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Biological significance of FoxN1 gain-of-function
mutations during T and B lymphopoiesis in
juvenile mice

L Ruan1,2,3, Z Zhang2,3, L Mu2, P Burnley2, L Wang2, B Coder2, Q Zhuge*,1 and D-M Su*,1,2

FoxN1 is cell-autonomously expressed in skin and thymic epithelial cells (TECs), essential for their development. Inborn mutation
of FoxN1 results in hair follicle and TEC development failure, whereas insufficient postnatal FoxN1 expression induces thymic
atrophy, resulting in declined T lymphopoiesis. Although upregulating FoxN1 expression in the aged FoxN1-declined thymus
rejuvenates T lymphopoiesis, whether its over- and ectopic-expression in early life is beneficial for T lymphopoiesis is unknown.
Using our newly generated Rosa26-STOPflox–FoxN1 mice, in which over- and ectopic-expression of FoxN1 can be induced by
various promoter-driven Cre-mediated deletions of the roadblock STOPflox in early life, we found that K14Cre-mediated inborn
FoxN1 overexpression induced neonatal lethality, exhibited abnormal permeability in the skin and abnormal nursing. Ubiquitous
deletion of the STOPflox mediated by progressive uCreERT leakage in juvenile mice affected thymus and bone marrow normality,
resulting in an increased ratio of medullary/cortical TECs, along with declined T and B lymphopoiesis. Although the K5CreERT-
mediated FoxN1 overexpression mice had a normal lifespan, induction of K5CreERT activation in juveniles adversely influenced
total thymoycte development and produced ichthyosis-like skin. Therefore, FoxN1 has temporal and tissue-specific activity. Over-
and ectopic-expression of FoxN1 in early life adversely influence immature TEC, T and B cell, and skin epithelial development.
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Transcription factor FoxN1 is an epithelial cell-autonomous
gene, predominantly regulating development of thymic epithe-
lial cells (TECs) and skin keratinocytes.1 Inborn FoxN1
mutation results in thymic and hair follicle epithelial develop-
ment failure2–4 associated with primary immune deficiency5–7

and hairless nude skin.8–10 Insufficient FoxN1 expression
in postnatal life results in accelerated thymic aging.11–13

Although elevating FoxN1 expression in the aged thymus
can reinstate TEC homeostasis and induce thymic functional
rejuvenation,12,14,15 whether FoxN1 activity is sensitive
to genetic dosage, tissue, and temporal-specificity is still
unclear. Mounting evidence shows that dosage of FoxN1 is
indeed important for postnatal thymic homeostasis.
When dosage of FoxN1 is slightly elevated or depressed,
the status of the postnatal thymus is significantly influenced. It
is known that the thymus in wild-type (WT) young mice with a
full dosage of FoxN1 is completely normal, whereas it
is completely abnormal in FoxN1-null (inbornmutation, termed
‘nu/nu’) nude mice. In between these two extremes, the
FoxN1-null heterozygote (nu/+) mouse has a 50% reduced
genetic dosage compared to its WT littermates. Although the
50% dosage of FoxN1 is sufficient to induce TEC patterning4

during thymic organogenesis, the nu/+ mice have certain
defects in thymic size and thymocyte number,16,17 particularly
as age increases, compared with WT littermates. When
FoxN1 was reduced by ~ 30% compared to its WT levels in
the postnatal thymus, thymic atrophy was significantly
induced.11,18 On the other hand, when FoxN1 dosage was
increased by infusing minuscule amounts of vector-carried
FoxN1 cDNA into a naturally aged thymus, it resulted in
significant thymic rejuvenation.12 Using a Keratin(K)14
promoter-driven FoxN1 transgenic (Tg) mouse model the
overexpression of FoxN1-attenuated age-associated thymic
involution.14 Upregulating FoxN1 specifically in TECs (via
inducible FoxN1ER Tg) in the aged fully involuted thymus
confirmed the effect of reversing the involution.15 These
experiments demonstrated that age-related thymic involution
is causally associated with the loss of FoxN1.12,19 However,
whether the dosage of FoxN1 can be regarded as ‘the more,
the better’ for promoting thymic development is arguable. In
addition, another recent report using the same K14-FoxN1
transgenic mice showed that FoxN1 expressed in the bone
marrow (BM) of K14+ stroma, which is not a prominent
site of FoxN1 expression, promoted T-lineage production, but
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inhibited B-lineage production.20 Therefore, another question
about the role of FoxN1 in nonprominent locations arises.
We addressed these questions using an inducible FoxN1

expression mouse model—the Rosa26-STOPflox
–FoxN1

transgenic mouse.1 In this mouse, the FoxN1 cDNA is driven
by the ubiquitously expressed Rosa26 promoter, and its
expression is enhanced by a composite of CMV immediate-
early gene enhancer/chicken β-actin promoter (pCAG).21–23

This induces overexpression of exogenous FoxN1 after Cre-
mediated deletion of the roadblock STOPflox. We found that
FoxN1 over- and ectopic-expression (or nonprominent loca-
tion expression) in early life stages adversely affected the
development of the skin, thymus and T cells, as well as B cells,
whereas K5CreERT-mediated FoxN1 overexpression in adult
mice did not cause any observable defects, and can probably
be expected to attenuate age-related thymic involution as
reported.14,15 Therefore, FoxN1 exhibits both temporal and
tissue-specific activity.

Results

The characteristics of Rosa26-STOPflox
–FoxN1 mouse

model. We generated an inducible exogenous FoxN1
expression mouse model, the Rosa26-STOPflox

–FoxN1
transgenic mouse, to study the biological significance of
over- and ectopic-expression of FoxN1.1 In this mouse, the
flag-FoxN1 cDNA (kindly provided by Dr. Brissette)24 driven
by a pCAG promoter21–23 (kindly provided by Dr. McMahon)
was inserted into the Rosa26 locus. This fragment was book-
ended by a STOPflox roadblock cassette and IRES-GFP
reporter gene, respectively (Supplementary Figure S1A). The
DNA construct was verified by sequencing. This makes
conditional expression of the FoxN1 transgene controlled by
tissue-specific Cre/CreERT genes. We first selected K14Cre
to mediate the removal of the roadblock, because K14+

epithelial cells are epithelial progenitor cells in the skin, lung,
and breast epithelial basal layer, and FoxN1 is a regulator
that controls skin and thymic epithelial progenitor cell
differentiation. We found that newborn mice with both
Rosa26-STOPflox

–FoxN1 and K14Cre transgenes (termed
FoxN1TgK14Cre+) had strong FoxN1 and GFP expression
(Supplementary Figures S1B and C) in the skin and thymus.1

To verify the targeted locus, Southern blot for Rosa26-
STOPflox

–FoxN1 mouse genomic DNA was performed. The
results of correct genomic DNA size (with EcoRV digestion)
are shown in Supplementary Figure S1D. To verify whether
this exogenous FoxN1 is functional, we crossbred the
Rosa26-STOPflox

–FoxN1 mice with FoxN1flox-K5CreERT

conditional gene knockout (cKO) mice11 to get FoxN1Tg-
FoxN1flox cKO mice. In this mouse, tamoxifen (TM) induction
via K5CreERT 25 conditionally knocks out endogenous FoxN1
while inducing exogenous FoxN1 expression. We found that
the FoxN1Tg-FoxN1flox cKO mice had a normal thymus (data
not shown), whereas FoxN1flox cKO mice alone had an
atrophied thymus,11 indicating FoxN1Tg has normal FoxN1
activity that can compensate for the loss of FoxN1flox in the
thymus.
Unfortunately, FoxN1TgK14Cre+ mice cannot survive

for more than 24 h after birth. The mice had opened eyes

from later gestation until birth compared to their
FoxN1TgK14Cre− (nonexogenous FoxN1 expression) litter-
mates (Supplementary Figure S1E).

Neonatal FoxN1TgK14Cre+ mice had increased skin
permeability and defect in nursing. In order to determine
what causes FoxN1TgK14Cre+ neonatal death, we focused
on water intake and retention, because our neonatal mice
share similar phenotypes with the involucrin promoter-
driven FoxN1 transgenic neonatal mice,24 which possess
open eyes at birth and neonatal lethal phenotype with
dehydration. Using an D-galactopyranoside (X-gal) staining
approach, which is one of the skin barrier function
assays used for determining skin permeability,26 we found
that FoxN1TgK14Cre+ newborn skin permeability was
increased, mostly focused around the eye region (arrows
in Figure 1a). The increased region of skin permeability was
consistent with the open-eye phenotype. We also found that
these newborn mice cannot nurse by checking their
stomach (Figure 1b). In addition, the microstructure of
FoxN1TgK14Cre+ newborn skin showed increased thick-
ness in the epidermal layer (blue arrow in Figure 1c) and
flattened structure in the muscle layer (red arrow in
Figure 1c), which are related to dehydration and flexibility
in the stratum corneum.27 The structure looks similar to the
changes seen in congenital ichthyosis,27 but not as severe.
These phenotypes suggest that FoxN1 overexpression in
K14+ epithelium of the skin induces developmental muta-
tions that result in an increase in skin permeability and
defect in nursing. Therefore, FoxN1TgK14Cre+ neonates die
from dehydration.

Overexpression of exogenous FoxN1Tg, mediated by
uCreERT in juveniles, adversely affects thymus juvenile
stage maturation. We next asked whether FoxN1 over-
expression influences thymus development and T lymphopoi-
esis, as the main role of FoxN1 is the regulation of TEC
development, thereby ensuring thymus and T cell develop-
ment. We observed thymic microstructure and thymocyte
profile of FoxN1TgK14Cre+ neonatal mice (Supplementary
Figure S2), but did not find any differences compared to their
FoxN1TgK14Cre− littermate controls. Upon crossbreeding
Rosa26-STOPflox

–FoxN1 mice with uCreERT mice,11,28 the
neonates exhibited the same features as that of the
FoxN1TgK14Cre+ neonates: a normal thymic microstructure
and thymocyte profile, but the FoxN1TguCreERT+ neonatal
mice did not have a lethal phenotype. However, FoxN1Tgu-
CreERT+ mice cannot survive for more than 3 weeks
following birth. Furthermore, thymic and thymocyte pheno-
types underwent dramatic changes ~20 days after birth,
likely as a result of the progressive expression of exogenous
FoxN1Tg in the juvenile stage, mediated by a progressive
leakage of Cre-recombinase from uCreERT due to incom-
plete ER blockage in vivo with age, which was confirmed in
our previous publications1,12 and by an other group.29

Evidence has shown that the thymus, particularly the thymic
medulla, continuously undergoes maturation in the juvenile
stage.30 We found that ubiquitous FoxN1 overexpression in
the juveniles indeed promoted a thymic medulla-skewed
maturation, which resulted in an infusion of thymic medullary
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Figure 1 FoxN1 overexpression mediated by K14Cre+-induced defects in skin and nursing in newborn mice. (a) Skin permeability assay with X-gal shows increased
permeability, mostly focused around the eyes (blue arrows) of FoxN1TgK14Cre+ newborn mice; (b) stomachs (blue arrows) of FoxN1TgK14Cre+ (left) and FoxN1TgK14Cre− (right)
newborn mice, with little to no milk in the stomach of FoxN1TgK14Cre+ newborn mouse; and (c) skin histological assay (H&E staining) shows increased thickness in the epidermal
layer (blue arrow) and flattening in the muscle layer (red arrow) of FoxN1TgK14Cre+ newborn mice
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islets to occupy a large region (Figure 2, top panels), and
increased the proportion of claudin-3, -4 (Cld3,4+) and UEA-1+

TECs (Figure 2 middle rows), which represent immature
(Cld3,4)31 and mature organized mTECs (UEA-1),32 respec-
tively, as well as an increase in Aire+ mTECs (Figure 2 bottom
panels). However, the trade-off for enhanced mTEC

maturation was defective cTECs, as exhibited by diminished
β5t+ dendritic-shaped bright spots that are normally observed
in the FoxN1TguCreER− control thymus (Figure 2, left panel in
the second row). β5t is considered a cTEC biomarker33 and is
essential for the positive selection of T cell receptor.34,35 Flow
cytometry analysis of the ratio of mTECs/cTECs further
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Figure 2 Overexpression of FoxN1 mediated by uCreERT+ in juvenile mice induced medullary-biased abnormality of thymic microstructure. Representative
immunofluorescence staining shows the thymuses of FoxN1TguCreERT+ juvenile (~20 days after birth) mice (right panels) had infused thymic medullary islets (top panels), an
increase in UEA-1+ and Cld3,4+ TECs (panels in middle two rows), an increase in Aire+ mTECs (bottom panels), and dimness of 5βt+ bright dendritic-shaped spots (second row
from top), compared to their normal littermate controls (left panels). This experiment was repeated three times with at least three animals in each group producing consistent
results
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confirmed that the proportion of mTECs were increased at the
expense of cTECs (Figure 3).
On checking the thymocyte profile, we found that the thymic

size (Figure 4a) and weight (Figure 4b) were reduced in the
FoxN1 overexpression group. Furthermore, the thymocyte
profile was obviously changed compared with control group
(Figure 4c), with significantly decreased absolute cell number
of total thymocytes (Figure 4d) and all subpopulations
(Figure 4e), especially CD4+8+ double positive cells. The
results indicate that FoxN1 overexpression in juvenile mice
adversely affected thymocyte development by influencing
thymic microstructure maturation and potential ectopic

expression of FoxN1 in hematopoietic cells via uCreERT

mediation.

FoxN1TguCreERT+ juveniles showed deterioration of T
cell function in the periphery. We asked whether reduced
thymocyte number, resulting from the overexpression of
exogenous FoxN1, affects mature T cell function in the
periphery by testing CD4 splenic T cell responsiveness to
anti-CD3ε and anti-CD28 costimulation. We noticed that the
proportion of splenic T cells were significantly increased
(Figures 5a and b), whereas the absolute cell number was
significantly decreased (Figure 5c). IL-2 production was
significantly decreased in CD4+ splenic T cells in response
to costimulation (Figure 5d), implying that the peripheral
T cells were functionally impaired in the FoxN1TguCreERT+

juvenile mice.

Ectopic expression of exogenous FoxN1Tg, mediated by
uCreERT in juvenile BM, adversely affects B cell devel-
opment. We noticed that the FoxN1TguCreERT+ juvenile
mice had dramatically reduced mass of both the thymus and
spleen, and absolute total cell number in both the thymus and
spleen (Figure 4a). We also noticed that with the increased
proportion of T cells in the spleen (Figure 5a), the proportion
of B cells (Figure 6a, top panels) and absolute B cell number
(data not shown) in the spleen were significantly decreased.
This led us to determine whether defects in B cell develop-
ment were due to ectopic expression of FoxN1Tg mediated by
uCreERT, which should ubiquitously induce FoxN1Tg expres-
sion in a wide range of tissues28 including hematopoietic
cells. We analyzed B cells in the BM, which is the site for B
cell development, and found that the proportion of B cells in
the BM was indeed decreased (Figure 6a, bottom panels).
In order to confirm the expression of FoxN1 in the BM of

FoxN1TguCreERT+ mice, we checked FoxN1 mRNA level with
real-time RT-PCR. We flushed and collected total BM from
femurs, depleted red blood cells, then isolated total mRNAwith
TRIzol reagent, and digested any transgenic DNA contamina-
tion via DNase-I enzymatic treatment. Because transgenic
FoxN1 cDNA is characterized by the absence of introns in the
genomic DNA sequence, PCR products generated using
intron-spanning primers cannot differentiate the transgenic
cDNA, which is already incorporated into the genomic DNA of
the transgenic mice. Therefore, complete removal of DNAwith
DNase-I before reverse transcription is critical. We determined
that FoxN1 was markedly expressed in the BM of FoxN1Tgu-
CreERT+ juvenile mice (Figure 6b the rightmost bar). However
we did not detect FoxN1 expression in the BM of WT control
mice, by comparing theWT spleen, which should not have any
FoxN1 expression (Figure 6b). The results indicate that
FoxN1TguCreERT+ mice have ectopic FoxN1 expression in
the BM following the deletion of STOPflox, mediated by
uCreERT.

Overexpression of exogenous FoxN1Tg, mediated by
K5CreERT, has different effects in adult and juvenile
mice. As K5 is a partner of K14 with the same localization
and similar characteristics,36,37 we crossbred Rosa26-
STOPflox

–FoxN1 mice with K5CreERT mice,25 which express
K5-deriven Cre-recombinase upon TM induction. We did not
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observed postnatal FoxN1 gain-of-function mutation-induced
newborn lethal phenotype, and the mice have a normal lifespan.
We found, by observing GFP expression in juvenile

(2 weeks) thymuses, that Cre-recombinase leakage in
K5CreERT was not as strong as in uCreERT (Supplementary
Fig. S3). Therefore, we intraperitoneally injected TM into these
mice to enhance induction of FoxN1Tg expression in
FoxN1TgK5CreERT+ newborn and adult (4–5 weeks) mice
(described in Figure 7a). In adult mice we found that following
five-time (5 × ) TM-injections, the FoxN1Tg did not result in any
adverse phenotypes in the skin and thymus (mass, total
thymocyte number, and CD4 versus CD8 profile, Figure 7b).
However, in juvenile mice, after x4 TM-injections at the
neonatal stage, mild adverse phenotypes were observed in
the juvenile thymus, such as reduced thymic mass, total

thymocytes, and all subset cell numbers (data not shown), but
there was no change in CD4 versus CD8 profile (Figure 7c).
However, this induction strategy induced a severe skin
phenotype, exhibiting ichthyosis-like coarse skin and hair loss
phenotypes (Figures 7d and e). The results suggest that:
(1) FoxN1Tg overexpression in the juvenile stage may
adversely influence the underdeveloping epithelium, whereas
it may not affect or may even be beneficial for mature epithelial
tissues in adults;15 (2) this adverse effect is more severe in the
skin than in the thymus.

Discussion

The biological significance of inborn and postnatal loss-of-
function mutations in the FoxN1 gene has been studied for
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several decades.4,8–11,38,39 However, the biological signifi-
cance of inborn and postnatal FoxN1 gain-of-function muta-
tions has just begun to be probed.12,14,15,20,24 In this report, we
used our newly developed inducible tissue-specific mouse
model for FoxN1 gain-of-function mutations to establish
biologically significant evidence that over- and ectopic-
expression of FoxN1 in early life influences immature TEC, T
and B cell, and skin epithelial development. We found that
K14Cre-mediated Rosa26-STOPflox

–FoxN1Tg newborns had
a neonatal lethal phenotype caused by dehydration due to
abnormal permeability in the skin and defect in nursing. These
neonatal mice shared similar phenotypes with the involucrin
promoter-driven FoxN1 transgenic neonatal mice,24 which
have enhanced ectopic expression of FoxN1. The uCreERT-
mediated overexpressed FoxN1 induced by progressive
leakage of Cre-recombinase beyond the neonatal stage
affected the development of the thymus, thymocytes, and
BM in the juvenile stage, indicating that TEC development
skewed towards mTECs, thymocyte numbers were signifi-
cantly decreased in all subsets, a proportion of peripheral
T cells was increased but the absolute number and functional
response were significantly reduced, and the numbers of BM
and peripheral B cells were significantly decreased. However,
K5CreERT-mediated FoxN1 overexpression via TM induction
in the adults resulted in normal thymus and skin, whereasmice

subjected to TM induction as neonates had mildly abnormal
development of the thymus, and severe ichthyosis-like skin in
the juvenile mice.
Generally, enhancing FoxN1 expression in an aged thymus

should rejuvenate atrophied dysfunction, as FoxN1 is
decreased with age.12,14,15,19 However, no reports thus far
looked into whether enhanced FoxN1 expression in the
juvenile thymus, which already has high levels of FoxN1, is
beneficial for further thymic development. Our report provides
a negative answer, in which FoxN1 gain-of-function mutations
in juvenile mice (younger than 3 weeks, before weaning) had
an adverse effect on thymic development. This adverse effect
on the skin occurred early (neonatal stage) and was severe
(lethality). Interestingly, these lethal phenotypes were not
reported in K14 and K5 promoter-driven FoxN1 transgenic
mice made by other groups.14,40 This is probably because we
used both the Rosa26 promoter to ensure the FoxN1 gene is
expressed in all Rosa26 positive tissues (almost ubiquitously),
followed by pCAG promoter21–23 to ensure strong FoxN1
expression. The pCAG promoter is a CMV-IE enhancer plus
chicken β-actin promoter sequence,21 which was confirmed to
be able to drive enhanced gene expression,41 particularly in
the cutaneous epithelium,21 which may explain why the skin
phenotype is so strong. However, upregulating FoxN1 in later
life stage via inducible pCAG-FoxN1ER mediated by FoxN1-
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Cre Tg, which achieves overexpressing exogenous FoxN1
only in endogenous FoxN1-declined TECs, is beneficial to
rejuvenation of aged thymic function.15

We did not observe defects during thymic development
induced by FoxN1 gain-of-function mutations in the prenatal
thymus in our K14-, K5-, and ubiquitous Cre-mediated FoxN1
overexpressing mice. Therefore, the dosage of FoxN1 could
be considered ‘the more, the better’ in the prenatal thymus.
However, FoxN1 gain-of-function mutations in the early
postnatal thymus resulted in defects in TEC development, as
observed in the ubiquitous CreERT (continuous Cre-
recombinase leaky)-mediated and K5CreERT (juvenile mice
with TM x4)-mediated Rosa26-STOPflox

–FoxN1Tg mice
(Figures 2–4 and 7c). Therefore, the dosage of FoxN1 could
not be considered ‘the more, the better’ for juvenile stage
thymic development. At this stage, the thymic medulla is still
undergoing development,30 and expression of FoxN1 may be
just beginning to decline in the natural thymus, where
enhancing FoxN1 expression may break this balance.

However, in the adult and late postnatal thymus, FoxN1+

TECs are markedly reduced.42,43 Enhancing FoxN1 expres-
sion may produce a beneficial effect that may slow down
thymic aging,14,15 or at least no harmful effects as shown in our
K5CreERT (with TM x5 induction in the adult)-mediated
Rosa26-STOPflox

–FoxN1Tg transgenic adult mice (Figure 7b).
In our uCreERT-mediated Rosa26-STOPflox

–FoxN1Tg

transgenic juvenile mice, we also found that B lymphopoiesis
was markedly decreased in the BM and spleen (Figure 6a).
This is consistent with the finding in K14 promoter-driven
FoxN1 transgenic mice, in which B-lineage cell numbers were
significantly lower.20 It could be caused by exogenous FoxN1
expression in nonprominent locations, not only in BM
mesenchymal origin stromal cells but also in hematopoietic
origin cells because of ubiquitous CreERT.
In our model, FoxN1 overexpression in the BM not only

disrupted B lymphopoiesis, but was also not beneficial for T
cell development. In the uCreERT leakage-mediated FoxN1
overexpression in Rosa26-STOPflox

–FoxN1Tg juvenile mice,
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BM LSK (lineage negative, Sca-1+ and c-kit+) cells, which
are T-lymphohematopoietic progenitors in the BM, were
decreased (Supplementary Figure S4) and early T-cell thymic
progenitor (lineage negative, CD44+CD25−, and c-kit+) cells
were increased in percentage (data not show), but decreased
in absolute number along with all other thymocyte subpopula-
tions (Figure 4). At least, FoxN1 expression in BM stromal
(niche) cells is not critically required for T-cell development, as
WT thymic lobes grafted into nude (FoxN1null) mice under the
kidney capsule, without any modification in the FoxN1null host
BM niche, are able to generate normal T cells, which is a
common model for studying lymphostromal interactions.
The FOXN1 leads to congenital alopecia and an alymphoid

thymus with severe combined primary T-cell immuno-
deficiency,7,44–46 resulting in death in early childhood from
severe infections.44,47 Therefore, gene therapy with FOXN1 is
one of options to be possibly selected to treat fetal FOXN1
mutations. If so, the dosage of FOXN1, target tissues, and
developmental stages must be carefully considered, because
our data has demonstrated that over- and ectopic-expression
of FoxN1 is pathogenic and potentially lethal. In addition,
although there are not any reported diseases predicated on
the over- and ectopic-expression of FoxN1, this does not rule
out their discovery in the near future. A growing paradigm of
microRNAs regulating gene activity is emerging. A recent
report has linked silencing of microRNAs (miR-18b and
miR-518b) with the upregulation of FoxN1 in embryonic stem
cells.48 Evidence to support microRNA mutations affecting
gene expression and leading to heritable diseases is emerging
with time. Our results provide a clue of potential pathologies
that could emerge from mutations in the microRNA or
microRNA target regulators that maintain FoxN1 levels.
It is taken for granted that loss-of-function mutations induce

defective phenotypes, whereas it is hard to accept that gain-of-
function mutations can also induce defective phenotypes. Our
results show that neonatal overexpression of FoxN1 mainly
affects skin development, which was also demonstrated by an
Involucrin promoter-driven FoxN1 transgenic mouse model.24

Our study addressed whether FoxnN1 expression in the
thymus can be considered ‘the more, the better’. Although it is
not the case in certain developmental stages, such as in
juveniles, enhancing FoxN1 expression in the FoxN1-declined
aged thymus should provide significant rejuvenation.12,14,15 In
fact, ectopic-expression of FoxN1 in tissues that do not
predominantly express FoxN1, such as the BM, is harmful.
The biological significance of gain-of-function mutations in the
FoxN1 gene is summarized in Supplementary Figure S5.
Ultimately, if FoxN1 is not expressed in the right tissues and
right life developmental stages, then physiological abnormal-
ities will be induced. In our models, FoxN1 gain-of-function
mutations disrupted B-lymphopoiesis and did not help T
lymphopoiesis. FoxN1 possesses developmental stage and
tissue-specific activity.

Materials and Methods
Mice, age groups, genotyping, and animal care. Neonatal (1 day) and
juvenile (2–3 weeks) mice (C57BL/6 genetic background) were used. Rosa26-STOPflox–
FoxN1 transgenic (termed FoxN1Tg) mice were generated by our laboratory (available
upon request),1 and genotyped with three primers (Supplementary Figure S1A). The
FoxN1Tg mice were crossbred with K14Cre,49 K5CreERT 25 and ubiquitous pCAG-

CreERT (uCreERT)28 mice (Jackson Laboratories, Bar Harbor, ME, USA, #004782,
#018394, and #004682). The FoxN1flox (fx) mice carrying a TM-inducible uCreERT

(termed fx/fx-uCreERT) were generated and genotyped as described previously11

(Jackson Laboratories #012941). All animal experiments were performed according to
the protocols approved by the Institutional Animal Care and Use Committee of the
University of North Texas Health Science Center, in accordance with guidelines from the
National Institutes of Health, USA.

Skin permeability assay. Details are described in a previous publication.26

In brief, freshly isolated embryos were rinsed in phosphate buffered saline (PBS)
and immersed in X-gal staining reagent overnight at 30 °C. On the following day,
embryos were rinsed in PBS and photographed.

IF staining. Cryosections (5/6 μm thick) were stained as described previously.50

The primary antibodies used were rabbit anti-FoxN1 (provided by Dr. Itoi),43 anti-
claudin-3,4 (Invitrogen, Grand Island, NY, USA, #34-1700 and #36-4800), anti-
Keratin-5 (Covance, Princeton, NJ, USA, #PRB-160P), Biotinylated-UEA-1 (Vector
Laboratories, Burlingame, CA, USA, #B-1065), anti-Aire (Santa Cruz, Dallas, TX,
USA, #SC-33189, anti-β5t (Medical and Biological Laboratories, Nagoya,
Japan, #PD021), and anti-Keratin-8 (Troma-1 supernatant). The secondary
antibodies used were Cy3-conjugated or Alexa-Fluor-488-conjugated donkey anti-
rabbit or -rat IgG (Jackson ImmunoResearch Laboratories, West Grove, PA, USA).

Real-time RT-PCR. Total RNA from mouse thymus, spleen, and BM was
isolated with TRIzol reagent and reverse transcribed to cDNA with the SuperScriptIII
cDNA kit (Invitrogen). Real-time RT-PCR was performed with TaqMan reagents. The
sequences of FoxN1 primers and probe (TaqMan method) were as described
previously.11 The relative expression levels of FoxN1 mRNAs from the thymus,
spleen, and BM were internally normalized to GAPDH levels, then compared with a
ΔΔCT value from pooled young WT thymuses. This ΔΔCT value was always
arbitrarily set as 1.0 in each real-time PCR reaction.

Western blot analysis. The whole thymus was subjected to homogenization
and protein extraction in RIPA lysis buffer (Sigma, St. Louis, MO, USA, #R0278).
Protein, ~ 25 μg/lane, was loaded under reducing conditions for direct Western blot
assay with FoxN143 (81 KD band) and GFP (monoclonal, Santa Cruz, #SC-9996, 27 KD
band) antibodies. GAPDH or β-actin were used as an internal loading control.

Flow cytometry assays. Single cell suspensions of thymocytes, spleen, and
BM (flushed from the mouse femur) cells, as well as TECs (isolated with
collagenase-V/DNase-I isolation method)50 were stained with combinations of
fluorochrome-conjugated antibodies against cell surface markers and/or an
intracellular marker, which are indicated in each figure. Data was acquired using
a BD LSRII Flow Cytometer (BD Bioscience, San Jose, CA, USA) and analyzed
using FlowJo software (Tree Star, Inc., Ashland, OR, USA).

Analysis of intracellular IL-2 in peripheral CD4+ T cells in
response to costimulation of CD3 and CD28 antibodies. Red
blood cell lysis buffer (Sigma, #R7757) treated spleen cells (2 × 106 per well) were
cultured with anti-mouse CD3ε and CD28 antibodies (2 μg/ml each) supplemented
with BD GolgiStop (0.7 μl/ml, from BD Biosciences, #554724) for 5 h. The harvested
cells were stained for CD4 on the surface, fixed and permeabilized,12 then stained
with fluorochrome-conjugated IL-2 antibody intracellularly, following flow
cytometry assay.

Statistics. Statistical significance was analyzed by unpaired Student’s t-test.
Differences were considered statistically significant at values of Po0.05.
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