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Abstract

Despite strong interest over many years, the usage of quantitative trait loci in plant breeding

has often failed to live up to expectations. A key weak point in the utilisation of QTLs is the

“quality” of markers used during marker-assisted selection (MAS): unreliable markers result

in variable outcomes, leading to a perception that MAS products fail to achieve reliable

improvement. Most reports of markers used for MAS focus on markers derived from the

mapping population. There are very few studies that examine the reliability of these markers

in other genetic backgrounds, and critically, no metrics exist to describe and quantify this

reliability. To improve the MAS process, this work proposes five core metrics that fully

describe the reliability of a marker. These metrics give a comprehensive and quantitative

measure of the ability of a marker to correctly classify germplasm as QTL[+]/[–], particularly

against a background of high allelic diversity. Markers that score well on these metrics will

have far higher reliability in breeding, and deficiencies in specific metrics give information on

circumstances under which a marker may not be reliable. The metrics are applicable across

different marker types and platforms, allowing an objective comparison of the performance

of different markers irrespective of the platform. Evaluating markers using these metrics

demonstrates that trait-specific markers consistently out-perform markers designed for

other purposes. These metrics also provide a superb set of criteria for designing superior

marker systems for a target QTL, enabling the selection of an optimal marker set before

committing to design.

Introduction

The world population is expected to top 9 billion people by 2050. To feed this population, it is

estimated that agricultural output of cereals alone will need to increase by approximately 1 bil-

lion tons [1]. It is widely acknowledged that meeting this growth target will require the integra-

tion of new technologies into the breeding process. Many authors have discussed the promise

of molecular marker technologies for improving the speed and efficiency of the breeding pro-

cess, and extensive literature has accumulated on methodologies to incorporate the use of

markers into breeding decisions (e.g. [2]). At its core, this marker-assisted selection (MAS) is
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about two correlations: Trait$QTL and QTL$marker. A QTL is identified as a genetic

position (locus) associated with some degree of phenotypic variation in a specific trait. Mark-

ers are assayable polymorphisms with some degree of association with a QTL in a specific gene

pool. Both sets of correlations may be broad-ranging or narrowly applicable, and the success

or reliability of MAS is directly determined by the strength of these correlations. However,

since the middle factor (QTL) is almost never tracked per se, both correlations are often con-

flated into the indirect association of the marker with the trait. Since this association is indi-

rect, reliable markers may not always result in reliable improvement of the trait—this depends

on the quality of the QTL, and is a topic for a different discussion. However, unreliable mark-

ers will always result in unreliable improvement, and it is thus essential to identify what consti-

tutes a reliable marker, and metrics to objectively measure and evaluate this quality.

Current MAS programs use one of several genotyping platforms, depending on require-

ments for marker density and sample throughput. These platforms range from low-through-

put, PCR-based techniques such as the traditional microsatellite/simple-sequence repeats

(SSRs) and newer insertion/deletion mutations (indels), to the explosion of high-throughput

single-nucleotide polymorphism (SNP) platforms and new sequencing-based methods such as

genotyping-by-sequencing (GBS) and amplicon sequencing [3, 4, 5, 6]. Most recent literature

has focused on new SNP technologies, but by far the most common systems in use by public

sector breeding programs are traditional SSRs. These are widely employed in biparental map-

ping studies such as QTL mapping and fine-mapping [7, 8, 9, 10, 11, 12, 13, 14], but have also

been used in cross-population meta-analyses [12] and allelic diversity assessments [15, 16].

Given their high throughput nature SNPs and GBS are the platforms of choice for strategies

requiring high sample volumes and/or marker densities, such as genomic selection and

genome-wide association studies (e.g. [17, 18]).

Despite the acknowledged importance of incorporating molecular markers into the breed-

ing process, there has been little discussion on factors influencing the success of such endeav-

ours. Some studies have investigated the utility of SSRs in breeding processes [15, 19, 20, 21],

however the only criterion for usefulness that is considered is genetic linkage with the QTL;

other issues such as how reliably the markers classify favourable and unfavourable alleles are

rarely examined, and if so done in a cursory manner.

Poor classification ability in markers can lead to many undesirable outcomes. For example,

a typical MAS workflow involving SSRs starts with a parental polymorphism survey; SSRs are

chosen to introgress a QTL based on their linkage (position) and the fact they are polymorphic

between a donor and the chosen recipient line. However, this does not examine whether the

chosen recipient already contains the target QTL; the ability of the QTL to improve the recipi-

ent is assumed, not tested. SSR markers cannot provide information on whether the chosen

recipient already possesses the QTL—this is a circular argument—and there are documented

cases where SSRs give misleading indications as to the presence/absence of a QTL. This can be

seen for example in [15] and [22], which in both cases confuse varieties with different Saltol
alleles and distinguish varieties with the same allele (compare for example [23]). Many similar

situations have arisen in breeding programs, irrespective of marker platform in use (SNP or

gel-based), leading to unreliable outcomes, usually as a result of classifying a variety as lacking

a QTL when in fact the QTL is already present. To avoid similar problems in future, some

method of characterising markers is required, to help identify markers at risk of giving mis-

leading results and to aid in the design of superior markers as replacements. Most importantly,

a set of objective measures should be derived that describe how accurately a marker classifies

both QTL[+] and QTL[–] material.

Surprisingly there is no literature available dealing with this subject, which may contribute

to the ambiguity surrounding the quality of existing marker systems. The closest parallels in
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other disciplines are accuracy metrics used to evaluate clinical tests (e.g. [24]), but the concepts

do not map directly to each other. For example, medical diagnostics assume a large number of

case-[+] and case-[–] datapoints are available, and often deal with quantitative measures such

as enzyme or antibody activity levels. By contrast, “datapoints” in the case of molecular mark-

ers are characterised varieties with or without the target QTL, which are typically far fewer in

number. Combined with this, for many genotyping platforms the genotype is essentially a

binary output, making it strictly impossible to distinguish more than two allelic states.

To stimulate discussion in this area, a set of five core and nine supporting metrics is pre-

sented along with strategies for their calculation, which capture the level and type of associa-

tion between a marker and its target QTL. These metrics are focused primarily on assessing

the classification ability of a marker against a background of high allelic polymorphism such as

is found in rice [25], but also assess several other parameters related to the reliability of scoring

and usefulness of a marker in breeding. The metrics are then used to evaluate a set of SSR, SNP

and indel markers targeting a range of QTLs in rice (Oryza sativa L.), to illustrate their applica-

tion in designing marker systems that give higher confidence for deployment in breeding

programs.

Materials and methods

A summary of proposed marker quality metrics is found in Table 1. The metrics are comprised

of five core metrics that quantify the reliability of a marker, and a further nine supporting met-

rics that allow the determination of the core metrics. They fall into three main categories: (1)

Technical metrics, (2) Biological metrics, and (3) Breeding metrics. Technical metrics quantify

the performance of the marker as a genotyping assay. Biological metrics describe the associa-

tion of the marker with the QTL/gene/allele it is tracking, especially as this association relates

to the marker’s accuracy in selecting for the target QTL. Breeding metrics extend the biological

metrics to describe the accuracy of a marker in a particular breeding program or population.

To evaluate these metrics on existing marker systems in rice several different kinds of mark-

ers from multiple platforms were compared. These include 20 SSR markers [3], approximately

4500 SNP markers identified as part of the OryzaSNP project [25] and utilised on fixed geno-

typing platforms such as the Illumina Infinium chip ([6]; hereinafter the “anonymous SNP

panel”), and 137 candidate QTL-specific SNP and indel markers. A list of markers evaluated

can be found in S1 Table. Markers were evaluated using one of two main datasets, depending

on the metrics to be evaluated: empirically-determined PCR results to compare technical per-

formance and breeding metrics for gel-based SSR and indel markers, and a large genome rese-

quencing dataset to compare biological and breeding metrics for anonymous SNPs, QTL-

specific SNPs, and QTL-specific indel markers.

Technical metrics: Call rate and clarity

Technical metrics such as call rate and clarity must be determined empirically from genotyp-

ing data using a specific marker assay (primers, probes, etc.); it is entirely possible for two

independent sets of primers targeting the same locus to give vastly different results on these

metrics. To this end, a set of 20 SSR and 86 trait-specific indel markers (S1 Table) were empiri-

cally evaluated on a set of 121 diverse varieties released by the International Rice Research

Institute and others, supplemented with various QTL donor and recipient germplasm charac-

terised as part of QTL mapping exercises by numerous groups. A list of varieties examined is

found in S2 Table. Indel marker genotypes were scored as Large/Small, while SSR products

were assigned to band size categories as appropriate. Missing and unclear results were flagged

as such. The call rate was determined as the percentage of samples giving a visible result (i.e.
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not “missing”), while clarity was the percentage of samples giving a clearly scorable result (i.e.

as opposed to unclear or ambiguous results).

Biological and breeding metrics: False positive rate, false negative rate, and

utility

For maximum informativeness, these metrics need to be determined against a background of

high allelic diversity. To achieve this, whole-genome resequencing data was obtained for a set

of 242 diverse rice accessions, comprising 173 cultivated lines (named, released varieties) and

69 landraces, most of which were chosen for their status as QTL donors or recipients. Much of

this data was obtained from the rice 3000 genome dataset [26], supplemented with resequen-

cing of high-value donors and recipients for specific QTLs. A list of varieties examined is

found in S3 Table. Raw data (reads) were mapped to the MSU7 rice genome build using bwa,

and resulting bam files processed using samtools [27, 28]. A total of 352 anonymous SNPs (i.e.

not designed specifically for a given QTL) were chosen from the ~4500 useable features repre-

sented on the Infinium SNP chip [6], either within QTL limits (for large QTLs) or within simi-

lar distances to the QTL-specific SNP and indel markers. A total of 482 QTL-specific markers,

both SNP and indel, were chosen within QTL limits, or within short physical distances of

Table 1. Summary of core and supporting metrics to describe marker quality.

Technical metrics

Version Support Identifier designating the version of a marker being examined; particularly important for technical performance metrics.

Call rate Core The proportion of samples which give a scorable result. For gel-based markers this is easy to visualise and understand

(unless the marker is dominant), but many SNP platforms will call an allele even if the underlying data is substandard.

Clarity Core How reliably a sample can be classified as allele A, B or heterozygous. This is a critical parameter, and for each new marker it

is worthwhile determining—even commercial SNP platforms do not always perform to the standard the sales brochure will

advertise, and each individual marker will perform in different ways. The clarity can be quantified by determining what

proportion of known germplasm is correctly classified, and/or how well it correlates with tightly-linked alternative markers.

Biological metrics

Linkage Support Genetic distance of the marker from the QTL peak, it is probably best expressed as a genetic distance gained from one or

more mapping populations. Diagnostic markers will by definition have a distance of 0cM.

Position Support Position targeted by a marker, for example chromosomal location (preferable), mapping bin or consensus genetic position.

Derived QTL state Support Which state appears to be the most derived, and therefore most informative in determining presence of the QTL: Favourable

or Unfavourable. This is not a property of a specific marker, but rather the QTL.

Marker Target Support A qualitative description of the allele targeted by the marker, the favourable or unfavourable allele.

Favourable allele Support Not quality metrics per se but necessary for automated analyses, and helpful for new researchers wanting to use a marker.

Depending on the platform these could be a size (143bp, Large/Small), allele (A/C/G/T) or even an allele definition (e.g. for

amplicon sequencing).
Unfavourable allele

False Positive Rate Core The proportion of known negative genotypes incorrectly classified as QTL[+]. Assayed as the number of known recipients

identified as not having an unfavourable allele(s) of the marker (and thus incorrectly classified as QTL[+]).
ð# recipients withOUT unfavourable allelesÞ

ðTotal # known recipientsÞ

False Negative Rate Core This is the converse of FPR, i.e. the proportion of known QTL[+] genotypes incorrectly classified as QTL[–] due to not

having a favourable allele of the marker.
ð# donors withOUT favourable allelesÞ

ðTotal # known donorsÞ

Breeding metrics

Breeding program False

Positive Rate

Support Analogous to the FPR and FNR respectively, but assessed on a particular breeding panel. Since the breeding panel likely has

a lower level of allelic diversity, markers should score higher on the BpFPR and BpFNR than on the true FPR/FNR. These

metrics give more precise information on the behaviour of a marker in the target breeding program, but the association is

then specific to that program, so must be reassessed for other programs.
Breeding program False

Negative Rate

Utility Core The proportion (percentage) of a prospective breeding pool across which a marker could be used to introgress a QTL. This is

equivalent to the proportion of the pool which does NOT carry the donor allele of a marker:
ð# cultivars withOUT favourable allelesÞ

ðTotal # cultivars assessedÞ

https://doi.org/10.1371/journal.pone.0210529.t001
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known, cloned genes. Details of the marker positions examined are found in S4 Table. Nucleo-

tide base calls were obtained at all SNP sites—both QTL-specific SNPs and anonymous SNP

markers—using standard Samtools/bcftools pipelines [27]. Genotype calls for QTL-specific

indel marker positions were determined manually from the same dataset, as automated vari-

ant-calling algorithms did not produce reliable results for indels >~5nt.

All data was consolidated in a MS Access database and information on favourable and unfa-

vourable alleles was recorded for each marker. For anonymous SNPs, which do not have

defined favourable or unfavourable alleles, data on accuracy metrics was calculated in two

ways: first using the assigned allele A as favourable and B as unfavourable, and secondly classi-

fying the allele with the highest frequency in known donor lines (lowest false negative rate;

FNR) as favourable. The latter method was designated as “FNR corrected”. Data was analysed

across 42 target QTLs for various disease resistance, abiotic stress, yield and flowering-related

traits (S5 Table). As each QTL typically spanned a significant physical distance, summary data

was calculated first across all markers of a particular type within a QTL, then averaged across

the 42 target QTLs. The final dataset consisted of 352 anonymous SNPs, 251 trait-specific

SNPs and 223 trait-specific indels, scored across a common set of 242 genomes for the 42 tar-

get QTLs.

Results

Derivation of quality metrics

In developing a set of metrics to assess the performance of a candidate marker, it is necessary

to break down the features of a marker that impact on its reliability. Broadly speaking, markers

may vary in three main areas:

1. Technical aspects related to the assay performance and scoring of the marker;

2. Biological aspects of the association between the marker and its target locus;

3. Practical aspects of the marker’s use in a breeding pool.

These three areas are quite independent of each other; there are many markers which score

well in some categories but fail completely in others, and thus for an accurate picture of how a

marker behaves, all three areas must be examined. In addition, to adequately characterise a

marker in each area, the areas themselves must be broken down into several measurable qual-

ity metrics (Table 1). The metrics are divided into five core metrics that quantify the reliability

of a marker, and another nine supporting metrics that enable the calculation of the core met-

rics and deal with more difficult case studies (Fig 1).

Technical metrics. Technical metrics relate to how confidently a randomly selected sam-

ple from a genotyping job gives an accurate result and can be captured clearly by two core met-

rics: call rate and clarity. Call rate is the proportion of samples that give a scorable result (as

opposed to a “missing” result). Many commercial genotyping platforms already report call

rates as a metric of platform performance; typical claims are>99%. Less often reported are

estimates of a marker’s clarity. At its simplest, clarity is a subjective opinion on how clear the

results are, i.e. how reliably genotypes A, B and H can be distinguished. In a more objective

sense, an estimate of this could be obtained from how often samples with known genotype are

reported to have the correct score, or how often duplicate samples match. Commercial SNP

platforms occasionally report statistics on clarity (or repeatability), but without recourse to

raw data—which is rarely available—these are difficult to verify. Finally, since every existing

technology makes some use of target-specific oligonucleotides, different marker assays on the

same platform will vary in their quality on these metrics, even if they target the same position
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and polymorphism. Thus, versioning of the marker is necessary to allow distinguishing the

performance of alternate forms of a marker.

Biological metrics. Biological metrics can be broken down into qualitative metrics that

describe the type of association between a marker and QTL, as well as quantitative metrics that

describe the level of association. These are the most important metrics for successful MAS, and

also the most complex. The root cause of differences in marker associations stem from the evo-

lution of traits in an organism, and specifically the relative evolutionary timelines in which the

causative allele for a QTL and the polymorphism at the proposed candidate marker emerged.

An illustration of this is given in Figs 2 and 3 (see also S1 File). In all cases, irrespective of

whether the causal allele is favourable or unfavourable, the polymorphism most reliable in

classifying the donor and recipient lines is one which arose at the same time (and in the same

lineage) as the mutation giving rise to the causal, derived allele. This is because the causal

mutation and the marker allele are in perfect LD when they emerged and remain in perfect LD

in the gene pool consistent with the probability of a recombination event between them.

From this theoretical consideration, it is clear that a number of parameters must be speci-

fied in order to accurately describe the association of a marker with its target QTL. Descriptive

metrics such as which allele of the QTL (favourable or unfavourable) represents the derived

state, the allele (favourable or unfavourable) targeted by a marker, and specifications of marker

linkage, favourable and unfavourable alleles, all describe the type of association the marker has

with its target QTL. Most are easily determined, although determining which QTL allele is

derived may require a detailed genomic investigation. Nonetheless, if this can be determined

accurately, then markers specific to the derived allele have the greatest chance of also providing

a reliable classification across novel allelic diversity, reducing the risk of incorrect classification

in future breeding efforts. Therefore, expending some effort to determine the derived QTL

allele before designing large numbers of markers is justified.

Fig 1. Overview of the marker quality metrics. Core metrics capture the most critical information relating to marker

performance, accuracy and usefulness. Supporting metrics are needed in the calculation of the core metrics and/or

capture other important information, but are not routinely required in making breeding decisions.

https://doi.org/10.1371/journal.pone.0210529.g001
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The proposed quantitative QC metrics of false positive rate and false negative rate (FPR and

FNR) describe the level of association between the marker and its target QTL and are arguably

the most important of the metrics presented, but also the most difficult to estimate. The FNR

is the proportion of known donor lines that are incorrectly classified as QTL[–] by the marker.

Since the lines are known to carry favourable alleles of the QTL, classification of any of these

lines as QTL[–] thus represents a false-negative call by the marker. This is the converse of the

marker’s specificity. Markers with a high FNR pose a significant risk of mis-classifying samples

as QTL[–] when they do in fact carry a favourable allele; thus breeding material may be dis-

carded which in reality could have been advanced. Markers with a low FNR will correctly iden-

tify all samples that possess the QTL[+] state but may still mis-classify samples with an

unfavourable (non-donor) alleles as QTL[+], in other words a low FNR does not imply a low

FPR.

The FPR is simply the converse and represents the proportion of non-donor (recipient)

lines that are incorrectly classified as QTL[+], and is the converse of the marker’s sensitivity.

In a breeding context, a high FPR means there is a significant risk of investing in and advanc-

ing lines based on MAS results that indicate the presence of the QTL[+] allele, but in reality

are QTL[–].

Fig 2. Illustration of the evolution of a QTL. A Starting from an ancestral point, mutations in a particular gene

accumulate (numbered black bars, representing mutations in B), resulting in new alleles. At some point, a mutation

arises which improves a trait, resulting in a donor allele for a QTL (dark/red), distinguishing it from known recipient

alleles (light/blue); typically the status of many alleles is unknown (white). C Each mutation (1–21) is a potential

marker, and all are found in the same gene, but some are more informative than the others. Comparing the false

positive and false negative rates for each mutation allows the determination of which polymorphism gives the most

reliable discrimination between the donor and recipient phenotype classes.

https://doi.org/10.1371/journal.pone.0210529.g002
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Fig 3. Determining the optimal polymorphism under several evolutionary scenarios. Depending on when the causative

mutation arose (arrowed bars; outwards pointing for mutations conferring favourable or inwards facing for unfavourable

alleles respectively), there may be only one favourable allele (A), a small number of alternative favourable alleles and

multiple unfavourable alleles (B), or multiple favourable alleles and a few unfavourable (C). In A and B, the derived allele

for the QTL is the favourable allele(s); in C it is the unfavourable. In all cases the polymorphism which gives the most

accurate classification of donor and recipient status is one which arose in the same lineage and at a similar time to the

causal, derived mutation.

https://doi.org/10.1371/journal.pone.0210529.g003
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It is important to reiterate here that the FPR and FNR are the proportion of lines with

known QTL[+]/[–] alleles that are correctly classified as such. They are fundamentally linked

to the diversity of alleles with known function, which is determined by the effort that has been

put into characterising/mapping donor and non-donor diversity. Many markers are chosen

for breeding applications based on their linkage with QTL alleles in specific mapping popula-

tions where the QTL is discovered. But those markers—while informative in the chosen

mapping population—could still score poorly on both FPR and FNR, resulting in poor perfor-

mance once deployed as MAS targets. The difficulty arises because the marker is being applied

to new populations, where at least one of the parents is of unknown status with respect to the

QTL. Markers with low FPR and low FNR will faithfully report the presence or absence of the

QTL in any sample, irrespective of allelic diversity in any gene pool of interest.

Breeding metrics. Breeding QC metrics describe the relative value of applying a marker

in a specific breeding program. These consist of three metrics: Breeding program false positive

rate (BpFPR), Breeding program false negative rate (BpFNR) and Utility. BpFPR and BpFNR

are equivalent to the FPR and FNR metrics described above, but are specific to particular

breeding program in which they are assessed, rather than on the full diversity of known donors

and recipients. Since the breeding pool may be expected to have lower allelic diversity than

occurs species-wide, and because selection and genetic drift are modifying patterns of LD

independently across breeding programs, these rates can be quite different from the true FPR

and FNR (the usual expectation would be the breeding program rates to be lower than the true

rates, though the opposite could also occur). They may also be different for different breeding

programs, and must be assessed independently for each. They will require the determination

of donor and recipient lines within a breeding program, which will involve collecting pheno-

type data for each program under investigation. But once gathered, the QC metrics directly

quantify the marker’s reliability for making breeding decisions in that specific program. It’s

worth noting however, that this is predicated on the assumption that the assessed panel repre-

sents the complete allelic constituency present in a breeding program, and that the breeding

strategy focuses on increasing the frequency of favourable haplotypes through recombination

in a closed gene pool, minimizing the introduction of novel allelic variation which may intro-

duce marker alleles that are not in LD with the causal polymorphism.

Finally, utility is the proportion of a breeding panel over which a marker could be used

to select for its associated QTL[+] allele. This is basically an assessment of the frequency of

QTL[+] alleles in the breeding program, easily calculated as the proportion of breeding lines

which possess non-donor allele(s) of the marker (Fig 4). A program where the marker offers

high utility by definition has the QTL[+] allele at low frequency. Note that this is entirely sepa-

rate from the FPR and FNR: a marker may perfectly classify all material as to its QTL status,

but if the QTL is fixed in the breeding program then the marker (QTL) is of little utility in

improving the trait. A good example of this in rice would be sd1, which due to intense selection

pressure for plant height and heavy usage of QTL[+] sd1 green revolution varieties by breeding

programs is fixed in nearly all breeding populations and therefore is not available to manipu-

late plant height.

A summary of all the proposed metrics is presented in Table 1. Several of these metrics are

purely descriptive (derived QTL allele, marker target allele, donor and recipient alleles), but

are required to allow the calculation of the more quantitative parameters; these are called sup-

porting metrics. The quantitative parameters then provide a detailed assessment of the perfor-

mance of a marker; these are the core metrics, and provide the best criteria for assessing

markers. Ideal target values and consequences using markers with unfavourable performance

scores using these metrics are explained in Table 2. Of particular note are the core metrics FPR

and FNR; poor scores on these will increase the probability of discarding valuable breeding
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germplasm, or worse, wasting resources advancing QTL[–] lines. Assuming good scores on

FPR and FNR (or BpFPR and BpFNR), a poor utility value indicates the marker (and thus the

QTL[+]) allele is nearly monomorphic in the breeding program and can only be used to select

for the QTL across a narrow/small proportion of the breeding pool. Finally the derived marker

allele (donor/recipient) should ideally match the derived allele of the QTL; if so, the marker

stands a much better chance of correctly classifying additional unknown or uncharacterised

alleles.

Table 2. Ideal target values for key metrics.

Metric Ideal target

value

Consequences of unfavourable score

Call rate 100% High number of samples with missing data (cannot be genotyped); reduction in

efficiency of program and possibility of missing high-value germplasm.

Clarity 100% High number of samples with ambiguous genotype. Possibility of misclassifying

material in the donor/recipient categories; propagating germplasm with low value, or

discarding germplasm with high value.

Linkage 0cM High chance of recombination between the marker and actual QTL, leading to a

breakdown in the marker-trait association.

Marker

target

Derived QTL

state

Misclassification of new, unrecognised or uncharacterised allelic diversity. This is of

particular use in situations where few donor and recipient lines have been

characterised; if the marker target allele matches the derived QTL allele (favourable

or unfavourable), the marker is more likely to correctly classify new, uncharacterised

alleles.

FPR/

BpFPR

0% Failure to distinguish some unfavourable alleles from some favourable alleles; reports

presence of QTL when it is actually absent. May result in use of a line as donor when

it is not, or a lack of effort to use a QTL to improve a trait when this would be

appropriate. This is in general a more serious failure than low FNR.

FNR/

BpFNR

0% Failure to distinguish some favourable alleles from unfavourable ones; reports

absence of QTL when it is present. May result in ineffective MAS (wasted effort) due

to recipient lines being classified as QTL[–] and thus the QTL being introgressed,

when in fact it is already present.

Utility 100% Marker can be used to track/introgress QTL across only a narrow range of

germplasm. For most populations alternative markers are needed.

https://doi.org/10.1371/journal.pone.0210529.t002

Fig 4. Utility of a marker. Alternative markers within a QTL region (markers A—E) each have multiple alleles

(numbered). Alternative alleles of each marker are found at differing frequencies within a breeding pool. Those

markers with a high frequency of the favourable allele in the breeding pool (B, C, D)–and thus low utility—can only

distinguish the donor genotype in a small number of breeding backgrounds. By contrast markers A and E have high or

very high utility, as they are polymorphic with respect to nearly all target genomes in the breeding pool.

https://doi.org/10.1371/journal.pone.0210529.g004
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Applying quality metrics: Evaluation of existing marker systems

Technical metrics: Indels vs. SSRs. Since technical metrics relate to the performance of a

specific marker assay, they are by necessity empirical and may vary widely between markers

even when these have the same biological properties and are run on the same platform. Indeed,

wide variation was seen between markers for both call rate and clarity, even within trait-spe-

cific indel markers in specific QTL regions such as qDTY4.1 and qNa1L (Fig 5).

Technical metrics can be used to assess the relative performance of platforms as well as spe-

cific markers. The mean call rate and clarity were compared between a set of SSR and QTL-

specific indel markers on a panel of 122 diverse cultivars (Fig 6). Trait-specific indel markers

significantly out-performed SSR markers for clarity (P < 0.05). They also scored better than

SSRs for missing data, though this was not significant (0.05< P < 0.12), and may reflect a

greater-than-average contribution from a few specific indels that scored very poorly, due

largely to a few markers that covered genomic deletions in qHTSF4 and qDTY4.1.

Biological metrics: Anonymous vs. trait-specific markers. Working with whole-genome

resequencing data it is evident that numerous polymorphisms can be easily identified between

two varieties. However, these polymorphisms vary widely in their level of association with a

target QTL. The level of association (FPR and FNR) for candidate markers throughout a salin-

ity tolerance QTL in rice between 37 and 41Mb on the long arm of chromosome 1 shows wide

variation, all through the QTL interval (Fig 7). This shows linkage with a QTL is not sufficient

to give reliable selection. Secondly, none of the anonymous SNPs found on the Infinium chip

within the QTL region (Fig 7A) scored perfectly on both the FPR and FNR, indicating they all

suffer from errors in classifying known varieties. These SNPs have been filtered for those

Fig 5. Technical metrics for candidate indel markers. Markers were evaluated within the qDTY4.1 (A) and qNa1L

(B) QTL regions. Significant variation was seen for different markers in both QTL regions, showing some markers

clearly performed better than others.

https://doi.org/10.1371/journal.pone.0210529.g005
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which show polymorphism between known donors and recipients, and corrected to minimise

the false negative rate (correctly identifying as many donors as possible). In contrast, while

QTL-specific indel and SNP markers (Fig 7B and 7C) also show variation in their association

across the QTL, both classes have several markers achieving ideal scores (0%) on both metrics.

Those markers scoring >0% on either the FPR or FNR may find niche applications in fine-

mapping or specific populations, but those with perfect scores would make the most reliable

marker system for breeding purposes. These metrics thus give information allowing the identi-

fication and design of optimal marker systems, even for quite large QTL regions.

Improvements in the false positive and negative rates with QTL-specific markers are also

seen for other QTL targets. Mean values from 42 QTLs for a range of traits including stress tol-

erance, grain quality, disease resistance etc. show that anonymous SNPs derived from the 6k

diversity set consistently under-perform (Fig 8). Re-assignation of favourable and unfavour-

able alleles to minimise the false negative rate improves that metric to a level equivalent to

those seen for the QTL-specific markers, but no better (P > 0.05). Optimising the FNR also

improved the FPR, but not to a level equivalent to QTL-specific markers, so anonymous mark-

ers still performed worse on average (P< 0.0001). This means these anonymous markers,

even with “corrected” assignations of favourable allele, have no relative benefit in detecting

presence of the QTL, but do have a significant penalty in their FPR, incorrectly classifying

lines as QTL[+].

Breeding metrics: Utility. Anonymous SNPs also showed lower average utility values

(Fig 8), i.e. the designated favourable allele is present at higher frequencies in elite germplasm,

and so the marker is less useful for introgressing a given QTL into a range of elite material.

The utility metric is especially useful in the case of diagnostic markers, as it then indicates

directly the proportion of elite material that a QTL may improve. Utility values for a range of

QTL controlling various yield, grain quality, disease resistance and stress tolerance traits show

a wide range in variation (Fig 9). These range from less than 20% for LTG1, qSCT1 and SCM2,

Fig 6. Comparison of performance of PAGE-based marker systems. The performance of SSRs was compared to that

of trait-specific indels. Indels consistently out-performed SSRs, particularly in marker clarity but also in call rate.

https://doi.org/10.1371/journal.pone.0210529.g006
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which appear to be fixed in nearly all indica elite material, to 100% for many disease resistance

QTL. The latter observation is surprising considering the substantial selective pressure exerted

on disease resistance in most breeding programs, and further work to determine its cause

seems warranted.

Fig 7. Use of marker quality metrics to determine optimal markers for a QTL. Comparison of quality metrics for

different markers within a QTL region for salinity tolerance, qNa1L, between 37 and 41Mb on the long arm of

chromosome 1. Multiple markers from the Illumina Infinium chip (Anonymous SNPs; favourable allele corrected to

minimise FNR), QTL-specific SNPs and QTL-specific indels were assessed for their utility (A), false-positive rate (B)

and false-negative rate (C) across IRRI germplasm. Anonymous SNPs typically scored poorly on FPR, FNR and Utility,

and none scored well on all metrics. QTL-specific SNP and indel markers typically showed low or perfect scores on the

FPR, and several markers scored 0% (no misclassified entries) on both FPR and FNR metrics. In addition QTL-specific

markers scored far better for utility, indicating wider applicability in breeding. Arrows to the right indicate ideal target

values for a new marker.

https://doi.org/10.1371/journal.pone.0210529.g007
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Discussion

Since the 1980s with the advent of SSR markers, it has become almost a mantra that the ideal

marker should be highly polymorphic. This is certainly a useful feature for certain applications

Fig 8. Comparison of mean accuracy metrics for diversity SNPs and QTL-specific SNP and indel markers.

Anonymous SNP markers initially have very low scores on both the FPR and FNR. Correcting the assignation of

favourable and unfavourable alleles to minimise the FNR improves that score to equivalent levels with the QTL-

specific markers, but the FPR remains poor and no benefit is seen for the utility.

https://doi.org/10.1371/journal.pone.0210529.g008

Fig 9. Variation in utility between various QTL for agronomic traits in indica breeding germplasm. QTL were selected that have

diagnostic markers or markers scoring 0% on both FPR and FNR (and thus could be accurately scored). Wide variation in QTL

utilities were seen, from near-fixation (utility ~0%) to absent (utility 100%), but most were rare or absent.

https://doi.org/10.1371/journal.pone.0210529.g009
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such as in bi-parental mapping, where high polymorphic information contents (PIC) increase

the chances a given marker will be polymorphic between random parents. However, marker-

assisted selection places different demands on the markers—the number of alleles displayed by

the marker is not relevant, rather the ability to unambiguously discriminate between all donor

and recipient material becomes critical.

Surprisingly, there is a dearth of literature on designing reliable markers and almost no cri-

teria for judging what makes a marker “good” or “bad”. Most MAS programs use markers

identified in QTL mapping populations—typically SSRs, applying them to other genetic back-

grounds, and even attempting to use them to determine the presence of a QTL in diverse

germplasm panels. These applications require very stringent false positive and false negative

rates, but few examples exist where some validation of these false positive and negative rates

has been conducted. Bernardo et al. [20] examined the reliability of SSR markers in selecting

for stem rust resistance in wheat. Association of the markers with donor and recipient germ-

plasm was analysed, but not quantified as a metric; association was not always good, for exam-

ple markers for Sr32 targeted the recipient allele not the (derived/wild) donor allele, and so

run the risk of classifying some lines without the QTL as positive. Similarly, markers for other

resistance genes variously failed to distinguish some or all known recipients from known

donors (poor FPR; many SSRs had this difficulty), while others showed poor separation of

donor and recipient alleles, produced major stutter bands, or produced non-target amplicons

(poor clarity, Figs 1 and 3 in their paper). In another strategy, Mohammadi-Nejad et al. [15]

performed allele mining of the Saltol QTL using SSRs. Of particular note is the SSR haplotype

and varieties which possess this haplotype, compared to alleles of the HKT1;5 gene known to

be in these varieties [23], which is causal for this QTL [29]. This reveals the SSR markers con-

founded (failed to distinguish) lines that had different alleles, such as IR64 and Kala Rata. Like-

wise, the converse was even more common: IR64 / IR29, and Pokkali / Kala Rata / Sadri were

placed in separate haplotypes while sharing the same allele at the causal gene. Thus again the

SSR genotype, and even haplotype, was not sufficient to reliably classify donor and recipient

material for the QTL.

In a counter-example, Tian et al. [30] designed indel markers for the allelic major rice bast

resistance gene Pi2/Pi9 based on sequence comparisons of parental varieties. The FPR and

FNR were not quantified, but the inclusion of multiple reference alleles presumably helped in

the design of markers highly specific to the favourable alleles. This marker was then able to

demonstrate near-zero occurrence of this gene in a set of Chinese breeding germplasm, where

previous marker sets were prone to false positives (see [31])–incidentally indicating a poten-

tially very high utility, though this was not articulated as a metric. A similar effort was con-

ducted by Scheuermann and Jia [32] using a different approach. The latter marker from

Scheuermann and Jia [32] should have the same FPR and FNR as that designed by Tian et al.
[30], but suffered very low apparent call rates and clarity. In neither case were any metrics sim-

ilar to FPR, FNR, Utility and Clarity quantified by either group, despite their datasets being

sufficient to do so. Had these metrics been quantified, they could easily demonstrate which

marker system is better and how reliably these markers could be used in other breeding pro-

grams, thereby greatly enhancing the impact of this work.

These examples show the need for a better system for describing the association of a marker

with its target QTL. This area has rarely been addressed in the literature, and where this does

occur it is typically considered in an empirical sense; the direct marker-trait association is

determined empirically (ignoring the presence of the QTL in between) within a population or

breeding program, and this correlation is used to determine how useful the marker will be.

This approach suffers from several drawbacks. Firstly it is always limited to the breeding pro-

gram or population in which it is assessed—associations will have to be redetermined for each
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new breeding program, and even over time within a program as allele frequencies change and

especially if new genetic diversity is incorporated. Experiences in public-sector breeding pro-

grams shows that most breeders attempting to integrate MAS are looking for marker-trait

associations robust across a wide diversity of elite material and breeding programs (personal

communications). Empirical associations also suffer from phenotypic noise and epistasis—if

phenotypic data is variable (for example field exposure to a disease), or multiple loci could

affect the same trait, this will depress the marker-trait association. These factors may thus lead

to the discarding of otherwise functional loci.

To avoid discarding functional loci and ensure reliable selection across breeding pro-

grams, it is necessary to disambiguate the QTL-trait association from the marker-QTL associ-

ation. In this way it is possible to design strategies to identify both robust trait loci (a topic

dealt with in QTL mapping studies), as well as robust markers to select for those loci (the

topic of the current manuscript). The fourteen metrics described in Table 1 are a substantial

step towards facilitating the reliable identification of such robust marker-QTL associations,

thereby allowing the design of marker systems useful across breeding programs and stable

over time. Association of a marker with its target QTL is captured by a range of biological

metrics rooted in the preceding discussion on the evolution of markers. Additional metrics

describe parameters relating to reliability of the genotyping information, and the applicability

of a marker in specific breeding situations. The preceding considerations have shown how

the ideal marker—one which reliably identifies all donor and recipient germplasm—is based

on the same polymorphism as gives rise to the QTL phenotype. Such a marker can be called

diagnostic, and requires the identification of the gene and the mutation giving rise to a

QTL—something that is very rarely done, even in rice. While ideal, this is difficult and time

consuming. Alternative, flanking markers can still accurately classify observed alleles pro-

vided they arose at similar times and in the same lineage as the causative mutation (i.e. the

derived marker allele matches the derived QTL allele; Fig 3). Again, the metrics in Table 1

provide a means to evaluate and validate candidate markers before committing to design and

implementation (very important for expensive SNP systems) as well as assess performance

after implementation.

Validating existing marker systems with these metrics illustrates several points. First and

foremost, QTL-specific marker systems consistently out-perform both older SSR and new

anonymous SNP systems in most of these metrics, but most notably in the accuracy metrics

FPR and FNR. For many QTL, no anonymous markers showed the required level of associa-

tion with the target QTL. Thus QTL-specific markers will give consistently more reliable

results in selection. In addition, accurate markers (scoring 0% on both FPR and FNR; see

Table 2) can be used to determine the proportion of a breeding panel that may benefit from

that QTL—the utility. Utility values vary widely between QTL (Fig 9), which reflects a complex

interplay of the QTL’s origin and the artificial and natural selective pressures it has been sub-

jected to in breeding programs. For example, SCM2 is widely regarded as a candidate to reduce

lodging, a major problem even in semi-dwarf rice. Unfortunately, however, the characterised

donor allele of SCM2 from Habataki [33] appears identical to that already found in the vast

majority of indica breeding germplasm. This means the donor allele is already present in most

or all improved indica material, and therefore the Utility of SCM2 (and accurate markers for

this gene) is very low in most indica breeding programs. By contrast many of the disease resis-

tance loci have high utility, despite being under strong selective pressure in breeding

programs.

Secondly, there is no inherent advantage of SNP genotyping platforms in terms of selection

accuracy. Existing anonymous SNP marker sets such as the 6k Infinium chip were designed to

maximise the probability of polymorphism (discriminatory power) between randomly-chosen
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varieties [6]. This makes them ideal for population genetics and as a fixed panel of markers to

genotype any random set of parents and progeny. Ironically though, this means they have the

least power to track specific QTL, and indeed they perform rather poorly in accuracy metrics

overall. By contrast, QTL-specific markers, whether high-throughput SNP or low-throughput

indel, perform quite well on accuracy metrics—and it is certainly possible to use these metrics

to identify both SNP and indel markers with “perfect” associations with their target QTL (Fig

7). Therefore, the choice of marker platform has less to do with selection accuracy than with

the expected sample throughput. However, the choice of best marker will be based on the level

of association with the target QTL.

Thirdly the application of the metrics in evaluating individual markers is easily demon-

strated (Figs 5 and 7). Biological and breeding metrics are mostly useful in distinguishing

between candidate markers prior to committing time and resources to implementing these on

a particular genotyping platform; these are about choosing the optimal target polymorphisms.

Yet although a candidate marker may have perfect biological and breeding metrics, a given

assay for that polymorphism may perform very poorly on its technical metrics (call rate and

clarity), such as seen for qDTY4.1 (Fig 5). For PCR-based systems such as SSRs, indels and

some SNP technologies, much of this variation in the technical metrics is due to inherent

issues with primer efficiency. However, while SNP assays also utilise oligonucleotides as either

probe or primer sequences, it is unfortunately rare to see “validation” of the performance of

new markers on SNP platforms due to the expense of an assay. In addition, SNP assays very

rarely return the raw data, instead reporting a digested summary—the actual SNP call—thus

glossing over such factors as whether the clustering of fluorescence intensities was unambigu-

ous. It seems advisable going forward to implement some form of technical and biological rep-

lication when validating a new assay to determine its clarity.

Allied to this discussion on technical metrics, it is evident that a given polymorphism may

be interrogated by multiple different “markers”. For example, a SNP could be targeted by one

of several gel-based assay systems, any of the many SNP platforms, or an amplicon/sequencing

approach. All are based on the same polymorphism, but as each platform has its own design

quirks and even a single platform may use alternate primer pairs for amplification, different

instances of a marker could have very different scores on technical metrics, despite targeting

the same polymorphism. Therefore, information on the version/instance of a marker under

consideration is needed to distinguish between alternate forms and platforms targeting the

same polymorphism.

These quality metrics thus provide a good framework for assessing the accuracy and reli-

ability of any specific marker. This information can be used to evaluate existing markers,

design better markers, and even to compare performance of different marker types and plat-

forms. Nevertheless, they are by no means complete or perfect. Two issues worth highlighting

concern the Clarity metric and estimation of the FPR and FNR metrics.

The Clarity metric is currently slightly ambiguous; it could refer to either how clearly/reli-

ably genotyping data (bands on a gel, fluorescence signal clusters on a SNP platform, or other

measures) can distinguish between the allelic states of the marker. It could also refer to how

often duplicate samples cluster together—repeatability. This is of course closely related to the

former situation, but is also subtly different. For the sake of simplicity these are not distin-

guished here, but further discussion on whether Clarity as described here should be broken

down into two metrics—clarity and repeatability—seems warranted.

Of the metrics presented, the accuracy metrics FPR and FNR are arguably the most impor-

tant in distinguishing between candidate markers. A common objection and difficulty in the

assessment of these is that they require a large number of case-[+] and case-[–] data points to

accurately estimate, whereas in most cases the number of defined donor and recipient lines is
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limited. This is absolutely true—and should inform how QTL mapping and validation efforts

are undertaken—but is not a justification to reject the importance of these metrics. On one

hand, some estimate is better than none, and it should be recognised that all datasets are inade-

quate, to some extent. It is thus better to report the statistics, together with data on how accu-

rate these might be—such as the total number of defined donor and recipient lines available,

where a greater number of both implies greater accuracy in estimation. On the other hand,

estimates of FPR and FNR based on inadequate (small) datasets actually inflate their values. In

the extreme case of a single known donor and recipient line, any marker polymorphic between

these parents will then score 0% on both metrics. An inadequate dataset thus does not lead to a

rejection of markers, but rather the opposite: the power to distinguish between them is limited,

and so any feature that shows polymorphism will be accepted. In this situation an educated

guess as to whether the favourable or unfavourable allele is likely to be derived (i.e. the derived

QTL allele). Markers targeting this (i.e. the marker target allele is the same as the derived QTL

allele) are then effectively making the assumption that the derived QTL allele is rare in the

overall allelic diversity, thus deliberately biasing the error towards false-negatives and away

from false positives—maximising the probability of a good FPR at the potential penalty of

FNR—and thus biasing risk away from advancing unfavourable genotypes at the penalty of

increasing risk of discarding favourable ones.

In summary, the metrics proposed in Table 1 quantify all significant parameters describing

a marker’s behaviour when assayed, the level and type of association it displays with its target

QTL (both species-wide and in specified breeding panels), and its distribution within a breed-

ing panel. These metrics give a fast, comprehensive and objective means to discriminate

between and evaluate alternative markers (e.g. Fig 7), allowing an optimal marker system to be

designed. In addition, by including such “housekeeping” metrics as the favourable and unfa-

vourable alleles, it is possible to automate these calculations, providing the possibility to scan

genomic datasets for optimal SNP markers programmatically, greatly simplifying the deploy-

ment of QTL in breeding. It also allows the development of a marker database with live updat-

ing of metrics as new data is added, enabling continual refinement of marker systems. The

advantages of adopting a set of metrics are manifold, and it is hoped that the proposed system

will assist in developing a new generation of reliable marker systems to improve the efficiency

of plant breeding.
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