enhanced imagination of episodic future events

by reward in humans (Bulganin & Wittmann, 2015). Hippocampal activity

patterns for high-reward contexts are also preferentially reactivated dur-

ing post-learning rest, and this reactivation is predictive of memory reten-

tion in humans (Gruber, Ritchey, Wang, Doss, & Ranganath, 2016).

Based on the abovementioned findings, we propose here that

value-dependent replays in CA1 help an animal to navigate along an

optimal route from an arbitrary starting location. Specifically, fre-

quently replayed rewarding sequences in CA1, both experienced and

FIGURE 2 Value-related neural activity in the rat hippocampus. (a) Modified T-maze. Water reward was delivered at two goals (blue circles) with

different probabilities that changed dynamically across blocks. Spatial firing of hippocampal neurons was analyzed on a linearized maze. (b) an
example of an action value-coding CA1 neuron with its place field on the proximal area of the central stem [indicated by the left ellipse in (a)]. a
spatial raster plot (top) and its associated firing rate maps (bottom) are shown. Trials were grouped into quartiles of left action value (0–1; steps of
0.25), computed using a reinforcement learning model, as indicated by the different colors. (c) an example of a chosen value-coding CA1 neuron
with a “merged” place field at the reward site [neural and occupancy data at the left and right reward sites were merged together; indicated by
the right ellipse in (a)]. trials were grouped into quartiles of chosen value (i.e., value of the chosen target in a given trial). (d) Convergence of value,
reward, and choice signals. Time 0 indicates the time when the trial outcome was revealed at the reward site. The ordinate denotes the fraction
of neurons responsive to a given variable (choice, blue; reward, red; chosen value, orange). Shading denotes the chance level. Adapted from Lee
et al. (2012) [Color figure can be viewed at wileyonlinelibrary.com]
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unexperienced, are strengthened during SWRs so that they are prefer-

entially activated during subsequent navigation. We propose two dif-

ferent mechanisms for strengthening rewarding sequences during

SWRs. First, frequently replayed CA1 sequences may be stored in

downstream brain structures, such as the prefrontal cortex

(Frankland & Bontempi, 2005; Jung, Baeg, Kim, Kim, & Kim, 2008),

over time. An animal may be able to choose an optimal route to a tar-

get destination based on an array of rewarding sequences stored in

downstream brain structures, such that hippocampal lesions do not

impair behavioral performance in tests that require recall of remote

memories of rewarding trajectories. According to this scenario, mem-

ory consolidation is a process of actively selecting and reinforcing

high-reward action (or event) sequences rather than passively storing

incidental events. Second, frequently replayed CA1 sequences during

SWRs may be strengthened within the hippocampus (Buzsaki, 2015;

Csicsvari & Dupret, 2014). Studies show that hippocampal place cell

activity during theta-frequency state (such as during locomotion) is

related to both current and future positions (Ainge, Tamosiunaite,

Woergoetter, & Dudchenko, 2007; Gupta, van der Meer, Touretzky, &

Redish, 2012; Johnson & Redish, 2007; Pastalkova, Itskov, Amarasing-

ham, & Buzsaki, 2008; Wikenheiser & Redish, 2015; Zheng, Bieri,

Hsiao, & Colgin, 2016; see also Lisman & Redish, 2009; Mehta, 2001;

Samsonovich & Ascoli, 2005; Sanders, Renno-Costa, Idiart, & Lisman,

2015; Stachenfeld, Botvinick, & Gershman, 2017). Hippocampal neu-

ral plasticity during SWRs may bias such “planning”-related, theta-

state hippocampal neural activity toward rewarding locations from an

arbitrary position. These two mechanisms may work in parallel, but

perhaps with different time courses, to allow an animal to choose an

optimal route from an arbitrary starting location.

3 | IMPLEMENTATION OF THE
SIMULATION-SELECTION MODEL

At this stage, we can only speculate regarding how CA1 selects

high-value sequences because relatively little is known about the

value-related discharge characteristics of hippocampal neurons. Nev-

ertheless, we propose value-dependent changes in CA3-CA1 connec-

tion strengths are responsible for CA1’s role in sequence selection.

Let's assume CA1 neurons show value-dependent firing such that the

closer the place field gets to a reward site, the higher its firing rate

(Figure 3a). This is consistent with the findings that CA1 neurons

increase firing near reward locations (Breese et al., 1989; Dupret

et al., 2010; Hollup et al., 2001; Kobayashi, Tran, Nishijo, Ono, & Mat-

sumoto, 2003; Mamad et al., 2017). Let's imagine that an animal has

explored its environment sufficiently so that all areas of the environ-

ment were covered. CA3 and CA1 neurons with overlapping place

fields will fire together during exploration, and, assuming dependence

of CA1 place cell activity on the distance to a reward site, coincident

firing would occur more often in CA1 neurons with place fields closer

to a reward site (Figure 3a). Then, after sufficient exploration, the syn-

apses between those CA3 and CA1 neurons with overlapping place

fields near a reward (or non-reward) location should be strongly

(or weakly) potentiated via activity-dependent synaptic plasticity.

Even though precise rules and factors governing CA3–CA1 STDP are

not fully understood (Edelmann, Cepeda-Prado, & Lessmann, 2017;

Kwag & Paulsen, 2009; Nishiyama, Togashi, Aihara, & Hong, 2010;

Sugisaki, Fukushima, Tsukada, & Aihara, 2011; Tsukada, Aihara,

Kobayashi, & Shimazaki, 2005; Wittenberg & Wang, 2006), CA3/CA1

place cell spike patterns recorded in freely moving rats induced long-

term potentiation at CA3–CA1 synapses, demonstrating naturally

occurring spike patterns during navigation can potentiate CA3–CA1

synapses (Isaac, Buchanan, Muller, & Mellor, 2009). Such activity-

dependent synaptic weight changes may lead to the preferential

replaying of rewarding sequences, both experienced and unexper-

ienced, in CA1 during subsequent offline SWR episodes (Figure 3b–d).

This model is consistent with the finding that neuronal coactivity

between CA3 and CA1 during exploration is correlated with that

during SWRs in a subsequent sleep period (O'Neill, Senior, Allen,

Huxter, & Csicsvari, 2008). Modeling studies also suggest the strength

of the CA3 excitatory inputs to CA1 pyramidal cells strongly influence

the spiking activity of CA1 pyramidal cells during SWRs (Taxidis,

Coombes, Mason, & Owen, 2012; Taxidis, Mizuseki, Mason, & Owen,

2013). In this way, CA1 acts as a filter, facilitating the replay of

CA3-generated sequences that lead to a reward.

It is relatively straightforward to imagine that frequently replayed

CA1 rewarding sequences are stored permanently in downstream

brain structures over time (Buzsaki, 1996; Csicsvari & Dupret, 2014;

Diekelmann & Born, 2010; Frankland & Bontempi, 2005; Girardeau &

Zugaro, 2011; O'Neill, Pleydell-Bouverie, Dupret, & Csicsvari, 2010).

There are some issues to consider, however, regarding how frequently

replayed CA1 sequences are strengthened within the hippocampal

network to help flexible navigation. One issue is related to synaptic

plasticity during SWRs. It is currently controversial whether hippo-

campal synapses are potentiated or exclusively depressed during

SWRs (Bukalo, Campanac, Hoffman, & Fields, 2013; Buzsaki, 2015;

Buzsaki, Haas, & Anderson, 1987; Colgin, Kubota, Jia, Rex, & Lynch,

2004; King, Henze, Leinekugel, & Buzsaki, 1999; Leonard, Mcnaugh-

ton, & Barnes, 1987; Norimoto et al., 2018; Sadowski, Jones, &

Mellor, 2016; Tononi & Cirelli, 2014). Nevertheless, both synaptic

potentiation and depression have been proposed as mechanisms for

memory consolidation (Bukalo et al., 2013; Norimoto et al., 2018;

Sadowski et al., 2016; Tononi & Cirelli, 2014). Those hippocampal syn-

apses supporting frequently replayed rewarding sequences may be

further strengthened and/or other synapses are weakened during

SWRs, so that relative strengths of frequently replayed sequences are

enhanced. Another issue is related to generating sequences for novel

rewarding trajectories during theta-frequency state. Value-dependent

CA3–CA1 synaptic weight changes during exploration (Figure 3a)

would be sufficient to preferentially activate CA1 sequences for expe-

rienced rewarding trajectories during theta-frequency state. However,

it may be insufficient to drive CA1 sequences for novel rewarding

trajectories because the degree of freedom for CA3-generated

sequences is expected to be low during theta-frequency state, during

which external sensory influence and inhibitory tone are relatively

strong (Buzsaki, 1989). We propose hippocampal synaptic plasticity

during SWRs, during which diverse CA3 sequences are generated,

may alleviate this constraint. Redistribution of CA3–CA3 synaptic

weights and strengthening diverse combinations of CA3–CA1 cell

pairs during SWRs may increase the diversity of planning-related CA1

JUNG ET AL. 917



neural activity during subsequent navigation. These processes, in com-

bination with value-dependent firing of CA1 neurons, may allow

planning-related CA1 neural activity during subsequent navigation to

include those representing novel rewarding trajectories. Again,

empirical evidence is largely lacking for the proposed neural pro-

cesses. Much investigation is needed to understand how value-

dependent CA1 replays might be translated into flexible navigation.

How do CA1 neurons fire in a value-dependent manner? Value-

related activity of CA1 neurons may be controlled independent of

CA3–CA1 projections. It may be driven by monosynaptic inputs from

extrahippocampal structures such as the prefrontal cortex

(Rajasethupathy et al., 2015), which conveys value signals

(Barraclough, Conroy, & Lee, 2004; Kim, Hwang, & Lee, 2008; Sul

et al., 2010), or the entorhinal cortex (Witter, Doan, Jacobsen,

Nilssen, & Ohara, 2017; Figure 4). Neuromodulatory inputs, such as

dopamine, may also contribute to value-related activity of CA1 neu-

rons. Howe, Tierney, Sandberg, Phillips, and Graybiel (2013) showed

FIGURE 3 A potential neural mechanism for CA1 to preferentially replay high-value navigation sequences. (a) Hypothetical value-dependent

discharges of CA3/CA1 neurons during locomotion. Top, an animal is assumed to have visited all locations, but experienced only two specific
navigation sequences between a particular starting location (S) and two target locations, one of which led to a reward (bottom right corner). Each
ellipse represents a place field for a CA3 or CA1 neuron. The thick black vertical line indicates a physical barrier. Bottom, each set of spikes (tick
marks) represents hypothetical place cell discharges for the navigation sequences shown on top. Assuming that CA1 neurons increase firing with
increasing value, CA1 neuronal firing rates would be low during travel to the no-reward site (low-value sequence) so that the chance for CA3 and
CA1 neurons with overlapping place fields to fire together is low (left). In contrast, CA1 neuronal firing rates would be high during travel to the
reward site (high-value sequence) so that the chance for CA3 and CA1 neurons with overlapping place fields to fire together is high (right). As a
result, synaptic connections between CA3 and CA1 neurons with overlapping place fields are more likely to be strengthened by activity-

dependent plasticity for the high-value sequence. (b–d) hypothetical replay sequences during SWRs. Top, solid and dashed arrows indicate
experienced and unexperienced navigation sequences, respectively. Bottom, each set of spikes represents hypothetical SWR-associated replays
of CA3 and CA1 place cells for the corresponding navigation sequences shown on top. (b) Previously experienced navigation sequences.
(c) Unexperienced navigation sequences starting from the same initial location (S) shown in (a). (d) Unexperienced navigation sequences starting
from a new location. When CA3 generates an experienced or unexperienced sequence leading to the no-reward site, the chance for the same
sequence to be replayed in CA1 is low because of the weak synaptic weights between the CA3 and CA1 neurons. When CA3 generates an
experienced or unexperienced sequence that leads to a reward, however, the chance for the same sequence to be replayed in CA1 is high
because of the strong synaptic weights between the CA3 and CA1 neurons. The hypothetical spike firing in (c, d) illustrates how unexperienced,
yet high-value navigation sequences can be replayed during SWRs. In a future incident, if the barrier is removed, the animal is likely to take the
path shown in (c) instead of that in (b) as a short cut from the original starting point (S) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 A schematic showing inputs to CA1 that may control the

value-dependent activity of CA1 neurons
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dopamine concentration in the striatum of rats running a T-maze grad-

ually increases between the starting and goal locations (Figure 5a).

Assuming a similar dopamine concentration gradient in CA1, dopa-

mine may control the excitability of CA1 neurons such that their activ-

ity increases as an animal nears a reward location. Alternatively,

dopamine may contribute to the value-dependent firing of CA1

neurons by modulating the transmission and/or plasticity of projec-

tions from external structures such as entorhinal or prefrontal cortical

projections (Ito & Schuman, 2007; Figure 4).

An alternative possibility is that the CA3 projections to CA1 medi-

ate both its value-related activity and subsequent role in filtering. For

example, dopamine may control synaptic transmission (Rosen,

Cheung, & Siegelbaum, 2015) and/or plasticity (Edelmann et al., 2017;

Frey & Morris, 1998; Frey, Schroeder, & Matthies, 1990; Li, Cullen,

Anwyl, & Rowan, 2003; Navakkode, Sajikumar, & Frey, 2007;

O'Carroll & Morris, 2004; Otmakhova & Lisman, 1996) in CA3–CA1

connections in a value-dependent manner (Figure 4). The putative

dopamine concentration gradient during exploration (Howe et al.,

2013) may control the transmission/plasticity of CA3–CA1

connections during exploration such that CA1 neurons show value-

dependent neural activity during exploration and also mediate

preferential replays of high-value sequences during an offline state

(Figure 3). It is also possible that the combination of reverse replays

and phasic dopaminergic activity, which conveys reward prediction

error signals (Cohen, Haesler, Vong, Lowell, & Uchida, 2012; Roesch,

Calu, & Schoenbaum, 2007; Schultz, Dayan, & Montague, 1997), may

act to assign value to CA1 place cells. CA1 place cells are often

replayed in the reverse order when an animal arrives at a goal location

(Ambrose, Pfeiffer, & Foster, 2016; Foster & Wilson, 2006). Assuming

that dopamine signals in CA1 peak at the time of arrival at a goal and

then decay gradually over time, those cells with their place fields

closer to the goal may be more strongly paired with dopamine signals

(Foster & Wilson, 2006) (Figure 5b,c). This would also assign value to

CA1 place cells according to the distance between a place field and a

reward site, and it could be accomplished by several different mecha-

nisms including the modification of synaptic weights in the CA3–CA1

connections (Figure 4). The existing evidence for this hypothesis,

although limited, is consistent with a role for dopamine in the value-

related activity of CA1 neurons. Inactivation of the ventral tegmental

area (VTA) affects the spatial firing of CA1, but not CA3, place cells in

rats (Martig & Mizumori, 2011). Hippocampal place cell stability is

enhanced (or reduced) by a D1/D5 receptor agonist (or antagonist) in

mice (Kentros, Agnihotri, Streater, Hawkins, & Kandel, 2004), and CA1

place cell activity is weak and unstable in D2 receptor-knockout mice

(Nguyen et al., 2014). In addition, optogenetic stimulation of VTA

dopaminergic neurons increases the firing rates of CA1 place cells and

shifts place fields toward locations associated with VTA stimulation in

rats (Mamad et al., 2017). There is also evidence linking dopaminergic

FIGURE 5 Hypothetical role of dopamine in modulating the value-dependent firing of CA1 neurons. (a) Dopamine concentration in the striatum

during maze learning. Adapted with permission from Howe et al. (2013). (b, c) reverse replay of CA1 place cells and a model in which dopamine
associates value to each place cell according to its distance from a reward site. HPC, hippocampus; DA, dopamine; VTA, ventral tegmental area.
Adapted with permission from Foster and Wilson (2006) [Color figure can be viewed at wileyonlinelibrary.com]
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activity during exploration to replays during a subsequent rest period.

Optogenetic stimulation of dopaminergic fibers in mice exploring a

novel environment enhances CA1 reactivation of waking firing

patterns during a subsequent sleep/rest session (McNamara, Tejero-

Cantero, Trouche, Campo-Urriza, & Dupret, 2014). Here we consider

dopamine as a potential mediator for CA1 value signals. However,

other neuromodulatory systems, such as septal cholinergic inputs

(Everitt & Robbins, 1997), may well be involved in mediating CA1

value signals, which remains to be explored.

Although it is unknown how CA1 neurons acquire value-

dependent firing, studies indicate that spatial firing of CA1 neurons

can be changed relatively easily compared to that of CA3 neurons. As

mentioned above, spatial firing in CA1, but not in CA3, is altered by

reward (Dupret et al., 2010) or VTA inactivation (Martig & Mizumori,

2011). Spatial firing in CA1 changes gradually over time, whereas spa-

tial firing in CA3 is maintained stably over time (Mankin et al., 2012;

Manns, Zilli, Ong, Hasselmo, & Eichenbaum, 2007). Neural activity in

CA1, but not in CA3, is enhanced in a novel environment (Karlsson &

Frank, 2008). Furthermore, changes in CA1 spatial firing can be

induced rapidly. CA1 place cells, once suppressed, become unstable

and remap their firing fields (Schoenenberger, O'Neill, & Csicsvari,

2016). Also, even a single episode of intracellular stimulation of a CA1

neuron, if sufficiently strong, may produce a new place field at the

stimulation location (Bittner et al., 2015). By contrast, activation/inhi-

bition of CA3 place cells by optogenetic mossy fiber stimulation

induces only transient changes in CA3 spatial firing (Lee et al., 2018).

These results suggest that CA1 spatial firing may change flexibly

according to changes in the environment, especially those related to

reward, so that it can guide the animal's navigation in an adaptive

manner.

We certainly do not intend to argue that value-dependent

strengthening of CA3–CA1 synapses during exploration is the only

way for value-dependent CA1 neural activity to influence the content

of replays. Studies suggest persistent reinforcement signals by

dopaminergic neurons influence hippocampal neural activity during

post-learning rest. In rodents, VTA neuronal activity during task per-

formance is replayed in association with hippocampal SWRs during a

subsequent rest period (Valdes, McNaughton, & Fellous, 2015). In

addition, the pairing of the spikes of a particular place cell with medial

forebrain bundle stimulation during sleep induces a preference for the

location encoded by that place cell, such that the animal spends more

time in the location encoded by the stimulated place cell (de Lavilleon,

Lacroix, Rondi-Reig, & Benchenane, 2015). In humans, a dopamine

agonist given during sleep enhances memories of low-reward stimuli

to the level of high-reward stimuli (Feld, Besedovsky, Kaida, Munte, &

Born, 2014). The midbrain dopaminergic system and the hippocampus

also show interactions during post-learning rest, and these interac-

tions are correlated with the retention of objects learned in high-

reward contexts (Gruber et al., 2016). These studies suggest that

the hippocampus may work with other related neural systems in

controlling value-dependent CA1 replays.

So far, for the sake of simplifying our argument, we have consid-

ered only CA1 neurons whose activity increases with value. However,

CA1 also contains neurons whose activity decreases as a function of

value (Lee et al., 2012) and there exists extensive literature regarding

the role of the hippocampus in contextual fear conditioning (LeDoux,

2000; Maren, Phan, & Liberzon, 2013) and avoidance behavior

(Cimadevilla, Wesierska, Fenton, & Bures, 2001; Kubík, Stuchlik, &

Fenton, 2006; Lorenzini, Baldi, Bucherelli, Sacchetti, & Tassoni, 1996;

Olton & Isaacson, 1968; Telensky et al., 2011). CA1 neurons whose

firing decreases as a function of value may respond particularly

strongly to aversive stimuli (Berger et al., 1976; Berger et al., 1983;

McEchron & Disterhoft, 1997; Moita et al., 2003; Moita et al., 2004;

Munera et al., 2001; Segal et al., 1972), serving to ensure recall of

places/trajectories to avoid (Wu, Haggerty, Kemere, & Ji, 2017). In

other words, distinct CA1 populations may represent trajectories to

both choose and avoid. It will be interesting to examine whether CA1

neurons encoding positive and negative values have different output

connectivity. The former may preferentially activate reward-related

areas such as the ventromedial prefrontal cortex and ventral striatum

(c.f., Kuhl, Shah, DuBrow, & Wagner, 2010), while the latter may

activate punishment-related areas such as the amygdala (c.f., Ciocchi,

Passecker, Malagon-Vina, Mikus, & Klausberger, 2015). Alternatively,

CA1 neurons may indiscriminately elevate activity in response to both

appetitive and aversive events, so that CA1 place cell sequences

representing trajectories toward both reward and punishment loca-

tions are preferentially replayed during SWRs. If so, decisions to or

not to approach a location must take place in a brain structure

downstream of the hippocampus. It is also possible that, like midbrain

dopaminergic neurons (Bromberg-Martin, Matsumoto, & Hikosaka,

2010), some CA1 neurons elevate activity in response to both reward

and punishment, while others increase activity exclusively to reward.

Distinct patterns of CA1 neuronal population activity, along with

synaptic plasticity, may instruct downstream motor-related structures

to approach or move away from a certain location. Currently, value-

dependent hippocampal neuronal activity, especially value-dependent

replays, are poorly understood. It will be important in the future to

characterize value-dependent CA1 neuronal activity under different

behavioral states. It will be also important to compare value-

dependent replays of CA1 and CA3 neurons, as our model predicts

that CA3 replays are less dependent on value than CA1 replays.

4 | WHY SIMULATION-SELECTION? A
NEUROECOLOGICAL PERSPECTIVE

We propose that the simulation-selection process in the hippocampus

might reflect the unique ecological needs of navigating mammals. The

hippocampus supports allocentric spatial memory in many different

animal species (Herold, Coppola, & Bingman, 2015; Striedter, 2016).

Among them, warm-blooded animals (i.e., mammals and birds) show

far better spatial memory capacity than cold-blooded animals. For

example, some food-caching birds can store foods at thousands of

locations and retrieve them successfully over a period of many

months (Cowie, Krebs, & Sherry, 1981; Shettleworth, 1990; Stevens &

Krebs, 1986). The anatomical structure of the hippocampus in birds,

however, is quite different from the well-conserved structure

observed in mammalian species (Figure 6a) (Manns & Eichenbaum,

2006). The avian hippocampus, for example, does not have well-

differentiated cell layers like the highly differentiated layers of the
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mammalian hippocampus. As a result, in the avian hippocampus, it is

difficult to identify the subfields (e.g., DG, CA3, and CA1) that are so

distinct in the mammalian hippocampus. Whereas information flow

tends to be unidirectional in the mammalian hippocampus, connec-

tions between the major hippocampal divisions in birds are mostly

reciprocal (Herold et al., 2015; Striedter, 2016). There is also no direct

projection from the medial septum to the hippocampus in birds like

there is in mammals (Krayniak & Siegel, 1978). Thus, avian and mam-

malian hippocampi seem to have been evolving separately for quite

some time (Herold et al., 2015; Striedter, 2016). Although it is possible

that mammals and birds came up with different solutions for the

problem of allocentric spatial memory, their divergent hippocampal

structures suggest avian and mammalian hippocampi have evolved to

cope with different evolutionary needs.

We propose that the mammalian hippocampus has evolved into

its current form to meet the special ecological demands of ground-

based navigation. Birds fly and mammals run. Birds may not need to

concern much about specific routes between their current position

and their destination under most circumstances because they can

travel directly “as the crow flies” to their destination. Mammals, in

contrast, must remember not only their destination but also the vari-

ous routes by which they can get there. This is because obstacles

(i.e., trees, rivers, pits, rocks, etc.) often stand between their current

position and their destination. Mammals, therefore, benefit from the

ability to come up with novel, efficient routes to their destinations

from arbitrary starting places (Gallistel, 1990; Tolman, 1948). Imagine

a vole searching for food in its territory. If a predator appears, the vole

must run back to its home burrow via the shortest available route

from its current location. This requires the ability to choose an optimal

route to a goal from an arbitrary starting location. Therefore, whereas

birds seem to need to know only the location of their final destination

to reach it via a beeline path in the sky, land mammals have more

complex navigational demands that require them to prepare for effi-

cient navigation between arbitrary locations. Evidence suggests that

the avian hippocampus, unlike the mammalian hippocampus, may be

dedicated to processing spatial information (Herold et al., 2015). The

need to process and remember objects and events associated with

route-dependent navigation may have facilitated the extension of the

functions of the mammalian hippocampus from spatial memory and

planning to more general episodic memory and planning, especially in

higher animals (Buzsaki & Moser, 2013).

Although there exist only a small number of physiological studies

in birds, they are consistent with our proposal. In pigeons, hippocam-

pal neurons do not show the same discharge characteristics as mam-

malian place cells. Although recorded during walking rather than

flying, cells in the right hippocampus fire preferentially at goals (“loca-

tion firing”) while those in the left hippocampus tend to fire in associa-

tion with paths connecting goals (“path firing”; Figure 6b) (Siegel et al.,

2006; Siegel, Nitz, & Bingman, 2005). This “spatial” firing is diminished

greatly when pigeons forage for randomly scattered food (unstable

goal locations) (Kahn, Siegel, Jechura, & Bingman, 2008), suggesting

that the pigeon hippocampus is primarily concerned with goal loca-

tions and the direct paths between them. In the mammalian

hippocampus, in contrast, place cells show spatial firing patterns that

cover an entire environment regardless of the presence of a stable

goal location (Muller, Kubie, & Ranck, 1987). This allows mammals to

construct arbitrary routes by connecting place cells. Another

physiological difference is the absence of SWRs in birds. So far, no

one has observed SWRs in the avian hippocampus (Rattenborg,

Martinez-Gonzalez, Roth, & Pravosudov, 2011). Although uncertainty

remains due to the small number of studies on the avian hippocampus,

the avian hippocampus seems to be primarily concerned with goal

locations and the direct paths between them, whereas the mammalian

hippocampus seems to have evolved to select optimal routes between

arbitrary locations. How do mammals accomplish this? Because it

would be difficult and time-consuming to remember all possible

routes after physically experiencing each one, mammals may accom-

plish this by simulating diverse hypothetical navigation sequences

using spatial information collected during actual navigations and then

selecting high-value sequences. We propose that the mammalian hip-

pocampus evolved for this purpose, to generate arbitrary navigation

sequences and select those of high value.

On a related note, it would be of interest to examine the hippo-

campus of mammals such as bats and cetaceans that abandoned

ground navigation. Bats have well developed hippocampi (Manns &

Eichenbaum, 2006) and physiological studies have found various

spatial cells including “place” cells with three-dimensional firing fields

in the hippocampus (Geva-Sagiv, Las, Yovel, & Ulanovsky, 2015). In

contrast, cetaceans have very small hippocampi relative to the total

FIGURE 6 The structure and physiology of the avian hippocampus

differ from those of the mammalian hippocampus. (a) Coronal
sectional views of rat and pigeon brains. Adapted with permission
from Bingman, Salas, & Rodriguez, 2009. Rat, DG, dentate gyrus; neo,
neocortex; Hy, hypothalamus; am, amygdala; pigeon, Hp,
hippocampus; H, hyperpallium; M, mesopallium; N, nidopallium; se,
septum. (b) Examples of spatial firing of hippocampal neurons in
pigeons. Left, a “path firing” neuron recorded from the left
hippocampus. Right, a “location firing” neuron recorded from the right

hippocampus. Note the elevated activity (red color) near all goals (the
ends of each arm) for the location firing neuron. Adapted with
permission from Siegel, Nitz, and Bingman (2006) [Color figure can be
viewed at wileyonlinelibrary.com]
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brain size (Patzke et al., 2015). Does this difference reflect different

navigation demands between bats and cetaceans? Cetaceans spend

most of time in the ocean, thus the demand for remembering specific

navigation routes may be low. Bats are less efficient in flight, but more

efficient in maneuvering than birds (Hedenstrom & Johansson, 2015).

They typically spend a large amount of time in enclosed spaces such

as caves, although sometimes fly a long distance like birds (Geva-Sagiv

et al., 2015), so that the demand for remembering diverse navigation

routes may be still high. The amount of studies on bat and cetacean

navigation is small compared to that on rodent navigation. Additional

studies on this issue may provide valuable insights regarding our

hypothesis.

5 | SIMULATION DURING RESTING STATE

We have argued that the mammalian hippocampus may have evolved

to solve the problem of finding optimal routes between two arbitrary

locations and that it accomplishes this by simulating diverse naviga-

tion sequences and selecting from among them. It may seem simpler

and perhaps more economical to calculate optimal routes on an as-

needed basis using the spatial information represented in the

hippocampus instead of going through the process of simulation and

selection in advance. In fact, there is evidence suggesting that the rat

hippocampus actually does this. As mentioned above, hippocampal

place cell activity during navigation is related to both current and

anticipated future positions (Gupta et al., 2012; Wikenheiser &

Redish, 2015; Zheng et al., 2016). In addition, rats often show vicari-

ous trial-and-error behavior (i.e., horizontal head movements alternat-

ing between potential choices at a choice point) during an early stage

of learning (Redish, 2016). During such behaviors, spatial representa-

tions reconstructed from CA3 ensemble activity often transiently shift

ahead of the animal's current position, suggesting that the animal is

“thinking ahead” about possible future navigation routes (Johnson &

Redish, 2007). Furthermore, CA1 place cells in rats show relatively

slow sequential discharges before navigation onset—firing in the range

of seconds instead of milliseconds—that predict the animal's future

behavioral choices (Ainge et al., 2007; MacDonald, Carrow, Place, &

Eichenbaum, 2013; Pastalkova et al., 2008). These types of neural

activity are observed in association with theta oscillations rather than

SWRs, which is consistent with the finding that pharmacological dis-

ruption of the theta dynamics of rat hippocampal place cells impairs

performance in a delayed alternation task (Robbe et al., 2006; Robbe &

Buzsaki, 2009). Evidence suggests that planning of future navigation

also happens during SWRs. The direction of SWR-associated hippo-

campal replays during brief waking immobility (“exploratory” SWRs;

Atherton et al., 2015) is correlated with the direction of the animal's

future navigation (Diba & Buzsaki, 2007; Pfeiffer & Foster, 2013; Wu

et al., 2017). Also, spatial working memory performance is correlated

with coordinated CA3/CA1 neuronal activity during awake SWRs

(Singer, Carr, Karlsson, & Frank, 2013) and impaired by blockade of

awake SWRs (Jadhav, Kemere, German, & Frank, 2012). These results

suggest the rat hippocampus, while being actively engaged in

behavior, is able to process information related not only to the current

spatial position, but also to trajectories to potential targets.

Why, then, does the hippocampus adopt such a seemingly ineffi-

cient and energy-consuming solution of simulating diverse navigation

trajectories from arbitrary locations? We suggest that this strategy

provides a survival advantage. Advanced simulation-selection abilities

would prepare an animal for identifying optimal navigational routes

between arbitrary locations. Otherwise, the animal would be forced to

come up with the optimal solution only when it becomes necessary, a

process that may take too much time. In an emergency situation, such

as when being chased by a predator, this could be disastrous.

Although it may be energy-intensive, if we assume that advanced

simulation-selection of potential navigation routes improves survival

in mammals, it would be least wasteful to perform this operation

during rest or sleep states when an animal is not engaged in the active

processing of external information (Buckner, 2010). We suggest that

hippocampal replays observed during sleep and rest states represent

the process of simulating hypothetical navigation routes while the

brain is in idler states. Brain imaging studies have reported rat brain

activity patterns that resemble the default mode network activity

found in humans (Gozzi & Schwarz, 2016; Lu et al., 2012). As the hip-

pocampus is considered an older cortex in the brain, its evolution into

a neural substrate for simulation and selection during idle states may

have contributed to the evolution of the default mode network.

6 | COMPARISON WITH OTHER THEORIES

The unique feature of our model is that the core function of CA1

(i.e., the selection of high-value sequences) relies on value-dependent

discharges of CA1 neurons. Traditionally, the hippocampus has been

considered a computational area where cognitive variables related to

spatial navigation and episodic memory are computed and repre-

sented. Although memories of different places and events are associ-

ated with certain emotions and valences, emotions and valences are

largely assumed to be represented elsewhere rather than in the hippo-

campus itself. In previous models of the hippocampus, CA1 has been

proposed to serve such functions as match-mismatch comparison or

novelty detection (Hasselmo & McClelland, 1999; Hasselmo & Wyble,

1997; Lever et al., 2010; Levy, 1989; Lisman & Otmakhova, 2001;

Vago & Kesner, 2008), pattern completion (Cheng, 2013; Rolls, 2016),

processing temporal information (Gilbert et al., 2001; Mankin et al.,

2012; Rolls & Kesner, 2006), transforming CA3 representations for

neocortical projections (Kesner & Rolls, 2015; McClelland & Goddard,

1996), and behavioral inhibition (Bannerman et al., 2012). These func-

tions are related to spatial/cognitive processes, but not valuation. As

mentioned earlier, recent studies suggest that CA1 may be uniquely

involved in valuation among different hippocampal subregions (Jeong

et al., 2018; Lee et al., 2012; Lee et al., 2017). Our model assumes that

CA1 value processing is related to its core function (selecting high-

value sequences), whereas most existing models, to the best of our

knowledge, do not consider valuation itself as one of the major under-

lying variables that affect CA1 functions. In this respect, our model is

distinct from existing models of the hippocampus.

Previous theoretical attempts to link planning-related hippocam-

pal activity to reward/value-dependent learning assumed that

sequences generated in the hippocampus are evaluated in other
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value-processing brain structures such as the ventral striatum

(Gershman et al., 2012; Johnson, van der Meer, & Redish, 2007; Pez-

zulo et al., 2014; van der Meer, Kurth-Nelson, & Redish, 2012; Yu &

Frank, 2015). In contrast, our model suggests value-related discharges

of CA1 neurons allow for the preferential activation of high-value

sequences. One could argue that value (or reward)-dependent neural

activity in CA1 is merely one aspect of CA1’s event-related neural

activity. Although we do not argue against this possibility, we propose

that the selection of high-value sequences is a consequence of CA1’s

value-dependent neuronal activity and that this aspect may represent

a core function of CA1. Note that we do not argue that CA1 is solely

responsible for value-dependent processing of replayed sequences.

Offline reactivations of specific neural activity patterns that are coor-

dinated with hippocampal replays have been found in value-related

brain structures such as the ventral striatum and VTA (Gomperts,

Kloosterman, & Wilson, 2015; Ji & Wilson, 2007; Lansink, Goltstein,

Lankelma, McNaughton, & Pennartz, 2009). We propose that the hip-

pocampus, as one of the central components required for imagination

and mental simulation, generates novel sequences (CA3) and also fil-

ters/reinforces high-value sequences (CA1). Such filtered sequences

may be further associated with value-related neural activity elsewhere

(such as the ventral striatum and VTA) for the control of various psy-

chological processes. These may include the modulation of long-term

storage of CA1 output sequences and the control of motivation for

different action sequences. All of this remains to be studied.

Our model concerns reward/value-dependent CA3–CA1 neural

processes. However, the hippocampus contributes to reward-

independent learning as well. For example, hippocampal damages

impair simple association learning (such as associating face and name)

in humans (Giovanello, Verfaellie, & Keane, 2003; Hannula, Tranel, &

Cohen, 2006; Konkel, Warren, Duff, Tranel, & Cohen, 2008; Kroll,

Knight, Metcalfe, Wolf, & Tulving, 1996; Stark, Bayley, & Squire,

2002; Turriziani, Fadda, Caltagirone, & Carlesimo, 2004). Also, the hip-

pocampus represents spatial layout of an external environment (cogni-

tive map) even in the absence of reward (Lee, Kim, Sun, & Jung, 2009;

McHugh, Blum, Tsien, Tonegawa, & Wilson, 1996; O'Keefe & Nadel,

1978; O'Neill et al., 2008; Spiers, Hayman, Jovalekic, Marozzi, & Jeff-

ery, 2015), which can explain latent learning (Blodgett, 1929; Spence &

Lippitt, 1946; Tolman & Honzik, 1930). How is our model related to

reward-independent learning by the hippocampus? First of all, our

model does not preclude other types of learning than reward-based

learning in CA3-CA1 neural network. What we propose is that CA3–

CA1 synaptic plasticity/learning is modulated by value so that

sequential discharges of CA1 neurons are more biased toward reward

locations. Second, from the standpoint of hippocampal neurons,

“reward” may not be limited to the primary reward. Let's assume, for

the sake of argument, that dopamine controls value-dependent hippo-

campal neural processes. Dopaminergic neuronal activity is regulated

not only by a primary reward, but also by other factors such as novelty

(Bromberg-Martin et al., 2010; Lak, Stauffer, & Schultz, 2016; Ljung-

berg, Apicella, & Schultz, 1992; Schultz, 1998) and motivation

(Bromberg-Martin et al., 2010; Matsumoto & Hikosaka, 2009; Satoh,

Nakai, Sato, & Kimura, 2003). The influence of dopaminergic neurons

on the hippocampus may be similar across different occasions such as

encountering an unexpected primary reward, exploring a novel

environment (e.g., in latent learning), and being motivated for good

performance (e.g., in a simple association learning task). This possibil-

ity is supported by the findings that novelty lowers the threshold for

CA1 long-term potentiation in a dopamine-dependent manner

(Li et al., 2003) and enhances reactivation of waking CA1 neuronal

activity patterns during SWRs (Cheng & Frank, 2008; Foster & Wilson,

2006; O'Neill et al., 2008). Third, other subregions of the hippocam-

pus may be in charge of reward-independent learning. For example,

the DG may bind different types of incoming sensory information

(e.g., spatial and nonspatial information) to represent distinct spatial

contexts for different environments (Kesner, 2007; Lee & Jung, 2017).

The DG may play a major role in simple association learning and latent

learning based on its role in “binding”, whereas CA3 and CA1 may pri-

marily concern reinforcing potential valuable sequences.

7 | PREDICTIONS

Our model allows several predictions. First, both CA3 and CA1 may

show replays for novel trajectories during SWRs. Second, the content

of SWR-associated replays may be only weakly modulated by value in

CA3, but strongly modulated in CA1 for both experienced and novel

trajectories. There is limited evidence for this prediction. Trajectories

reconstructed from replays of CA1 place cells are preferentially

directed to reward locations (Foster & Wilson, 2006; Gupta et al.,

2010; Olafsdottir et al., 2015; Pfeiffer & Foster, 2013; Singer & Frank,

2009), but additional studies are needed. Third, unlike in CA1

(Wikenheiser & Redish, 2013), forward and reverse replays may be

equally frequent in CA3 during post-run sleep. Fourth, if CA3–CA1

synaptic plasticity is blocked during exploration, the value dependence

of CA1 replays should be reduced. Fifth, the activity of CA1 place cells

during exploration should depend on the expected value associated

with their place fields (i.e., the distance to a reward location), but this

relationship should be weaker for CA3 place cells (c.f., Lee et al.,

2017). Sixth, blocking hippocampal synaptic plasticity during post-run

sleep should reduce novel trajectory-related hippocampal activity dur-

ing subsequent navigation. Seventh, assuming value-dependent CA1

place cell activity during exploration shapes CA3–CA1 synaptic

strength (Figure 3), its manipulation should affect value-dependent

replays of CA1 neurons during SWRs. For example, if dopamine plays

a role in value-dependent place cell activity during exploration, then

dopamine stimulation (or blockade) during exploration should enhance

(or diminish) value-dependent replays of CA1 neurons during SWRs

(c.f., McNamara et al., 2014). Alternatively, if the combination of

reverse replays and phasic dopamine release shapes CA3–CA1

synaptic strengths according to value (Figure 5b,c), then dopamine

manipulation during reverse replays at a reward location should alter

value-dependent replays of CA1 neurons during SWRs.

8 | CONCLUSION

Here, we proposed a new model of hippocampal function—the

simulation-selection model—to account for circuit-level operations of

hippocampal information processing for goal-directed behavior.
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According to the model, CA3 generates both experienced (remem-

bered) and unexperienced (imagined) firing sequences, while CA1

preferentially passes on and reinforces high-value sequences. We pro-

pose that CA1’s role in selection is made possible by value-dependent

changes in CA3–CA1 synaptic strength, and there is limited evidence

that dopamine plays a role in this process. We argue that the

simulation-selection organization of the hippocampus has evolved in

mammals, but not in birds, because of the unique ecological and navi-

gational needs of land animals. Although solid empirical evidence is

missing for many aspects of our model, we hope to revise this model

as empirical results accumulate. In particular, it is critical to understand

how CA3 and CA1 neural activity is modulated by value during differ-

ent behavioral states. We have also only considered CA3 and CA1 as

central components of the simulation-selection model, leaving out the

DG, CA2, and the subiculum. Our model will require correction and

expansion as these subfields are incorporated. Nevertheless, we hope

our model provides a new perspective for the field of hippocampal

mnemonic processing as well as testable hypotheses that can guide

future empirical work on the hippocampus.
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