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Abstract 38 

The complex roles of myeloid cells, including microglia and perivascular macrophages, are 39 
central to the neurobiology of Alzheimer's disease (AD), yet they remain incompletely 40 
understood. Here, we profiled 832,505 human myeloid cells from the prefrontal cortex of 1,607 41 
unique donors covering the human lifespan and varying degrees of AD neuropathology. We 42 
delineated 13 transcriptionally distinct myeloid subtypes organized into 6 subclasses and 43 
identified AD-associated adaptive changes in myeloid cells over aging and disease 44 
progression. The GPNMB subtype, linked to phagocytosis, increased significantly with AD 45 
burden and correlated with polygenic AD risk scores. By organizing AD-risk genes into a 46 
regulatory hierarchy, we identified and validated MITF as an upstream transcriptional activator 47 
of GPNMB, critical for maintaining phagocytosis. Through cell-to-cell interaction networks, we 48 
prioritized APOE-SORL1 and APOE-TREM2 ligand-receptor pairs, associated with AD 49 
progression. In both human and mouse models, TREM2 deficiency disrupted GPNMB 50 
expansion and reduced phagocytic function, suggesting that GPNMB’s role in neuroprotection 51 
was TREM2-dependent. Our findings clarify myeloid subtypes implicated in aging and AD, 52 
advancing the mechanistic understanding of their role in AD and aiding therapeutic discovery. 53 
 54 

Main 55 

Despite the quantifiable neuropathology of β-amyloid plaques (Aβ) and neurofibrillary 56 
tangles (NFTs) (1), the exact neurobiological mechanisms underlying Alzheimer's disease (AD) 57 
remain elusive. Brain myeloid-origin immune cells, including microglia and perivascular 58 
macrophages (PVMs), play crucial roles in the pathogenesis of AD (2–9), providing 59 
neuroprotective benefits by clearing lesions, but also exacerbating the disease through the 60 
induction of excessive neuroinflammation (10). While previous studies utilizing single-nucleus/-61 
cell RNA sequencing (snRNA-seq/scRNA-seq) have made significant progress describing 62 
complex functional roles of murine and human microglia in AD (5, 11–14), challenges with 63 
characterizing the wide spectrum of microglial heterogeneity and identifying more nuanced AD-64 
associated subtypes still remain (15), largely due to limited sample sizes and differences in the 65 
single-cell technologies used. Among the issues that arise is the failure of nuclear fractions in 66 
snRNA-seq from frozen tissue to capture key genes related to microglial adaptation and 67 
response to pathogenic lesions (16). Moreover, microglia are highly reactive cells, and 68 
describing their adaptive nature using scRNA-seq in cells isolated from fresh tissue is 69 
challenging (17). To overcome those limitations, we present two independent human myeloid 70 
cohorts generated at single-cell resolution from the prefrontal cortex (PFC). In the first cohort, 71 
we isolated viable ex-vivo human myeloid cells from fresh postmortem PFC and deeply profiled 72 
both nuclear and cytoplasmic RNA. The second cohort focused on the breadth of the 73 
transcriptome, profiling human myeloid nuclei from a large number of demographically diverse 74 
frozen cortical tissues. By considering both the depth and the breadth of the human myeloid 75 
transcriptome, we establish a reproducible taxonomy and demonstrate the importance of 76 
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microglia and PVM plasticity throughout the lifespan, across different stages of AD 77 
pathological and clinical severity, and genetic liability. 78 
 79 

Cellular taxonomy of human myeloid cells 80 

In total, we profiled 832,505 human myeloid cells from the PFC of 1,607 unique donors. 81 
The first dataset, named FreshMG, includes samples from fresh autopsy tissue specimens of 82 
137 unique postmortem donors recruited from two brain banks and contains individuals 83 
displaying varying degrees of AD neuropathology as well as controls (Fig. 1A, Supplementary 84 
Fig. S1A). FreshMG donors are aged between 26 and 107 years (average 80.7 years), 85 
comprising 76 females and 61 males. To enrich for myeloid cells, viable CD45+ cells were 86 
isolated via fluorescence-activated cell sorting (FACS). In addition, for a subset (n=3 donors, 87 
each with 8 technical replicates), we profiled surface-level protein markers using CITE-seq (18), 88 
using a panel of 154 unique antibodies, resulting in a total of 161 scRNA-seq libraries from 89 
fresh brain specimens. Following rigorous QC and initial clustering, we found a large, relatively 90 
homogeneous, cluster of myeloid cells along with small subsets of co-purified immune cells, 91 
such as monocytes, neutrophils, T, NK, and B cells. The myeloid cluster consisted of 543,012 92 
microglia and PVMs robustly expressing 23,740 genes (Supplementary Fig. S1E). 93 

The second dataset, named PsychAD, consists of frozen prefrontal cortex specimens and 94 
includes cases and controls from a cohort of 1,470 unique donors (Fig. 1B). PsychAD donors 95 
were aged between 0 and 108 years, (average 71.3 years), comprising 761 females and 709 96 
males (Supplementary Fig. S1B). Frozen samples were subject to snRNA-seq profiling from 97 
which microglia and PVMs were sorted in silico after basic clustering. After rigorous QC, we 98 
identified 289,493 microglia and PVM nuclei robustly expressing 34,890 genes 99 
(Supplementary Fig. S1F). Next, we aligned and harmonized the scale of clinical variables to 100 
facilitate annotation of both datasets (Methods) and saw a strong positive correlation with 101 
measures of the severity of AD neuropathology, namely diagnostic certainty of AD, Consortium 102 
to Establish a Registry for Alzheimer's Disease (CERAD) (19), and Braak stage (20) 103 
(Supplementary Fig. S1C). In contrast, the clinical measures of dementia severity were less 104 
well correlated with AD. 105 

Our primary objective was to establish a comprehensive cellular taxonomy that is robust 106 
and reproducible; however, cross-validating these independent and large-scale single-cell 107 
datasets, each with a distinct transcriptomic origin (whole cell vs. nuclei), posed technical 108 
challenges. To overcome these, we devised an iterative cross-validation strategy, which 109 
involved establishing a reference state and validating it independently until both datasets were 110 
in agreement (Methods). Utilizing the FreshMG dataset, which provides comprehensive 111 
transcriptomic profiles from both nuclear and cytosolic fractions, we identified functionally 112 
distinct phenotypes of microglia and PVMs. Subsequently, we cross-validated the presence of 113 
these reference subtypes in the frozen specimen snRNA-seq PsychAD dataset. Our iterative 114 
process converged on 13 functionally distinct subtypes of human myeloid cells (Fig. 1C, 115 
Supplementary Fig. S2A, Supplementary Tables S1-2), and comparison between FreshMG 116 
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and PsychAD revealed a high degree of consistency between the two cohorts, as evidenced by 117 
an average Pearson correlation of 0.77 across all identified subtypes (Fig. 1F). This rigorous 118 
methodology ensured the accuracy and reliability of our cellular taxonomy, laying a solid 119 
foundation for further analyses. 120 

We grouped the cells using two levels of taxonomic hierarchy; the 13 distinct subtypes 121 
under six broad functional subclasses of human myeloid cells: Homeostatic (green), Adaptive 122 
(blue), Proliferative (yellow), AD-Associated or ADAM (red), ex-vivo Activated Microglia or exAM 123 
(pink), and PVM (orange) (Fig. 1C). Each subtype is associated with specific markers that not 124 
only aid in their identification but also hint at their functional significance (Fig. 1D, 125 
Supplementary Fig. S2D). Within the homeostatic microglia subclass, we highlight two 126 
subtypes, CECR2 and PICALM, both of which are associated with the regulation of GTPase 127 
activity. Homeostatic microglia make up the largest proportion of myeloid cells 128 
(Supplementary Figs. S2B-C) and express microglia-specific canonical markers such as 129 
P2RY12 and CX3CR1. The CECR2 subtype uniquely expresses CECR2 and NAV2, with other 130 
genes pointing towards cellular maintenance, phagocytosis, cell migration, and adhesion. The 131 
PICALM subtype shows elevated expression of PICALM and ELMO1, suggesting roles in the 132 
regulation of the immune response.  133 

We identified 7 specialized microglial subtypes, each exhibiting unique adaptive responses 134 
to neuro-environmental cues. In general, the gene signatures across these adaptive microglia 135 
underscored an enhancement in antigen processing and presentation programs and the 136 
facilitation of MHC protein complex assembly. The CCL3 subtype is characterized by the 137 
upregulation of chemotactic genes, most notably the inflammatory cytokines CCL3, CCL4, and 138 
interleukin 1 beta (IL1B). In addition, the IFI44L subtype is enriched in interferon-inducible 139 
genes, like IFIT1, IFIT2, and IFIT3, suggesting a role in the antiviral innate immune response. 140 
The AIF1, HIF1A, and HIST clusters share a common gene program related to immunoglobulin-141 
mediated immune response, while the TMEM163 cluster focuses on antigen processing and 142 
presentation via MHC II. The final adaptive cluster, HSPA1A, is enriched for gene signatures 143 
responsible for adaptive response to unfolded protein, which is characterized by elevated 144 
activity of heat shock proteins and cellular stress response, with a potential role in AD 145 
neuropathology (21). In addition, we identified a subtype, the GPNMB, which is predominantly 146 
observed in individuals with AD (22, 23). These AD-associated microglia (ADAM) feature 147 
elevated expression of glycoprotein non-metastatic melanoma protein B (GPNMB), 148 
microphthalmia-associated transcription factor (MITF), and protein tyrosine phosphatase 149 
receptor type G (PTPRG) genes, and functional enrichment analysis suggests increased 150 
phagocytic activity is a hallmark of these cells. Consistent with previous studies (11), we also 151 
identified a cluster of proliferative cells, MKI67, that is highly enriched in cell-cycle dependent 152 
genes (STMN1, MKI67, TOP2A). Lastly, we report a cluster, ERN1, showing specific expression 153 
of ERN1 and PLK2 genes that resemble activation patterns of exAM (17) (Supplementary 154 
Information). In addition to microglial subtypes, we identified a PVM cluster, named CD163, 155 
expressing a unique set of known PVM-specific markers, notably CD163 and F13A1. The 156 
CD163 cluster displayed a significant enrichment of genes involved in endocytic processes, 157 
emphasizing its priming for receptor-mediated endocytosis and phagocytosis. While we 158 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2023.10.25.23297558doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.25.23297558
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

observe a close similarity between ADAM and PVM clusters (Supplementary Fig. S2A), we 159 
found a clear separation between the two when we enriched for conserved murine disease-160 
associated microglia (DAM) signatures as well as human DAM signature from iPSC-derived 161 
microglia (5, 23–25) (Supplementary Fig. S3A). 162 

We further annotated myeloid subtypes by estimating the enrichment with polygenic risk 163 
scores of heritable traits at single-cell resolution (scDRS; Methods; Supplementary Fig. S3B, 164 
Supplementary Table S15). We extended the analysis to a set of the brain related diseases 165 
beyond AD including schizophrenia (SCZ), bipolar disorder (BD), major depressive disorder 166 
(MDD), autism spectrum disorder (ASD), multiple sclerosis (MS), amyotrophic lateral sclerosis 167 
(ALS), and Parkinson’s disease (PD). The polygenic risk scores for each trait were highly 168 
reproducible between the FreshMG and PsychAD cohorts with AD and MS having the greatest 169 
correlation (Supplementary Fig. S3C). The meta-analysis of both FreshMG and PsychAD 170 
cohorts indicated that the 9 subtypes of myeloid cells were significantly associated with 171 
heritable AD risk, which was the largest of all brain diseases followed by MS, SCZ, and MDD 172 
(Fig. 1E). Notably, the GPNMB subtype had the widest coverage showing significant heritable 173 
risks for all 8 diseases. 174 
 175 
Multi-modal validation of human myeloid taxonomy 176 

To show the utility of our annotation as the reference human myeloid taxonomy, we 177 
validated the reproducibility of 13 myeloid subtypes using several independent datasets. First, 178 
using a published human microglia dataset (14), we assessed the similarity of our taxonomy to 179 
existing microglia annotations. While we found 8 of their microglial states, including their brain-180 
associated macrophage (BAM), resemble our subtypes (Supplementary Fig. S3D), the 181 
alignments were moderate for the remaining 5 states. After re-annotating their nuclei using our 182 
taxonomy as the reference (Methods), we confirmed the presence of all 13 subtypes (Fig. 1G, 183 
Supplementary Fig. S3G). We also discovered the subtype composition was comparable to 184 
our PsychAD snRNA-seq dataset (Supplementary Figs. 2B-C). 185 

Since the taxonomy was established based on post-mortem tissues, we needed to ensure 186 
the taxonomy was not biased for post-mortem effects, and it can be reproduced using living 187 
brain tissues. Independent from the FreshMG and PsychAD cohorts, we generated an 188 
additional scRNA-seq dataset, called LivingMG, from brain biopsies, which were obtained from 189 
25 unique human donors (26 libraries; 97,828 cells after QC) diagnosed with spontaneous 190 
intracerebral hemorrhage (ICH) (26). The brain tissue was collected during treatment and 191 
processed in an identical manner to the fresh autopsy material. It's important to note that 192 
cortical biopsy samples were obtained from a site distal to the site of the hemorrhage and, in 193 
the absence of a secondary diagnosis, are considered neurotypical controls. We annotated 194 
myeloid cells using the taxonomy derived from the FreshMG dataset and confirmed the 195 
presence of all 13 subtypes in living cells. (Fig. 1G, Supplementary Fig. S3E, S3J).  196 

Since the taxonomy was primarily derived from sc/snRNA-seq datasets, we utilized 197 
different technology and modalities to confirm the robustness of our myeloid taxonomy. To 198 
validate the spatial context, we conducted deep single-cell phenotyping and spatial analysis 199 
using multiplexed imaging assay (Akoya PhenoCycler) and demonstrated, for example, PVMs 200 
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colocalize around blood vessels via staining for CD163 (Fig. 1H). Subsequently, we performed 201 
spatial transcriptomic characterization using the Xenium in situ technology on 11 tissue slides 202 
obtained from 8 individual donors (Methods). A custom panel of 366 genes, including both a 203 
pre-designed human brain panel and additional markers for myeloid subtypes, was used to 204 
further characterize the myeloid taxonomy (Fig. 1I). We showed the presence of 5 major 205 
subclasses excluding the exAM, which was not expected to be present in cryosectioned tissue 206 
(Fig. 1G, Supplementary Figs. S3F, S4A-B). While the resolution was limited in the Xenium 207 
data, we were able to stratify robust subtypes via stability analysis (Methods) and validated the 208 
presence of myeloid subtypes. 209 

Lastly, we applied a multi-omic assay to further characterize the myeloid subtypes. We 210 
employed CITE-seq, jointly quantifying the transcriptome and 154 unique cell-surface proteins, 211 
to assess the preservation of the functional hierarchical structure at the protein-level. Using this 212 
approach, we confirmed the presence of distinct proteomic patterns for each myeloid subtype 213 
(Supplementary Fig. S3K). For example, within the homeostatic microglia subclass, the 214 
CECR2 subtype expressed CD99 and ITGB3, while the PICALM subtype expressed CLEC4C 215 
and TNFRSF13C proteins as their markers. Likewise, the PVM cluster showed distinct surface 216 
markers, CD163 and CCR4, while the ADAM cluster was specific for CD9 and CD44 proteins. 217 

In summary, we used both external and independent datasets, as well as multi-omic 218 
modalities, to validate that the taxonomy is robust and consistent irrespective of the tissue 219 
source. 220 
 221 
  222 
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 223 
Figure 1. Overview of the human myeloid single-cell atlas. (A) the FreshMG discovery cohort 224 
(scRNA-seq) using live human myeloid cells from postmortem PFC and (B) the PsychAD 225 
replication cohort (snRNA-seq) using flash-frozen PFC tissues and in-silico sorted for microglia 226 
and PVMs. (C) Unified taxonomy of human myeloid subtypes. (D) Subtype-specific marker 227 
gene expression. Z-score normalized. Upper-triangle: FreshMG. Lower-triangle: PsychAD. (E) 228 
Enrichment of heritable disease risk (scDRS) by subtype using GWAS of 8 brain diseases. 229 
Meta-analysis between FreshMG and PsychAD. The asterisk denotes FDR < 0.05. SCZ: 230 
schizophrenia, BD: bipolar disorder, MDD: major depressive disorder, ASD: autism spectrum 231 
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disorder, MS: multiple sclerosis, ALS: amyotrophic lateral sclerosis, and PD: Parkinson’s 232 
disease. (F) Pairwise Pearson correlation of the subtype-level taxonomy between FreshMG and 233 
PsychAD datasets using highly variable genes common in both datasets. (G) Validation of 234 
human myeloid taxonomy using independent, multi-modal, and published datasets. Human 235 
(14), iMGL: iPSC-derived microglia (23), and Mouse (27). Pairwise comparison of subtype-level 236 
taxonomy against the FreshMG annotation. Mann–Whitney U test between matched (diagonal) 237 
and unmatched (off-diagonal) subtypes. ****: p ≤ 1.0e-4. (H) Representative image of Akoya 238 
PhenoCycler multiplex immunofluorescence results showing CD163+/IBA-1+ cells are enriched 239 
near blood vessels (outlined by gray line), labeled by Collagen IV. Scale bar 20 µm. (I) 240 
Representative slide of Xenium in situ spatial transcriptomics data. Left: DAPI, Middle: laminar 241 
distribution of neuronal cell types, Right: distribution of myeloid cells annotated by subclasses. 242 
 243 
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Variation in human myeloid subtype composition on aging 245 

and AD 246 

After determining 13 distinct subtypes of human brain myeloid cells, we examined the 247 
compositional variation of myeloid subtypes that are associated with aging in a subset of 248 
neurotypical donors who were free of dementia and diagnostic neuropathology from the 249 
FreshMG and PsychAD datasets. We normalized the subtype count ratio data using the 250 
centered log-ratio transformation and modeled using a linear mixed model, accounting for 251 
technical and demographic variables (Methods). Notably, the two homeostatic microglia 252 
subtypes displayed opposing trajectories with respect to aging (Figs 2A left, D). The CECR2 253 
subtype showed progressive decline while the PICALM subtype showed a gradual increase 254 
with age. In addition, we saw an overall increase in the proportions of the ADAM and PVM 255 
subtypes with age. These findings were replicated using published human microglia snRNA-256 
seq dataset (14) (Supplementary Fig. S4C). In contrast, we observed an age-related decline in 257 
the CCL3 subtype, indicating a possible reduction of chemotactic microglia in older brains. In 258 
parallel, we investigated sex-dependent variation in human myeloid subtypes, with or without 259 
taking age into consideration, but did not find any statistically significant compositional 260 
differences between males and females (Figs. 2A middle, right). 261 

Next, we examined the variation of subtype composition during onset and progression of 262 
AD. To minimize the effect of younger brains, we limited the analysis to donors 40 years and 263 
older, resulting in a dataset composed of 134 donors from the FreshMG and 1,314 donors 264 
from the PsychAD cohort. We first evaluated the involvement of myeloid subtypes using the 265 
centered log-ratio transformed count ratio data after accounting for technical and demographic 266 
variables (Methods). Overall, irrespective of different measures of AD phenotypes (dx_AD, 267 
CERAD, Braak, and Dementia), we observed robust changes in subtype proportions in both 268 
FreshMG and PsychAD cohorts (Fig. 2B). Similar to normal aging, two homeostatic subtypes 269 
showed opposing trends, where the CECR2 subtype showed a progressive decline with 270 
increasing AD burden while the PICALM subtype showed a gradual increase. While the trends 271 
were observed during the early stages of AD, a more substantial divergence occurred after 272 
Braak stage 3 (Fig. 2E). Likewise, we observed a consistent increase in the proportion of the 273 
PVM subtype. The most notable difference in the compositional variation of AD phenotypes 274 
compared to aging was the GPNMB subtype. The GPNMB subtype was an outlier and showed 275 
the largest effect size across all 4 AD phenotypes, suggesting that proliferation of the GPNMB 276 
subtype is a hallmark of AD (Fig. 2C). We further supported our findings by replicating the 277 
compositional variation analysis with previously published data (14). Consistent with our 278 
findings, we observed the GPNMB subtype was increasing in proportion while Homeo_CECR2 279 
was decreasing with severe AD neuropathology (Supplementary Figs. S4C-E). 280 

 281 
Causal mediation analysis of polygenic AD risk scoring and myeloid subtypes 282 

Having established that certain myeloid subtypes are enriched for AD genetic risk (Fig. 1E) 283 
and that their compositional landscape shifts in the presence of AD (Fig. 2B), we next sought 284 
to evaluate the association of per-cell polygenic AD risk scores with the compositional variation 285 
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observed in AD (scDRS; Methods, Supplementary Fig. S3B). We observed a positive 286 
correlation (Pearson’s r = 0.55) indicating that the ratio of subtypes with higher polygenic AD 287 
risk scores increases in AD (Fig. 2F; Supplementary Fig. S4F). This also suggested heritable 288 
risks might play a role in driving the compositional changes of myeloid subtypes. 289 

Next, we leveraged our population-scale cohort to calculate per-donor AD polygenic risk 290 
scores (PRS; Methods) and to assess how the interindividual variation in AD risk impact 291 
changes in myeloid subtype composition (Supplementary Fig. S3B). The proportion of the 292 
GPNMB subtype was significantly increased with AD PRS (Supplementary Fig. S4G). We 293 
observed a similar compositional variation between AD phenotype (dx_AD) and PRS (Fig. 2G 294 
circle), which was not driven by the AD status alone as the same compositional variation was 295 
observed using a disease-free subset (Fig. 2G triangle). 296 

To further dissect the relationships between genetic risk for AD and the observed changes 297 
in GPNMB subtype composition, we conducted a series of causal mediation analyses using 298 
the PRS as an instrumental variable (Methods). By examining the indirect effects of AD PRS on 299 
the GPNMB subtype composition, we aimed to clarify whether the observed cellular changes 300 
were driven by genetic predisposition or were a downstream consequence of AD pathology 301 
(plaque). Our analysis revealed a significant indirect effect of AD PRS on the GPNMB subtype, 302 
mediated through accumulation of Aβ plaques (Average Causal Mediated Effect (ACME) = 303 
0.0254, 95%CI = [0.0137, 0.04], pval<2e-16). This indirect effect accounted for 60.5% of the 304 
total effect (pval = 0.034). These findings suggest that the GPNMB subtype variation is more 305 
likely a consequence of AD pathology. Furthermore, we observed a significant mediation effect 306 
of the GPNMB subtype variation on severity of dementia (8.29% of the total effect mediated, 307 
pval = 0.00096), suggesting that modification of this subtype via therapeutics could be a 308 
feasible treatment strategy for AD. 309 
 310 
  311 
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 312 
Figure 2. Variation in human myeloid subtype composition. (A) Compositional variation of 313 
myeloid subtypes by age, sex, and the interaction between age and sex using disease-free 314 
subset. CLR transformed composition data was modeled using a linear mixed model 315 
accounting for technical batch effects including tissue sources and sequencing pools and 316 
donor effects including age, sex, genetic ancestry, and PMI (see Methods on crumblr). Fixed 317 
effect meta-analysis using results from FreshMG and PsychAD cohorts. (B) Compositional 318 
variation of myeloid subtypes by four different neuropathological measures of the AD 319 
progression; diagnosis (dx_AD), CERAD, Braak staging, and dementia status, after accounting 320 
for technical and donor-level covariates. Fixed effect meta-analysis using both FreshMG and 321 
PsychAD cohorts. (C) Comparison of compositional variation between disease-free aging and 322 
AD. Subtypes were weighted by the inverse of standard error. (D) Covariate adjusted 323 
compositional variation with disease-free aging. CLR: centered-log-ratio. (E) Covariate 324 
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adjusted compositional variation with Braak staging. (F) Correlation between scDRS meta z-325 
scores and crumblr estimate of compositional variation by dx_AD as a coefficient. Weighted 326 
Pearson’s correlation using average -log10(P-value) as weights. (G) Correlation between 327 
crumblr estimate of compositional variation by PRS as a coefficient against crumblr 328 
estimate of compositional variation by dx_AD as a coefficient. Weighted Pearson’s correlation 329 
using inverse of average of standard error as weights. Circle denotes crumblr analysis using 330 
all donors while triangle denotes crumblr analysis using controls only. (H) Causal mediation 331 
analysis using PRS, Aβ plaque, composition of the GPNMB subtype, and clinical dementia 332 
status. ***: p ≤ 1.0e-3, **: p ≤ 1.0e-2, NS: p > 0.05. 333 
 334 
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Variation in transcriptional regulation of human myeloid cells 336 

on aging and AD 337 

We investigated the transcriptional regulation of human myeloid cells by examining the 338 
differential gene expression patterns associated with normal aging, and during the onset and 339 
progression of AD. In normal aging (Supplementary Fig. S5A), we discovered the increase in 340 
expression of the MS4A6A gene, a member of the MS4A family of cell membrane proteins, 341 
which are involved in the regulation of calcium signaling and have been implicated in 342 
neurodegenerative processes (28). The age-related gene expression changes for both 343 
homeostatic subtypes were enriched with actin filament-based process and actin cytoskeleton 344 
organization pathways, supporting their proposed roles in cell adhesion and migration 345 
(Supplementary Fig. S5B). The CD163 subtype was associated with the increase of cell 346 
adhesion processes as well as pathways related to cell proliferation. The gene signatures in the 347 
GPNMB subtype were enriched with immune response and activation. Overall, the increased 348 
involvement of PVM and ADAM subclasses indicated an upregulation of inflammatory 349 
responses in older individuals. 350 

Next, we evaluated genes exhibiting differential expression patterns across four different 351 
measures of AD phenotypes (dx_AD, CERAD, Braak, and Dementia) (Fig. 3A). Our analysis led 352 
us to discover a set of AD-associated genes, including PTPRG, DPYD, and IL15, which 353 
displayed upregulation across all phenotypes capturing more severe AD stages. Pathway 354 
enrichment analysis revealed the PICALM and GPNMB subtypes share common pathways 355 
related to the regulation of cell adhesion (Supplementary Fig. S5C). In contrast, both the 356 
CECR2 and CD163 subtypes appear to be associated with negative regulation of cell 357 
projection organization. 358 

Given the strong compositional shifts and gene signatures for AD phenotypes, we tested 359 
the presence of AD signatures in bulk microglia RNA-seq data (BulkMG; Methods). First, we 360 
created myeloid subtype signatures from both the FreshMG and PsychAD datasets by 361 
aggregating gene expression by subtype. We then compared the resulting subtype signatures 362 
to BulkMG gene expression data, stratified by AD case and control status. Interestingly, the 363 
Pearson correlation between subtypes and AD diagnosis clearly reflected the compositional 364 
shifts we observed across multiple AD phenotypes (Supplementary Fig. S5D). The CECR2, 365 
TMEM163, CCL3, and HSPA1A signatures closely correlated with the BulkMG from controls, 366 
while the PICALM, CD163, GPNMB, and HIF1A signatures closely matched those from AD 367 
cases. These results independently reproduce the observed changes in the myeloid 368 
transcriptome during the onset and progression of AD. 369 

To model the dynamic changes that take place during the onset and progression of AD at a 370 
molecular level, we expanded our analysis from using discrete donor-level clinical variables to 371 
a continuous pseudotime measure by ordering cells along a disease trajectory. We estimated 372 
Braak-stage-informed ancestor-progenitor relations between observations through transport 373 
maps between neighboring disease stages using Moscot (29). We then quantified cell-cell 374 
transition probabilities, computed putative drivers, and constructed the disease-stage-375 
informed pseudotime with CellRank 2 (30) (Supplementary Fig. S5E; Methods; 376 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2023.10.25.23297558doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.25.23297558
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Supplementary Information). As expected, we observed an increase in pseudotime with 377 
disease progression (Supplementary Fig. S5F). Stratified by subtypes, we observed that 378 
PICALM homeostatic microglia were assigned larger pseudotime values (late), compared to 379 
CECR2 homeostatic cells (early; p-value < 0.001, Supplementary Fig. S5G), indicating their 380 
association with disease progression and aligning with the compositional variation of AD 381 
phenotypes observed earlier. To identify potentially critical stages in disease progression, we 382 
compared changes in pseudotime across disease stages for each myeloid subtype (Methods). 383 
This analysis revealed that the change was most pronounced starting from Braak stage 3 384 
(Supplementary Fig. S5H), which was also the critical time point the subtype composition 385 
diverged in AD. 386 

 387 
Upstream regulators of AD genes in human myeloid cells 388 

After identifying potential AD risk genes, we analyzed myeloid gene regulatory networks 389 
(GRNs) to discover key upstream transcriptional regulators. Using SCENIC (31, 32), we 390 
constructed GRNs based on expression data and known transcription factor (TF) binding 391 
motifs and defined units of regulatory hierarchy (regulons) (Fig. 3B, Supplementary Table 392 
S12). Subsequently, we assessed the enrichment of the regulon for each myeloid subtype 393 
independently (Supplementary Table S13, Methods), revealing high concordance between 394 
the FreshMG and PsychAD cohorts (Fig. 3C). We then derived combined regulon enrichment 395 
scores using meta-analysis (Methods) and observed strong regulon subtype-specificity (Fig. 396 
3D). The CECR2 and PICALM homeostatic subtypes were defined by enrichment of KLF12, 397 
GLIS3, and BACH2 regulons, while the PICALM, CD163, and GPNMB subtypes displayed 398 
exclusive enrichment of MITF regulon. To link inferred regulons to differentially expressed AD 399 
genes, we performed enrichment tests using 4 different types of AD risk signatures (Methods). 400 
Notably, the target genes of MITF, KLF12, and GLIS3 TFs were significantly associated with 401 
AD risk profiles in the PICALM, CECR2, GPNMB, and HIF1A subtypes (Fig. 3E). MITF was 402 
preferentially enriched with upregulated AD signatures, whereas KLF12 and GLIS3 were more 403 
preferentially associated with downregulated AD signatures. Visualization of the joint MITF-404 
KLF12-GLIS3 regulon network with AD risk genes revealed coordinated modulation of both up 405 
and down-regulated candidate risk genes (Fig. 3F). These findings collectively suggest the 406 
coordinated activity of MITF, KLF12, and GLIS3 in regulating AD risk gene expression in 407 
disease-associated microglia states. Functional enrichment analysis revealed that MITF, 408 
KLF12, and GLIS3 target genes were involved in key biological processes for microglia 409 
function such as phagocytosis, cytokine production, and cellular response (Supplementary 410 
Fig. S6A). Our findings that MITF distinctly regulates phagocytic-related pathways are in line 411 
with previous findings from in-vitro models (23). In summary, by integrating differentially 412 
expressed genes in AD with GRNs, we nominate MITF, KLF12, and GLIS3 as potential 413 
upstream master regulators of gene expression changes relevant to AD pathogenesis. 414 
 415 
Regulation of phagocytosis by MITF and GPNMB 416 

We prioritized MITF as a potential upstream regulator of AD-associated gene expression 417 
critical for phagocytosis and the GPNMB subtype as the myeloid phenotype linked to AD. To 418 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2023.10.25.23297558doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.25.23297558
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

better understand the mechanistic relationship between them, we devised a lentiviral CRISPR 419 
activation (CRISPRa) approach to activate genes in HMC3-VPR cell lines and measured the 420 
level of phagocytosis under different substrate conditions (Fig. 3G). We first discovered that 421 
the activation of MITF led to increased mRNA expression of GPNMB detected by qPCR but 422 
not the other way around (Supplementary Fig. S6D), indicating that MITF is the upstream 423 
regulator of GPNMB and validating our results using the GRN inference. Furthermore, we 424 
observed that the activation of either GPNMB or MITF led to increased phagocytosis 425 
regardless of substrate types (Fig. 3H). Activating MITF was more effective at increasing 426 
phagocytosis except under the myelin condition. When we added a drug (ML329) that inhibits 427 
the MITF pathway, the phagocytosis was significantly reduced in all substrate conditions 428 
(Supplementary Fig. S6E). Our results demonstrate the activation of phagocytosis requires a 429 
cascade of regulatory events that involves MITF and GPNMB in AD. 430 
 431 
  432 
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 433 
Figure 3. Transcriptional regulation of human myeloid cells. (A) Differentially expressed genes 434 
by four different measures of AD neuropathology adjusted for technical and donor-level 435 
covariates. Fixed effect meta-analysis using both FreshMG and PsychAD cohorts. (B) 436 
Schematic overview of GRN inference and TF-gene regulon enrichment for prioritization of 437 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2023.10.25.23297558doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.25.23297558
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

upstream master regulators of AD. (C) Concordance of normalized regulon activity scores 438 
(AUCell) between FreshMG and PsychAD cohorts. Pairwise Pearson correlation. (D) 439 
Enrichment of regulon by subtypes. Meta-analysis of consensus regulon enrichment Z-score 440 
with Stouffer’s correction between FreshMG and PsychAD cohorts. Top 3 regulons per each 441 
subtype shown. (E) Enrichment of AD gene signatures by regulons. Fisher’s exact tests for 442 
enrichment of differentially expressed gene signatures in regulon target genes across myeloid 443 
subtypes. (F) TFs that modulate AD risk genes. Gene regulatory network visualization of 444 
KLF12, MITF, and GLIS3 TFs and downstream target risk genes. Node colors represent gene 445 
expression changes from dreamlet analysis. Edge weights represent importance scores 446 
inferred from the SCENIC pipeline. (G) Schematic of phagocytosis assay. (H) Relative level of 447 
phagocytosis after CRISPR activation in HMC3 cell line. 448 
 449 
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Non-cell-autonomous mechanisms affecting AD-associated 451 

microglia 452 

To gain mechanistic insights into how different human myeloid subtypes communicate with 453 
each other and mediate AD risk through non-cell-autonomous mechanisms, we investigated 454 
the change of cell-to-cell interactions (CCIs) at different stages of AD using the LIANA 455 
framework (33) (Supplementary Fig. S7A, Supplementary Table S14). This approach allows 456 
us to dissect how myeloid cell signaling influences neighboring cells, potentially driving disease 457 
progression and highlighting targets for therapeutic intervention. For each individual, we 458 
inferred the magnitude, specificity, and directionality of cell-to-cell communication using gene 459 
expression profiles and known ligand-receptor interactions. We observed strong concordance 460 
between the magnitude of CCI activities from the FreshMG and the PsychAD cohorts (Fig. 4A), 461 
primarily for the homeostatic, PVM, and ADAM subtypes, whereas rare subtypes like MKI67 462 
and CCL3 were less reproducible. By evaluating the CCI magnitude scores as a function of all 463 
4 AD phenotypes using a linear mixed model, we identified differential CCIs associated with AD 464 
(Fig. 4B, Supplementary Fig. S7B), which were highly concordant across all 4 AD phenotypes 465 
(Supplementary Fig. S7C). We identified a total of 1,015 CCIs at FDR of 5% that were 466 
upregulated or downregulated in AD. The APOE-SORL1 and APOE-TREM2 interaction scores 467 
were higher in AD and were prioritized as the top AD-relevant CCIs, while MRC1-PTPRC 468 
interactions were down-regulated in AD. To test for genetic association, we performed the 469 
gene-set enrichment analyses on CCI pairs with increased scores in AD using GWAS data (34) 470 
(Fig. 4C, Methods). We observed AD-associated receptors had a strong association with AD 471 
risk but not with ligands. Visualizing the CCIs as directional networks in the context of different 472 
myeloid subtypes placed the GPNMB subtype as the most affected hub for CCIs that were 473 
upregulated in AD (Fig. 4D). Notably, the GPNMB subtype served as the receiving node for the 474 
APOE-TREM2 interaction. To better understand the downstream effect of genes participating 475 
in AD-associated CCIs, we performed pathway enrichment analysis, uncovering that GPNMB-476 
related CCIs were enriched with lipid metabolism and regulation of proteolysis (Fig. 4E). 477 
 478 
TREM2-dependent regulation of phagocytosis by AD-associated microglia 479 

Previous studies have shown that TREM2, a myeloid cell receptor, plays a crucial role in 480 
the activation of disease-associated microglia, with variants increasing AD risk (5, 27, 35–40). 481 
Given the higher expression of APOE-TREM2 CCI in the GPNMB subtype, we hypothesized 482 
that GPNMB expansion in AD is partially TREM2-dependent. To investigate this hypothesis, we 483 
first examined the impact of highly penetrant TREM2 variants for AD (R47H; rs75932628; n = 484 
21 and R62H; rs143332484; n = 26 ) (39) on changes of the microglia subtype composition. We 485 
found that carriers of these TREM2 mutations did not exhibit an expansion of the GPNMB 486 
subtype during progression of AD (Fig. 4F), supporting a potentially protective role of this 487 
subtype in phagocytosis and the amelioration of AD pathology. To further explore this, we 488 
utilized the published snRNA-seq dataset on Trem2-deficient 5XFAD mice (27) (Fig.4G). Similar 489 
to the human data, in the 5XFAD mouse model, we show an increase in the proportion of the 490 
GPNMB subtype, which was absent in the Trem2-deficient 5XFAD mice. 491 
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Finally, we utilized isogenic induced pluripotent stem cell (iPSC)-derived microglia that were 492 
wild-type (WT), heterozygous (HZ), or homozygous (HO) for TREM2. TREM2 knockout cells (HZ 493 
and HO) showed approximately 50% lower GPNMB and MITF mRNA expression compared to 494 
WT (Supplementary Fig. S7D). Phagocytosis assays using Aβ, myelin, and synaptic protein as 495 
substrates revealed significant reduction in phagocytic activity for both HZ and HO lines 496 
compared to WT (Fig. 4I, Supplementary Fig. S7E). Furthermore, inhibiting the MITF pathway 497 
(with ML329) leads to a significant reduction in Aβ phagocytosis in WT cells. We used FACS to 498 
separate microglia into high- and low-phagocytosing populations based on the fluorescence of 499 
pHrodo-labeled substrates (Fig. 4H, Supplementary Fig. S7F). GPNMB protein levels were 500 
higher in cells with high phagocytic activity (Fig. 4J). Similarly, RT-qPCR revealed that high-501 
phagocytosing cells exhibited higher levels of GPNMB mRNA than low-phagocytosing cells 502 
across all substrate conditions. 503 
 504 
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 506 
Figure 4. Non-cell-autonomous mechanisms. (A) Concordance of CCI scores among human 507 
myeloid cells between the FreshMG and the PsychAD cohorts. Pairwise Spearman correlation 508 
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using aggregated CCI scores by subtype. Row labels correspond to the sender or ligand-509 
producing cell. Column labels correspond to the receiver or receptor-producing cell. (B) 510 
Differential CCI analysis based on Braak stages. Meta-analysis of linear mixed model 511 
regression using both FreshMG and PsychAD cohorts. Estimated log fold change corresponds 512 
to increased representation in the high Braak stage (red) vs. the low Braak stage (blue). (C) 513 
MAGMA enrichment analysis on differential CCI, stratified by direction of regulation (AD vs CTRL) 514 
and role of interaction (ligands, receptors, or both). (D) Directed network visualization of the top 515 
CCI pairs. Top: AD-associated, Bottom: controls-associated CCIs. Nodes represent each 516 
subtype and directional edge weights represent the importance of interaction. The edge color 517 
represents the estimated log fold change from differential CCI analysis. (E) Gene set 518 
enrichment analysis of CCI pairs using Gene Ontology Biological Processes. CCIs aggregated 519 
by subtype, direction of regulation (AD vs CTRL), and role of interaction (ligands or receptors). 520 
The color scale represents the normalized enrichment score (NES). The dot size represents the 521 
FDR significance. + marks FDR < 0.05. (F) Compositional variation of myeloid subtypes by AD 522 
using TREM2 missense mutation (R47H or R62H) carriers. Shared disease-free controls 523 
without TREM2 mutations were compared against AD cases with TREM2 WT (+/+) and TREM2 524 
missense carriers (+/-). AD cases were sampled to match the size of TREM2 mutation carriers. 525 
(G) Compositional variation of myeloid subtypes by AD using Trem2-deficient 5XFAD mice. 526 
Trem2+/+ 5XFAD and Trem2–/– 5XFAD mice were compared to disease-free control mice 527 
(Trem2+/+). (H) Schematic of isolating highly phagocytosing microglial cells using flow 528 
cytometry. (I) Relative level of phagocytosis among WT, TREM2 heterozygous, and 529 
homozygous knockouts in iPSC-derived microglia using Aβ as substrates. (J) Relative mRNA 530 
expression of GPNMB measured by RT-qPCR for high and low phagocytosing microglia using 531 
Aβ as substrates. 532 
 533 
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Discussion 535 

The cell atlas presented here underscores the importance of the functional plasticity of 536 
human myeloid cells throughout life, reflecting their ability to dynamically adapt to their 537 
microenvironment. Our comprehensive analyses uncover striking similarities between normal 538 
aging and AD pathology. We speculate that the natural aging process is accelerated in AD, and 539 
follows a similar trend for all subtypes, with the exception of the AD-associated microglia, 540 
ADAM. ADAM is characterized by elevated expression of GPNMB transcripts and CD44 541 
protein. GPNMB is a multifaceted transmembrane protein involved in the regulation of 542 
inflammation and is implicated in several neurodegenerative diseases (41–45). When cleaved 543 
by proteases into its soluble form, GPNMB signals by binding to the CD44 receptor to drive 544 
anti-inflammatory responses (42, 46, 47). Based on the following three main outcomes, our 545 
results collectively suggest that ADAM is involved in anti-inflammatory responses and confer 546 
neuroprotective benefits in AD. 547 

First, ADAM shows a marked increase in prevalence with AD progression and correlates 548 
significantly with polygenic AD risk scores. It suggests that individuals with higher AD genetic 549 
predisposition may naturally exhibit increased activation of this subtype, positioning it as a 550 
potential biomarker for disease progression and reflecting an adaptive, though limited, 551 
neuroprotective response to neurodegenerative changes. This is consistent with small-scale 552 
studies supporting GPNMB as a cerebrospinal fluid biomarker for the early diagnosis and 553 
prognosis of AD (48, 49). The significant increase in ADAM, driven by polygenic AD risk and 554 
mediated by Aβ accumulation, reveals the intricate interplay between genetic predisposition 555 
and cellular responses during AD progression. This association underscores the potential for 556 
targeted therapeutic strategies that modulate the ADAM subtype, potentially altering disease 557 
progression by mitigating the downstream effects of Aβ accumulation. 558 

Second, we investigated cell-intrinsic factors that distinguish transcriptomic profiles 559 
between AD cases and controls. Through GRN analysis, we prioritized MITF as the master 560 
regulator of AD risk signatures, governing the expression of numerous AD-associated genes, 561 
including APOE, DPYD, TREM2, and PTPRG (12, 50, 51). The MITF network is notably enriched 562 
with markers of phagocytic activity and has been recognized as a crucial regulator of 563 
homeostatic microglial functions, particularly in promoting autophagic states and enabling 564 
microglia to migrate, detect, and clear Aβ/Tau proteinopathies (22, 23, 52–54). We confirmed 565 
that MITF is the upstream regulator of GPNMB and demonstrated that the activation of 566 
GPNMB is linked to increased phagocytosis. Prior work demonstrating the expression of 567 
GPNMB is dependent on phagocytosis of CNS-substrates (23), indicative of a positive 568 
feedback loop between GPNMB expression and phagocytosis. 569 

Third, we examined non-cell-autonomous mechanisms that distinguish interactions and 570 
communication pathways influencing AD progression. The significant enrichment of AD genetic 571 
risk loci (APP, TREM2, SORL1, SORT1, ABCA1, TSPAN14) within the prioritized receptors of 572 
AD-associated CCIs suggests potential mechanisms behind their contribution to AD. We 573 
prioritize ADAM as a central hub in AD progression, participating in the highest number of AD-574 
associated ligand-receptor interactions among microglia subtypes. Motivated by the AD-575 
associated upregulation of APOE-TREM2 ligand-receptor interactions in ADAM, we 576 
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subsequently found that TREM2 mutations diminish ADAM microglia, highlighting the 577 
dependency of this subtype on TREM2 function. Corroborating previous observations (23, 35), 578 
we demonstrate that phagocytosis is TREM2-dependent and regulated through MITF-579 
mediated activation of GPNMB, reinforcing the importance of this pathway in maintaining 580 
microglial function and neuroprotection. 581 

In conclusion, our study advances the field by providing a high-resolution view of human 582 
myeloid cell diversity and their adaptive roles in aging and AD. The identification of subtype-583 
specific GRNs, including the MITF-GPNMB axis, that are TREM2-dependent, highlights 584 
promising therapeutic avenues for modulating microglial functions to potentially slow disease 585 
progression. Future studies should aim to validate these pathways in humanized models and 586 
explore pharmacological strategies that enhance neuroprotective myeloid subtypes, potentially 587 
altering the trajectory of AD and related diseases. 588 
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Methods 590 

Sources and description of human biosamples 591 
All brain specimens were obtained through informed consent via brain donation programs 592 

at the respective organizations. All procedures and research protocols were approved by the 593 
respective ethical committees of our collaborator’s institutions. The FreshMG samples (n = 594 
137) were taken from 96 fresh postmortem autopsy samples obtained at the Mount Sinai/JJ 595 
Peters VA Medical Center NIH Brain and Tissue Repository (NBTR) in the Bronx, NY. An 596 
additional set of 41 fresh postmortem autopsy samples was obtained from participants in the 597 
Religious Orders Study or Rush Memory and Aging Project (ROSMAP) at Rush Alzheimer’s 598 
Disease Center (RADC) in Chicago, IL. Both studies were approved by an Institutional Review 599 
Board of Rush University Medical Center and all participants signed informed and repository 600 
consents and an Anatomic Gift Act (55). The PsychAD cohort comprises 1,470 donors from 601 
three brain banks, Mount Sinai NIH Brain Bank and Tissue Repository (MSSM; 1,023 samples), 602 
NIMH Human Brain Collection Core (HBCC; 295 samples), and ROSMAP (RUSH; 152 603 
samples). Finally, LivingMG biopsies were collected from patients undergoing procedures for 604 
intracerebral hemorrhage evacuation (STUDY-18-01012A), as described previously (9). 605 

 606 
Collection and harmonization of clinical, pathological, and demographic 607 
metadata 608 

Since the brain tissue specimens were collected from three different sites, the available 609 
clinical data varies as a function of source. As such, we used the following scheme to 610 
harmonize available clinical, pathological, and demographic metadata: the CERAD scoring 611 
scheme for neuritic plaque density (19) was harmonized for consistency across multiple brain 612 
banks, where the scores range from 1 to 4, with increasing CERAD number corresponding to 613 
an increase in AD burden; 1 = no neuritic plaque (normal brain), 2 = sparse (possible AD), 3 = 614 
moderate (probable AD), 4 = frequent (definite AD). Samples from ROSMAP used consensus 615 
summary diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), and 616 
dementia and its principal cause, Alzheimer’s dementia (56–58). MSSM/VA samples used 617 
clinical dementia rating (CDR), which was based on a scale of 0-5; 0 = no dementia, 0.5 = 618 
questionable dementia (very mild), 1 = mild dementia, 2 = moderate dementia, 3=severe 619 
dementia, 4 = profound dementia, 5 = terminal dementia. After consulting with clinicians, we 620 
created a harmonized ordinal variable where dementia is categorized into three levels of 621 
cognitive decline, independent of AD diagnosis; 0 = no cognitive impairment, 0.5 = MCI (mild 622 
cognitive impairment), and 1 = dementia. In addition to AD phenotype, we collected 623 
comprehensive demographic (age, sex, and genetic ancestry) and technical variables (brain 624 
bank, sequencing facility, sequence pooling information, postmortem interval (PMI; measured 625 
in minutes), APOE genotype) to describe each cohort (Supplementary Fig. S1, 626 
Supplementary Table S3-4). 627 

 628 
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Clinical diagnosis of AD 629 
For analysis comparing donors with AD cases and neurotypical controls, a binary clinical 630 

diagnosis variable for AD, dx_AD, was defined as follows. Individuals with CERAD 2, 3, or 4, 631 
Braak ≥ 3, and CDR ≥ 1 for MSSM/VA or Alzheimer’s dementia for ROSMAP were classified as 632 
AD cases. Controls were defined as individuals with CERAD 1 or 2 and Braak 0, 1, or 2. 633 

 634 
Measuring AD neuropathology 635 

For analysis comparing donors with pathologic AD, the following variables were used to 636 
measure the severity of AD neuropathology. CERAD score (19). A quantitative measure of Aβ 637 
plaque density where 1 is normal, 2 is possible AD, 3 is probable AD, and 4 is definite AD (56). 638 
Braak AD-staging score measuring progression of neurofibrillary tangle neuropathology 639 
(Braak & Braak-score, or BBScore). A quantitative measure of the regional patterns of 640 
neurofibrillary tangle (NFT) density across the brain, where 0 is normal and asymptotic, 1-2 641 
indicate initial stages where NFT begins to appear in the locus coeruleus and the 642 
transentorhinal region, 3-4 indicate progression to limbic regions, such as the hippocampus 643 
and amygdala, and 5-6 indicate NFT are widespread, affecting multiple cortical regions (59–644 
61). 645 

 646 
Measuring cognitive impairment 647 

For analysis comparing donors with AD-related dementia, the following variable was used 648 
to measure the severity of cognitive impairment. Clinical assessment of dementia. A 649 
harmonized variable of cognitive status based on CDR scale for MSSM/VA or NCI, MCI, 650 
Alzheimer’s dementia for ROSMAP. We used the three-level ordinal categories of clinical 651 
dementia to measure the severity of dementia, in which 0 indicates no dementia, 0.5 indicates 652 
minor cognitive impairment, and 1.0 indicates definite clinical dementia. 653 

 654 
Isolation and fluorescence-activated cell sorting (FACS) of microglia from fresh 655 
brain specimens (FreshMG and LivingMG) 656 

Fresh brain tissue specimens were placed in tissue storage solution (Miltenyi Biotech, 657 
#130-100-008) and stored at 4 ˚C for ≤ 48hrs before processing using the Adult Brain 658 
Dissociation Kit (Miltenyi Biotech, #130-107-677), according to the manufacturer’s instructions. 659 
RNase inhibitors (Takara Bio, #2313B) were used throughout cell preparation. Following de-660 
myelination (Miltenyi Myelination removal beads - Miltenyi Biotech, #130-096-433) cells were 661 
incubated in antibody (CD45: BD Pharmingen, Clone HI30, #555483 and CD11b: BD 662 
Pharmingen, Clone ICRF44, #560914) at 1:500 for 1 hour in the dark at 4 ˚C with end-over-end 663 
rotation. Prior to fluorescence-activated cell sorting (FACS), DAPI (Thermoscientific, #62248) 664 
was added to facilitate the selection of viable cells. Viable (DAPI negative) CD45/CD11b 665 
positive cells were isolated by FACS using a FACSAria flow cytometer (BD Biosciences). 666 
Following FACS, cellular concentration and viability were confirmed using a Countess 667 
automated cell counter (Life technologies). 668 

 669 
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Isolation and fluorescence-activated nuclear sorting (FANS) of nuclei from frozen 670 
brain specimens (PsychAD), with hashing 671 

All buffers were supplemented with RNAse inhibitors (Takara, #2313B). 25 mg of frozen 672 
postmortem human brain tissue was homogenized in cold lysis buffer (0.32 M Sucrose, 5 mM 673 
CaCl2, 3 mM Magnesium acetate, 0.1 mM, EDTA, 10 mM Tris-HCl, pH8, 1 mM DTT, 0.1% 674 
Triton X-100) and filtered through a 40 µm cell strainer. The flow-through was underlaid with 675 
sucrose solution (1.8 M Sucrose, 3 mM Magnesium acetate, 1 mM DTT, 10 mM Tris-HCl, pH8) 676 
and centrifuged at 107,000 g for 1 hour at 4 ˚C. Pellets were resuspended in PBS 677 
supplemented with 0.5% bovine serum albumin (BSA). 6 samples were processed in parallel. 678 
Up to 2 M nuclei from each sample were pelleted at 500 g for 5 minutes at 4 ˚C. Nuclei were re-679 
suspended in 100 µl staining buffer (2% BSA, 0.02% Tween-20 in PBS) and incubated with 1 680 
µg of a unique TotalSeq-A nuclear hashing antibody (Biolegend) for 30 min at 4 ˚C. Prior to 681 
FANS, volumes were brought up to 250 µl with PBS and 7aad (Invitrogen, #00-6993-50) added 682 
according to the manufacturer’s instructions. 7aad positive nuclei were sorted into tubes pre-683 
coated with 5% BSA using a FACSAria flow cytometer (BD Biosciences). 684 

 685 
scRNA-seq and CITE-seq library preparation (FreshMG and LivingMG) 686 

Following FACS, 10,000 cells were processed using 10x Genomics single cell 3’ capture 687 
reagents (10x Genomics, #1000268), according to the manufacturer’s instructions. In parallel, 688 
CITE-seq was performed on a subset of samples (n = 3 donors, n = 8 replicates per donor) 689 
using the TotalSeq™-A Human Universal Cocktail (BioLegend, #399907) with 154 unique cell 690 
surface antigens, including principal lineage antigens, and includes 9 isotype control antibodies 691 
to survey surface antigens. CITE-seq was performed according to the manufacturer's 692 
instructions. For the CITE-seq experiment, a total of 80,000 cells were loaded on 10x 693 
Genomics B chips (10,000 of each uniquely barcoded sample aliquot per B chip lane), with a 694 
total targeted recovery of around 40,000 cells. 695 
 696 
snRNA-seq and hashing library preparation (PsychAD) 697 

Following FANS, nuclei were subjected to 2 washes in 200 µl staining buffer, after which 698 
they were re-suspended in 15 µl PBS and quantified (Countess II, Life Technologies). 699 
Concentrations were normalized and equal amounts of differentially hash-tagged nuclei were 700 
pooled. A total of 60,000 (10,000 each) pooled nuclei were processed using 10x Genomics 701 
single cell 3’ v3.1 reagents (10x Genomics, #1000268). Each pool was run across x2 10x 702 
Genomics lanes to create a technical replicate. At the cDNA amplification step (step 2.2) during 703 
library preparation, 1 µl 2 µm HTO cDNA PCR “additive” primer v3.1 was added (62). After 704 
cDNA amplification, supernatant from 0.6x SPRI selection was retained for HTO library 705 
generation. cDNA library was prepared according to the 10x Genomics protocol. HTO libraries 706 
were prepared as previously described(62). cDNA and HTO libraries were sequenced at NYGC 707 
using the Novaseq platform (Illumina). 708 
 709 
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Processing of scRNA-seq data (FreshMG and LivingMG) 710 
We developed a tracking platform to record all technical covariates (such as 10x Genomics 711 

kit lotnumber, dates of different preparations, viable cell counts, etc.) and quality metrics 712 
derived from data preprocessing. Alignment. Paired-end scRNA-seq reads were aligned to the 713 
hg38 reference genome and the count matrix was generated using 10x cellranger count 714 
(v7.0.0). Subsequently, we used the CellBender (63) to carefully separate out true cells from 715 
empty droplets with ambient RNA from raw unfiltered cellranger output. QC. We performed the 716 
downstream analysis by aggregating gene-count matrices of multiple samples. A battery of QC 717 
tests was performed to filter low-quality libraries and non-viable cells within each library using 718 
Pegasus (v1.7.0)(64). Viable cells were retained based on UMI (1,000 ≤ n_UMI ≤ 40,000), gene 719 
counts (500 ≤ n_genes ≤ 8,000), and percentage of mitochondrial reads (percent_mito ≤ 20). 720 
We also checked for possible contamination from ambient RNA, a fraction of reads mapped to 721 
non-mRNA like rRNA, sRNA, pseudogenes, and known confounding features such as lncRNA 722 
MALAT1. Further filtering was carried out by removing doublets using the Scrublet method 723 
(65). After filtering, the retained count matrix was normalized and log-transformed. Batch 724 
correction. We assessed the correlation between all pairs of technical and biological variables 725 
using Canonical Correlation Analysis and used the Harmony method (66) to regress out 726 
unwanted confounding variables such as the source of brain tissue. Clustering. From the kNN 727 
graph calculated from the PCA, we clustered cells in the same cell state using Leiden (67) 728 
clustering. We use UMAP (68) for the visualization of resulting clusters. Cells identified as T 729 
cells, NK cells, monocytes, neutrophils, oligodendrocytes, and astrocytes were removed, and 730 
those identified as microglia and PVMs were carried forward for subsequent taxonomic 731 
analysis. Annotation of LivingMG. After subsetting the data for microglia and PVMs, we used 732 
myeloid taxonomy from the FreshMG dataset as reference to annotate the LivingMG dataset. 733 
We used the same set of highly variable genes from the FreshMG dataset and employed 734 
scANVI (69) to transfer both subclass and subtype level annotations (Supplementary Fig. 735 
S3J). 736 

 737 
Processing of snRNA-seq data (PsychAD) 738 

Alignment. Samples were multiplexed by combining 6 donors in each nuclei pool using 739 
hashing, and each biosample was processed in duplicate to produce technical replicates. 740 
Paired-end snRNA-seq libraries were aligned to the hg38 reference genome using STAR solo 741 
(70, 71) and multiplexed pools were demultiplexed using genotype matching via vireoSNP (72). 742 
After per-library count matrices were generated, the downstream processing was performed 743 
using pegasus v1.7.0 (64) and scanpy v1.9.1 (73). QC. We applied rigorous three-step QC to 744 
remove ambient RNA and retain nuclei for subsequent downstream analysis. First, the QC is 745 
applied at the individual nucleus level. A battery of QC tests was performed to filter low-quality 746 
nuclei within each library. Poor-quality nuclei were detected by thresholding based on UMI 747 
(1,179 ≤ n_UMI ≤ 200,000; determined based on median absolute deviation of n_UMI 748 
distribution), gene counts (986 ≤ n_genes ≤ 15,000; determined based on median absolute 749 
deviation of n_genes distribution), and percentage of mitochondrial reads (percent_mito ≤ 1). 750 
We also checked for possible contamination from ambient RNA, the fraction of reads mapped 751 
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to non-mRNA like rRNA, sRNA, and pseudogenes, as well as known confounding features, 752 
such as the lncRNA MALAT1. Second, the QC was applied at the feature level. We removed 753 
features that were not robustly expressed in at least 0.05% of nuclei. Lastly, the QC was 754 
applied at the donor level. We removed donors with very low nuclei counts, which can 755 
introduce more noise to the downstream analysis. We also removed donors with low genotype 756 
concordances. Further filtering was carried out by removing doublets using the Scrublet 757 
method (65). Batch correction. We assessed the correlation between all pairs of technical 758 
variables using Canonical Correlation Analysis and used the Harmony method (66) to regress 759 
out unwanted variables such as the effect of brain tissue sources. Clustering. Highly variable 760 
features were selected from mean and variance trends, and we used the k-nearest-neighbor 761 
(kNN) graph calculated on the basis of harmony-corrected PCA embedding space to cluster 762 
nuclei in the same cell type using Leiden (67) clustering algorithms. We used UMAP (68) for the 763 
visualization of the resulting clusters. Isolation of myeloid cells. Identified cell-type clusters 764 
were annotated based on manual curation of known gene marker signatures obtained from 765 
Human Cell Atlas and human DLPFC study (74). Classes of immune cells, including Microglia 766 
and PVM, were isolated and subjected to myeloid subtype annotation and downstream 767 
analysis. 768 
 769 
Processing of bulk RNA-seq data (BulkMG) 770 

RNA was extracted from aliquots of up to 100,000 FACS-sorted CD45+ microglia using the 771 
Arcturus PicoPure RNA isolation kit (Applied Biosystems). RNA-sequencing libraries were 772 
generated using the SMARTer Stranded Total RNA-Seq Kit v2 (Takara Bio USA, #634411). 773 
Libraries were quantified by Qubit HS DNA kit (Life Technologies, #Q32851) and by quantitative 774 
PCR (KAPA Biosystems, #KK4873) before sequencing on the Hi-Seq2500 (Illumina) platform 775 
obtaining 2x100 paired-end reads. 776 

Count matrices were generated using Kallisto pseudo-mapping (75) using the standard 777 
Genecode v38 reference (starting with 235,227 transcripts for 60,535 unique genes). For gene-778 
level analyses, 21,856 features were retained for downstream analyses after filtering for 779 
features with CPM > 1 in at least 15% of samples. Correct identity of the samples was 780 
confirmed by concordance between the genetic variants obtained from RNA-seq with those 781 
obtained from ATAC-seq, or directly available genotypes, as available. 782 

 783 
Spatial validation using Akoya PhenoCycler 784 

FFPE sections from both AD and control cases were used for the Akoya PhenoCycler 785 
experiment. The experiments were performed according to the manufacturer's protocol, with 786 
the Neuroinflammation Module, Neuroscience Core Panel and Immune Module provided by 787 
Akoya. Briefly, samples were deparaffinized and hydrated. For antigen retrieval, samples were 788 
boiled in Tris-EDTA pH 9 for 20 minutes in a programmable pressure cooker. Samples were 789 
stained in Antibody Cocktail Solution containing antibodies (Supplementary Table S5) and 790 
PhenoCycler Blocking Buffer. Following staining, samples were washed, fixed, and loaded on 791 
the PhenoCycler, with data generated using the automatic workflow. Akoya PhenoCycler 792 
results were saved as .qpproj files. and protein expression quantified using QuPath (76). After 793 
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the sections were annotated, cells were segmented with the QuPath extension StarDist 794 
fluorescent cell detection script, with dsb2018_paper.pb as a training model. Protein 795 
expression was quantified using raw channel intensity with spatial boundaries of cells inferred 796 
by export measurement and export detection commands using QuPath. 797 

 798 
Spatial transcriptomic characterization using Xenium in situ  799 

Custom panel design. Xenium Human Brain Gene Expression Panel (10x Genomics, 800 
#1000599) and a custom panel of 100 genes (Supplementary Table 16) were selected for the 801 
Xenium experiment. The 100-gene custom panel consisted mainly of subclass markers 802 
selected based on specificity and gene expression level. The custom gene list was sent to 10X 803 
genomics and the probe design was performed using their in-house pipeline. Tissue 804 
preparation. Fresh frozen tissue specimens of DLPFC were dissected into small blocks on ice. 805 
Tissue blocks were snap frozen by submerging in an isopentane (Sigma-Aldrich, #320404-1L) 806 
bath chilled with dry ice and stored at -80 ˚C. Before cryosectioning, tissue blocks were 807 
allowed to equilibrate to the cryostat (Microm, #HM505) chamber temperature, and were 808 
mounted with OCT (Tissue-Tek® O.C.T. Compound, Sakura Finetek USA, #4583). After 809 
trimming, good quality 10 µm sections were flattened on the cryostat stage and placed on pre-810 
equilibrated Xenium slides (Xenium Slides & Sample Prep Reagents, 10x Genomics, 811 
#1000460). 2-3 sections were placed on each slide. Sections were further adhered to by 812 
placing a finger on the backside of the slide for a few seconds and were then refrozen in the 813 
cryostat chamber. Slides were sealed in 50 ml tubes and stored at -80˚C until Xenium sample 814 
preparation. Sample preparation. Xenium sample preparation was performed according to the 815 
manufacturer's protocol; “Xenium In Situ for Fresh Frozen Tissues – Fixation & 816 
Permeabilization, CG000581, Rev C” and “Xenium In Situ Gene Expression - Probe 817 
Hybridization, Ligation & Amplification, User Guide, CG000582, Rev C''. Briefly, fresh frozen 818 
sections mounted on Xenium slides from the previous step were removed from -80 ˚C storage 819 
on dry ice prior to incubation at 37 ˚C for 1 min. Samples were then fixed in 4% 820 
paraformaldehyde (Formaldehyde 16% in aqueous solution, VWR, #100503-917) in PBS for 30 821 
min. After rinsing in PBS, the samples were permeabilized in 1% SDS (sodium dodecyl sulfate 822 
solution) for 2 min and then rinsed in PBS before being immersed in the pre-chilled 70% 823 
methanol and incubated for 60 min on ice. After rinsing the samples in PBS, the Xenium 824 
Cassettes were assembled on the slides. Samples were incubated with a probe hybridization 825 
mix containing both the Xenium Human Brain Gene Expression Panel (10x Genomics, 826 
#1000599) and the 100 custom gene panel at 50 ˚C overnight to allow the probes to hybridize 827 
to targeted mRNAs. After probe hybridization, samples were rinsed with PBST, and incubated 828 
with Xenium Post Hybridization Wash Buffer at 37 ˚C for 30 min. Samples were then rinsed with 829 
PBST and a ligation mix was added. Ligation was performed at 37 ˚C for 2 hrs to circularize the 830 
hybridized probes. After rinsing the samples with PBST, Amplification Master Mix was added 831 
to enzymatically amplify the circularized probes at 30 ˚C for 2 hrs. After washing with TE buffer, 832 
auto-fluorescence was quenched according to the manufacturer’s protocol and nuclei stained 833 
with DAPI prior to Xenium in situ analysis. Nuclear segmentation. The prepared samples were 834 
loaded into the Xenium analyzer and run according to manufacturer’s instructions “Xenium 835 
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Analyzer User Guide CG000584 Rev B”. After the Xenium analyzer was initiated, the correct 836 
gene panel was chosen, and decoding consumables (Xenium Decoding Consumables, 10x 837 
Genomics, #1000487) and reagents (Xenium Decoding Reagents, 10x Genomics, #1000461) 838 
were loaded. The bottom of the slides was carefully cleaned with ethanol prior to loading. Once 839 
the samples were loaded and the run was initiated, the instrument scanned the whole sample 840 
area of the slides using the DAPI channel, and regions of interest were selected to maximize the 841 
capture area. Results were generated by the instrument using default settings. By default, the 842 
Xenium analyzer uses 15 µm nuclei expansion distance for segmentation of cells. To test the 843 
idea of nuclei only segmentation, we resegment the results with 0 µm nuclei expansion, by 844 
using the Xenium ranger and the following scripts: 845 

xeniumranger resegment --id=demo --xenium-bundle=/path/to/xenium/files 846 
--expansion-distance=0 --resegment-nuclei=True 847 

Identification of myeloid cells. After generating the cell-by-gene count matrices based on 848 
nuclear segmentation, nuclei were filtered by the number of detected transcripts (n_counts ≥ 849 
30). The count matrices from all samples were merged, log-normalized, and subjected to PCA, 850 
kNN graph calculation, and Leiden clustering. To assign major cell type labels to each cell, we 851 
combined this unsupervised clustering approach with supervised label transfer with scANVI 852 
(69). In short, nuclei from the RADC dataset (a subset of the full PsychAD study) with known 853 
labels for eight major CNS cell types and 27 subclass labels were used as a reference to 854 
assign labels to all cells in the unfiltered Xenium dataset. Then, we assigned labels to each 855 
Leiden cluster according to the following criteria - any cluster containing >90% of cells with a 856 
single label was assigned that label; all other clusters were removed from further analysis. In 857 
addition, cells within retained clusters were removed if their individual scANVI label did not 858 
match the label assigned to their cluster. To retain a pure microglia and PVM nuclei population, 859 
we first filtered the Xenium data for the Immune class. This population was further filtered 860 
based on the label transfer of PsychAD subclasses, to retain only nuclei with the “Microglia” 861 
and “PVM” subclass labels. This filtered data (~24,000 nuclei) was then re-processed and 862 
normalized up to PCA computation, followed by integration with batch correction using 863 
harmony (66), with the batch label set as the ID of the Xenium slide (each slide contained 2-3 864 
tissue samples), and corrected for variation in the number of detected transcripts per nucleus. 865 
The top 30 harmony-corrected PCs were then used for neighbor graph calculation, UMAP 866 
visualization, and Leiden clustering. Taxonomy of myeloid cells. To identify subtypes of 867 
myeloid cells in the Xenium data, we relied on the scANVI label transfer method. We used the 868 
PsychAD cohort as a reference since we expected it to be more similar to our Xenium data 869 
than the FreshMG cohort (since the PsychAD cohort was also frozen in situ, and contains only 870 
nuclear transcripts). Label transfer was performed for subclass (subtype) annotation as 871 
described below. However, due to the high degree of transcriptional similarity between 872 
microglia sub-populations, as well as the relative sparsity of measured informative genes, we 873 
adopted a more stringent approach and assigned microglia subclass (subtype) labels based on 874 
the stability of obtained predictions. We ran scANVI for subclass (subtype) label transfer 23 (21) 875 
independent times, differing only by a randomly generated initial condition. Then, we defined 876 
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stably-predicted nuclei as those that had 17 (16) predictions in internal agreement, and 877 
assigned “unstable” labels to nuclei whose combined predictions did not fulfill this condition. 878 
Subclass predictions were subsequently refined to obtain stable subtype prediction by 879 
subsetting the dataset to Homeo (or Adapt) stably predicted nuclei and running 10 880 
independent subtype-level predictions per subset, with predictions being accepted as stable 881 
with 8 or more consistent “votes”. Consensus subclass and subtype labels from stability 882 
analysis. To further strengthen the reliability of our predictions, we attempted to combine our 883 
microglia subclass and subtype prediction into a single consensus. Of note, consensus labels 884 
could be either at the subclass or subtype level, depending on the set of predicted labels 885 
obtained for a given nucleus. Our consensus voting process began by assigning pseudo-886 
subclasses to nuclei from the subtype predictions, by asking whether at least 16 (out of 21) 887 
subtype predictions agree for a given nucleus at the subclass level (even if the subtype 888 
prediction was “unstable”). Next, cells were assigned a subclass label if the 2 subclass 889 
predictions did not contradict each other (i.e., they either agreed, or one method had a stable 890 
prediction and the other was unstable). Cells with stable subclass predictions by this 891 
methodology were then further assigned a subtype if their subtype predictions were similarly 892 
stable and consistent. Based on these criteria, ~76% of microglia were stably assigned a 893 
subclass. Subtype annotation, however, proved more challenging, and many cells were not 894 
stably assigned to a single subtype in this analysis. Label transfer from snRNA-seq data 895 
using scANVI. Throughout this work, we utilize scANVI to perform reference-based label 896 
transfer as a way to assist in identifying pre-defined populations on cells. In each such 897 
instance, we performed the following steps. First, snRNA-seq gene expression data was 898 
subset to the genes also measured in our Xenium data. Next, we used the scvi-tools package 899 
(77, 78) to train machine learning models for dimensionality reduction based on the reference 900 
dataset and its assigned labels (e.g., class and subclass labels from the PsychAD cohort). 901 
Unless stated otherwise, model training was run with the following parameters. scVI models 902 
were run with 5 layers and 20 latent variables (30 for microglia sub-populations) and were 903 
trained for 50 (75) epochs; scANVI models were trained for 50 epochs with a minimal sample of 904 
100 cells per cluster per epoch; transfer models were trained for 100 epochs. Following 905 
training, the model was applied to query Xenium data to assign labels. To assess the 906 
performance of each transfer model, we performed a “self label transfer”, predicting labels in 907 
the reference data (using the subset gene pool) and evaluated the rate of correct prediction 908 
and biases in label misassignment for each predicted category. Where appropriate, we also 909 
computed the Pearson correlation coefficients for gene expression between the reference and 910 
query data, limited to the shared subset of genes across predicted labels. 911 
 912 
Preparation of phagocytosis substrates 913 

Myelin. Human myelin was isolated from human brain tissue using a modified protocol (23, 914 
79). Dissecting media [RPMI (Sigma, #R8758), 10% FBS (Avantor, #97068-091), 0.4 mg/mL 915 
collagenase (Sigma, #10269638001), 2 mg/mL DNAse I (Sigma, #10104159001)] was 916 
preheated in a 12-well tissue culture plate (Corning, #3513) in a 37 ˚C incubator. Using a 917 
scalpel, 75-125 mg of human brain white matter was minced and transferred to the preheated 918 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2023.10.25.23297558doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.25.23297558
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

dissecting media and incubated at 37 ˚C for 30 minutes, pipetting the solution after 15 minutes. 919 
After 30 minutes, brain homogenate was transferred to a 2 mL Dounce homogenizer (Kimble, 920 
#885302) on ice, homogenized, sieved using a 40 μm cell strainer (Greiner, #542040) and 921 
transferred to a 15 mL conical tube. The homogenate was centrifuged at 400 x g for 10 922 
minutes at 4 ˚C and the resulting pellet resuspended in 1.5 mL Ca²⁺/Mg²⁺-free DPBS (Gibco, 923 
#14200075). This was combined with 500 μL of fresh isotonic percoll solution [1 part 924 
Ca²⁺/Mg²⁺-free DPBS, 9 parts Percoll (Cytiva, #17-0891-02)] and mixed by pipetting. 2 mL of 925 
DPBS was gently layered on top of the Percoll-homogenate solution creating two separate 926 
layers. The solution was then centrifuged at 3000 x g for 10 minutes at 4 ˚C resulting in a disc 927 
of myelin between the lower and upper layers of Percoll and DPBS. The myelin was transferred 928 
to a new 1.5 mL tube and centrifuged at max speed for 10 minutes at 4 ˚C. The myelin pellet 929 
was washed twice with DPBS and protein concentration measured using the Pierce Rapid 930 
Gold BCA Protein Assay Kit (Pierce, #A53225). Synaptic protein. Human synaptic protein was 931 
isolated from fresh human brain tissue using the Syn-PER Synaptic Protein Extraction Reagent 932 
protocol (ThermoFisher, #87793). Human brain tissue was homogenized in Syn-PER Reagent 933 
and synaptic protein isolated by centrifugation. Amyloid beta. Amyloid-β (Aβ) was aggregated 934 
using the Beta Amyloid (1-42) Aggregation Kit (rPeptide, #A-1170-025) according to the 935 
manufacturer’s protocol. In brief, lyophilized Aβ was reconstituted and incubated at 37 ˚C 936 
overnight to allow for protein aggregation. After 24 hours, aggregates were collected by 937 
centrifugation and the pellet was rinsed once in 1 mL Ca²⁺/Mg²⁺-free DPBS (Gibco, #14200075) 938 
before being resuspend in 200 μL of filtered 0.1 M sodium bicarbonate (Sigma, #S5761) for 939 
pHrodo labeling. pHrodo Labeling. Isolated myelin, synaptic protein, and aggregated amyloid-940 
beta was labeled using 1 μL (10.2 mM) pHrodo Red SE (Fisher, #P36600) per 1 mg of protein 941 
and incubated for 1 hour at room temperature protected from light. Labeled protein was then 942 
washed three times with DPBS before resuspending in PBS to a 100x stock concentration 943 
(1.25 mg/mL) and stored at -20 ˚C until further use. Apoptotic neurons. Apoptotic neurons 944 
were prepared using a modified protocol (23, 80). SH-SY5Y neurons (ATCC, #CRL-2266) were 945 
seeded in 6-well tissue culture-treated corning plates and grown to confluence. To induce 946 
apoptosis, SH-SY5Y cells were placed inside a tissue culture biosafety cabinet without the 947 
plate cover and exposed to 60 lux of UV light for 1 min. UV lux was determined by Digital Lux 948 
Meter (Dr. Meter, # LX1010B). Neurons were harvested by pipetting with 1 mL Ca²⁺/Mg²⁺-free 949 
DPBS (Gibco, #14200075) and washed twice in PBS. Cell pellets were resuspended in 1 mL 950 
PBS supplemented with 2 μL (10.2 mM) pHrodo Red SE (Fisher, #P36600) and incubated for 951 
15 minutes at room temperature in the dark. Labeled neurons were washed twice in PBS 952 
+20% FBS to remove any unbound pHrodo, resuspended in PBS, and counted using a 953 
Countess II FL automated cell counter (ThermoFisher). Aliquots of labeled apoptotic neurons 954 
were stored at -80 ˚C until used. 955 

 956 
Validation of GPNMB and MITF 957 

HMC3 Cell Line Maintenance. The HMC3 human immortalized microglia line (ATCC, 958 
#CRL-3304) was maintained in Minimum Essential Medium (MEM) (Gibco, #11095098) 959 
supplemented with 10% heat inactivated Fetal Bovine Serum (FBS) (Avantor, #97068-091) and 960 
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100 U/mL Penicillin-Streptomycin (Gibco, #15140122). Cells were maintained in 10 cm dishes 961 
(ThermoFisher, #150466) and passaged by trypsinization (Gibco, #25200072). Lentiviral 962 
Transduction of dCas9-VPR. The dCas9-VPR effector system was expressed in HMC3 cells 963 
via lentiviral transduction. The lenti-EF1a-dCas9-VPR-Puro (Addgene, #99373) plasmid was 964 
packaged into lentivirus using the VectorBuilder lentiviral packaging service, and stable cell 965 
lines were generated according to the manufacturer’s instructions 966 
(https://www.addgene.org/protocols/generating-stable-cell-lines/). Parent lines expressing the 967 
dCas9-VPR system were clonalized, and dCas9 expression confirmed by qPCR. Guide RNA 968 
Design and Preparation. Guide RNA design and preparation protocols were adapted from the 969 
previously established protocols by Li and colleagues (81). Guide RNA (gRNA) sequences for 970 
MITF and GPNMB were identified by searching the CRISPR-ERA database for “gene 971 
activation” using the most up-to-date human reference genome (Human GRCh37/h19). Genes 972 
were searched indicating “U6 promoter” given our specific gRNA cloning vector. gRNA 973 
sequences with the highest efficiency and specificity (“E+S”) scores were selected and 974 
confirmed to have no off-target binding using the Cas-OFFinder database 975 
(http://www.rgenome.net/cas-offinder/). gRNA sequences were then cloned into the 976 
lentiGuide-Hygro-mTagBFP2 (Addgene, #99374) backbone using Golden Gate Assembly for 977 
digestion and ligation. Competent e. coli (NEB, #C3019I) were transformed using the gRNAs 978 
cloned into the lentiGuide-Hygro-mTagBFP2 (Addgene, #99374) plasmid vector according to 979 
the manufacturer’s protocol for heat shock transformation. Transformed bacterial colonies 980 
were grown on Ampicillin Agar (InvivoGen, #FAS-AM-S) at 37 ˚C overnight prior to inoculation 981 
of liquid cultures (InvivoGen, #FAS-AM-B). Plasmid DNA was isolated using the Plasmid Mini 982 
Kit (Qiagen, #12125) and subjected to sanger sequencing (Genewiz Azenta Life Sciences) to 983 
confirm the presence of gRNA sequences. Lentivirus Preparations. Human embryonic kidney 984 
cells (HEK293T) were used to package gRNA plasmids into lentivirus. Lentiviral production was 985 
completed using a polyethyleneimine (PEI) (Polysciences, #23966-2) transfection strategy as 986 
described by Li and colleagues (81). Transfections in HEK293T cells were performed in 15 cm 987 
plates (Nunc, #150468) when cells reached approximately 80% confluency. A “PEI 988 
transfection-mixture” of 110 μL PEI to 250 μL Opti-MEM (Gibco, #31985-062) was combined in 989 
a 1:1 ratio with a “DNA-mixture” containing 250 μL Opti-MEM, 8.1 μg pMDLg/pRRE (Addgene, 990 
#12251), 3.1 μg pRSV-Rev (Addgene, #12253), 4.1 μg pCMV-VSV-G (Addgene, #8454) and 991 
12.2 μg gRNA plasmid DNA. PEI-mixture and DNA-mixtures were mixed and incubated at 992 
room-temperature for 15 minutes. After incubation, 700 μL of the mixture was added to the 993 
HEK293T cells and incubated at 37 ˚C for 6 hours before being replaced with 15 mL complete 994 
media. After 48 hours of incubation, viral media was collected, stored at 4 ˚C and fresh HEK 995 
media was replaced for an additional 24 hours incubation. Viral media was collected a second 996 
time before concentrating with Lenti-X Concentrator (Takara, #631232) according to the 997 
manufacturer protocol. Viral quantification was completed by isolating viral RNA using the 998 
NucleoSpin RNA Virus Kit (Takara, #740956), and viral copies determined using the Lenti-X 999 
qRT-PCR Titration Kit (Takara, #631235). CRISPR activation of MITF and GPNMB. HMC3 1000 
cells were plated in 96-well plates at a seeding density of 10,000 cells per well. After adhering 1001 
overnight, cells were treated with gRNA-containing lentivirus at a final concentration of 3225 1002 
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viral copies/μL (based on qPCR). Cells were transduced with virus for 24 hours before 1003 
removing vial media and replacing with hygromycin (1 mg/mL) antibiotic selection media for 48 1004 
hours. Phagocytosis. Seventy-two hours after transduction, pHrodo-labeled substrate; myelin 1005 
(5 μg/mL), amyloid-beta (5 μg/mL) or SHSY5Y Apoptotic Neurons (5000 cells/well) was added, 1006 
and plates were imaged by Incucyte. Fluorescent intensity was recorded, capturing four 1007 
images per well across two replicate wells. All conditions were plated in triplicate across two 1008 
replicate plates and imaged after 24 hours. For RNA isolation and quantification of target genes 1009 
by RT-qPCR, cells in replicate wells were harvested and pooled to increase RNA yield. RT-1010 
qPCR. HMC3 cells were harvested by trypsinization and RNA isolated using the Arcturus 1011 
PicoPure RNA Isolation Kit (Applied Biosystems, #12204-01). RNA was quantified by 1012 
NanoDrop (ThermoScientific, #840274100). RT-qPCR was performed using the Power SYBR 1013 
Green RNA-to-CT 1-Step Kit (Applied Biosystems, #4389986) on the QuantStudio 5 Real-Time 1014 
PCR System (Applied Biosystems, #A28135). qPCR primers were obtained from Integrated 1015 
DNA Technologies (IDT), sequences for the PrimeTime qPCR Primers can be found in 1016 
Supplementary Table S16. 1017 
 1018 
TREM2 validation using iPSC-derived microglia 1019 

Preparation of iPSC-derived microglia. Isogenic TREM2 wild-type (WT) (FujiFilm, 1020 
#C1110), heterozygous knockout (HZ) (FujiFilm, #C1134), and homozygous knockout (HO) 1021 
(FujiFilm, #C1136) lines were obtained from FujiFilm and maintained in iCell Culture media 1022 
according to the manufacturer’s protocols. TREM2 WT, HZ, and HO iCell microglia were plated 1023 
at 125,000 cells/mL in Poly-D-Lysine (Gibco, #A3890401) coated plates according to the 1024 
manufacturer’s protocol. Phagocytosis. Cells were maintained in culture media for 72 hours 1025 
before addition of phagocytosis substrates: amyloid-beta (5 μg/mL), myelin (5 μg/mL), synaptic 1026 
protein (5 ug/mL), or apoptotic neurons (35,000/mL), with or without the MITF pathway 1027 
inhibitor, ML329 (2 μM, MedChemExpress, #HY-101464)(23, 82). Phagocytosis was assessed 1028 
using the Sartorius Incucyte S3 Live-Cell Analysis System by imaging four fields per well. RFP 1029 
was used to visualize and measure phagocytosed pHrodo-labeled substrate, while bright-field 1030 
was used to estimate cell confluency. Phagocytosis was analyzed 24 hours after introduction 1031 
of the substrate using the Incucyte analysis software. Statistical analyses were conducted in 1032 
GraphPad Prism using two-tailed t-tests to compare phagocytosis across cell lines. RT-qPCR. 1033 
For RT-qPCR analyses, cells were harvested by pipetting and prepared for RNA isolation using 1034 
the Arcturus PicoPure RNA Isolation Kit (Applied Biosystems, #12204-01). RNA was quantified 1035 
by NanoDrop (ThermoScientific, #840274100). RT-qPCR was performed on isolated RNA using 1036 
the Power SYBR Green RNA-to-CT 1-Step Kit (Applied Biosystems, #4389986) on the 1037 
QuantStudio 5 Real-Time PCR System (Applied Biosystems, #A28135). qPCR primers were 1038 
obtained from Integrated DNA Technologies (IDT), sequences for the PrimeTime qPCR Primers 1039 
can be found in Supplementary Table S16. FACS. For analysis of phagocytosis by flow 1040 
cytometry, cells were harvested by pipetting before incubating with GPNMB Monoclonal 1041 
antibody (Proteintech, #66926-1) at 1:1000 for 1 hour, followed by Goat anti-Mouse IgG (H+L) 1042 
Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 750 (ThermoFisher, #A-21037) at 1:1000 1043 
for 30 minutes. Just prior to FACS, DAPI (ThermoFisher, #62248) was added at 1:10,000. Cells 1044 
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were then analyzed by flow cytometry for fluorescence of pHrodo-positive phagocytosed 1045 
substrate and for the presence of GPNMB protein. Cells were sorted into low and high 1046 
substrate populations for RNA isolation and qPCR, as previously described. 1047 

 1048 
Compositional variation analysis 1049 

We applied crumblr method (https://diseaseneurogenomics.github.io/crumblr) for testing 1050 
the variation of cell type composition. Analysis of count ratio data (i.e., fractions) requires 1051 
special consideration since data is non-normal, heteroskedastic, and spans a low-rank space. 1052 
While counts can be considered directly using Poisson, negative binomial, or Dirichlet-1053 
multinomial models for simple regression applications, these can be problematic since they 1) 1054 
can be very computationally expensive, 2) can produce poorly calibrated hypothesis tests, and 1055 
3) are challenging to extend to other applications. The widely used centered log-ratio (CLR) 1056 
transform from compositional data analysis makes count ratio data more normal and enables 1057 
use the of linear models and other standard methods. Yet CLR-transformed data is still highly 1058 
heteroskedastic: the precision of measurements varies widely. This important factor is not 1059 
considered by existing methods. crumblr uses a fast asymptotic normal approximation of 1060 
CLR-transformed counts from a Dirichlet-multinomial distribution to model the sampling 1061 
variance of the transformed counts. crumblr enables incorporating the sampling variance as 1062 
precision weights to linear (mixed) models in order to increase power and control the false 1063 
positive rate. crumblr also uses a variance stabilizing transform (vst) based on the precision 1064 
weights to improve the performance of PCA and clustering. 1065 

 1066 
Differential gene expression analysis 1067 

We applied dreamlet for differential expression analysis. Building from the previously 1068 
developed statistical tool Dream (83), it applies linear mixed models to the differential 1069 
expression problem in single-cell omics data. It starts by aggregating cells by the donor using a 1070 
pseudobulk approach (84, 85) and fits a regression model and cell. For each feature and cell 1071 
cluster, the following mixed model was applied: Gene expression ~ Intercept + age + 1072 
(1|sex) + (1|ancestry) + PMI + (1|batch) + (1|source) + phenotype, 1073 
where categorical and numerical variables were modeled as random and fixed effects, 1074 
respectively. We ran gene set analysis using the full spectrum of gene-level t-statistics (86). 1075 
 1076 
Mediation analysis 1077 

Causal Mediation Analysis was performed using the mediation R package (87). From 1078 
PsychAD cohort, we subsetted to 645 individuals with European ancestry who have AD 1079 
phenotype variables and PRS calculations from the latest AD GWAS(8). For each regression, 1080 
we used the following covariates: 1081 

 1082 
Age + Sex + PMI + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 + PC9 1083 
+ PC10 1084 
 1085 
where PC1-10 indicate genotype PCs. For the subtype composition, we used CLR-transformed 1086 
cell count fractions obtained from crumblr analysis. For bootstrapping, we used 10,000 1087 
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simulations with 50th percentiles of the treatment variable used as the control condition and 1088 
90th percentile of the treatment variable used as the treatment condition. 1089 
 1090 
Constructing gene regulatory networks 1091 

We inferred gene regulatory networks with the pySCENIC (v 0.12.1)(31, 32) pipeline using a 1092 
concatenated dataset of FreshMG and PsychAD microglia cohorts. We followed the standard 1093 
SCENIC expression preprocessing; log normalizing expression counts and selecting highly 1094 
variable genes (3,192 total) while accounting for batch correction between datasets with 1095 
scanpy (v1.9.3). The pySCENIC’s GRNboost2 (arboreto v0.1.6) method was utilized for gene 1096 
regulatory network inference. The pySCENIC’s cisTarget function with Human motif database 1097 
v10 (https://resources.aertslab.org/cistarget/motif2tf/motifs-v10nr_clust-nr.hgnc-m0.001-1098 
o0.0.tbl) was used to enrich for gene signatures and pruned based on cis-regulatory cues 1099 
using default settings. The “aucell” positional argument was utilized to find the enrichment of 1100 
regulons across single cells. 1101 

To compare regulon enrichment between subtypes, the resulting AUCell matrix was z-1102 
score normalized. To assess the concordance between regulon enrichment across subtypes 1103 
between FreshMG and PsychAD cohorts, we computed the Pearson correlations between 1104 
normalized z-scores using the pandas corrwith function. For each dataset, we computed the 1105 
normalized regulon enrichment Z-score, and performed a meta-analysis between two datasets 1106 
using Stouffer's method. 1107 

To test whether there is a significant association between the target genes of a TF and 1108 
disease signatures, we performed Fisher’s exact tests between SCENIC GRN target genes and 1109 
AD risk gene signatures, based on Dreamlet DEG analysis. Disease-associated genes with 1110 
FDR < 0.05 were selected based on four different measures of AD severity, namely, case-1111 
control diagnosis, Braak, CERAD, and dementia status. The top 3 regulons were prioritized 1112 
based on the overall enrichment of the AD DEG signature. The similarity between target genes 1113 
of regulons was evaluated using the Jaccard similarity index. We found the target genes of the 1114 
top 3 TFs shared high similarity and clustered distinctly from other regulons (Supplementary 1115 
Fig. S6B). Node centrality was calculated using PageRank analysis, which measures a ranking 1116 
of the nodes in the graph based on the structure of the incoming links (Supplementary Fig. 1117 
S6C). The mean estimate and -log10FDR of target risk genes in SCENIC regulons are 1118 
visualized using the importance score edge weights from GRNboost2 with networkX (v3.1). For 1119 
each regulon, a list of SCENIC GRN TF target genes after cisTarget pruning were obtained and, 1120 
using gseapy (v1.0.5)(88), tested for gene-set enrichment based on the Gene Ontology 1121 
Biological Processes 2023 reference (88). GO terms were clustered based on their Ward 1122 
distance between -log10FDR values. 1123 
 1124 
Constructing a pseudotemporal trajectory of AD 1125 

We followed the same steps when constructing Braak-stage-informed pseudotimes for the 1126 
FreshMG and PsychAD datasets, respectively. First, cells that were not assigned a Braak stage 1127 
were excluded and the data subsetted to contain either only cells annotated as adaptive, 1128 
homeostatic, ADAM, or PVM. We then computed a k-nearest-neighbor graph using Scanpy 1129 
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(73) (scanpy.pp.neighbors, k = 30, n_pcs = 15) on the PCA embedding, regressed with 1130 
Harmony. Finally, transport maps were computed between pairs of consecutive disease stages 1131 
using moscot’s TemporalProblem (29). 1132 
 1133 
Identification of driver genes with CellRank 2 1134 

To identify drivers of disease progression within each cell type, we first estimated a cell-cell 1135 
transition matrix  using the RealTimeKernel implemented in the CellRank framework (30). 1136 
Disease stage heterogeneity within each Braak stage was accounted for by including cell-cell 1137 
similarity (conn_weight=0.1). Since moscot relies on entropical regularization to solve the 1138 
underlying optimal transport problem, it returns dense transport maps, leading to negligible 1139 
transition probabilities and large memory requirements when computing the transition matrix. 1140 
To render our downstream analysis computationally feasible, we thresholded the constructed 1141 
transition matrix using the RealTimeKernel’s automatic thresholding scheme 1142 
(threshold=”auto”). 1143 

Based on the RealTimeKernel-derived transition matrix, we estimated terminal states 1144 
with the GPCCA estimator (30, 89). In the case of adaptive and homeostatic cells, we 1145 
computed terminal states at the resolution of subclasses (MG_Adapt, MG_Homeo), for the 1146 
PVM subset based on the subtype (PVM_CD163, ADAM_GPNMB) annotation. We confirmed 1147 
the estimated terminal states as biologically plausible by quantifying the cell type and disease 1148 
stage purity, respectively. Given  cells (n = 30 in this study) identifying a terminal state, the 1149 
disease stage purity is defined as 1150 
 1151 

 1152 
 1153 
with  denoting the set of cells identifying the terminal state,  the set of cells with Braak 1154 
stage , and  the cardinality of the set. Cell type purity is defined similarly. 1155 

We computed fate probabilities towards each terminal state next and identified driver 1156 
genes by correlating gene expression with fate probabilities as outlined in the corresponding 1157 
CellRank tutorial. To compare the gene ranking between the FreshMG and PsychAD cohorts, 1158 
we subsetted to genes present in both datasets and computed the Pearson correlation 1159 
coefficient between the gene-specific correlations  and  by CellRank: 1160 
 1161 

 1162 
 1163 
with sample mean . 1164 
 1165 
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Pseudotime construction 1166 
DPT (90) is traditionally calculated on a symmetric connectivity matrix, the constructed 1167 

transition matrix  is, however, non-symmetric. To compute DPT based on our Braak-stage-1168 

informed transition matrix, we, thus, symmetrized  via  and row-normalized entries. 1169 
Following, we computed diffusion pseudotime using SCANPY’s scanpy.tl.dpt function with 1170 
default values. The corresponding initial cells were identified via extreme points in diffusion 1171 
components (91). To verify that the constructed pseudotime recapitulates our findings that 1172 
homeostatic CECR2 cells decline with disease progression, while the number of homeostatic 1173 
PICALM cells increases, we stratified pseudotime by subtype (Fig. 5C). Next, we performed a 1174 
Welch’s t-test to validate that homeostatic CECR2 cells are assigned significantly smaller 1175 
pseudotime values compared to the set of homeostatic PICALM. We performed similar 1176 
Welch’s t-tests to assess the change between consecutive Braak stages. For each dataset, we 1177 
first computed the T-statistics from Welch’s t-test and then combined them across datasets 1178 
using Stouffer's method: Considering T-statistics  and , the reported T-statistic 1179 

 given by 1180 
 1181 

 1182 
 1183 
As a final analysis, we correlated fate probabilities with gene expression for each lineage to 1184 
identify putative driver genes for each lineage. Here, we included genes present in both 1185 
datasets. To confirm concordance between the two independent cohorts, we computed the 1186 
Spearman correlation between the two rankings. 1187 
 1188 
Inferring cell-to-cell interactions 1189 

CCI analysis relies on inference of ligand-receptor interactions given a gene expression 1190 
matrix with annotated cell types. By comparing to a known set of ligand-receptor (LR) pairs 1191 
(reference “resource”), CCI can be inferred and scored through a variety of methods. LR pairs 1192 
across cell types that are expressed above a set threshold and are differentially co-expressed, 1193 
are inferred to represent interactions between the cell types. The LIANA (33) framework 1194 
combines several established CCI inference methods and reference resources. We used the 1195 
Python implementation of LIANA (v0.1.8). For each donor in FreshMG and PsychAD, we 1196 
separately ran the standard rank_aggregate pipeline (resource_name = ’consensus’, expr_prop 1197 
= 0.1, min_cells = 5, n_perms = 1000). This utilizes the RobustRankAggregate (92) algorithm for 1198 
aggregating scores from several methods (CellPhoneDB, Connectome, log2FC, NATMI, 1199 
SingleCellSignalR, and CellChat)(33, 93–97) into a single magnitude score for each CCI. We 1200 
used the standard “consensus” CCI reference resource provided by LIANA. For a given pair of 1201 
cell types and pair of genes to be considered for CCI scoring, each gene must be found in the 1202 
reference resource, and be expressed in at least 10% of each involved cell type and in at least 1203 
5 cells. We evaluated CCI using the rank aggregate magnitude score for cell types annotated 1204 
at the subtype level. We negative log-transformed these scores so that low magnitude CCI are 1205 
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scored close to 0 and normalized the score distribution. Additional post-processing was then 1206 
performed to filter out CCI that were not expressed in both FreshMG and PsychAD.  1207 

To assess the concordance between FreshMG and PsychAD CCI scores, we first 1208 
computed the average CCI score for each CCI across donors within each cohort. We then 1209 
grouped the average scores by each possible pair of subtypes and measured the Spearman 1210 
rank correlation. We additionally computed an activity z-score for the frequency of CCI 1211 
involving each subtype pair (Fig. 4A).  1212 

To determine whether CCI are differentially expressed in AD, we applied Dream13 to 1213 
construct a linear mixed model and account for technical and biological covariates (batch, age, 1214 
sex). Linear mixed model regression was performed separately for FreshMG and PsychAD 1215 
across four measures of AD progression: diagnosis (dx_AD), CERAD score, Braak stage, and 1216 
dementia status. We then also used Dream to meta-analyze CCI that are significantly 1217 
differentially expressed across both cohorts and to estimate the log fold change effect of each 1218 
CCI for each AD progression measure (Fig. 4B, Supplementary Fig. S7C).  1219 

To evaluate whether significantly differentially expressed CCI are enriched in AD genome-1220 
wide association studies (GWAS), we utilize the Multi-marker Analysis of GenoMic Annotation 1221 
(MAGMA)(34). The MAGMA gene set was constructed from significantly differentially expressed 1222 
CCI LR pairs. These include CCI with at least a false discovery rate (FDR) of 0.05 significance, 1223 
as determined by the Dream regression meta-analyses across each AD progression measure. 1224 
We normalized the log2 fold change (log2FC) values for these CCI for each progression 1225 
measure and split the CCI into AD (log2FC > 0) and CTRL (log2FC < 0) groups. Top LR pairs 1226 
for AD and CTRL were then ranked by selecting the LR pairs involved in the CCI with the 1227 
largest absolute normalized log2FC values. The ranked AD and CTRL LR pair gene sets were 1228 
analyzed by the MAGMA for enrichment across several GWAS (Fig. 4C). We generated a 1229 
network diagram to highlight the top-ranked three AD and CTRL CCI in our gene set (Fig. 4D).  1230 

To investigate the biological processes AD-relevant CCI are involved in, we performed a 1231 
gene set enrichment analysis using the cell2cell (98) package and the human Gene Ontology 1232 
Biological Processes 2023 reference (99, 100) The AD-relevant CCI gene set was constructed 1233 
in the same way as the MAGMA analysis gene set. We aggregated these CCI by the sender and 1234 
receiver subtype to improve statistical power, and then computed normalized enrichment 1235 
scores for each process based on our AD-relevant LR pair gene set. We prioritized processes 1236 
that pass the 0.05 FDR significance threshold (Fig. 4E). 1237 

 1238 
Analysis of genetic heritability of AD polygenic risk 1239 

We established a standardized pipeline for Multi-marker Analysis of GenoMic Annotation 1240 
(MAGMA) followed by single-cell Disease-Relevance Scoring (scDRS). MAGMA incorporates the 1241 
association p-values of genetic variants from the latest AD genome-wide association study 1242 
(GWAS)(8). We applied MAGMA using a standard window of 35 kbp upstream and 10 kbp 1243 
downstream around the gene body. We executed scDRS using the top 1000 gene weights, 1244 
sorted by Z score. The MAGMA and scDRS pipeline was run separately on FreshMG and 1245 
PsychAD single-cell cohorts using the following parameters. MAGMA was run using -snp-loc 1246 
g1000_eur.bim (SNP location file corresponding to the Phase 3 1000 Genome Project) and -1247 
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-gene-loc NCBI38.gene.loc (gene location file from NCBI build 38). Both files were 1248 
obtained from https://ctg.cncr.nl/software/magma. 1249 

To justify the use of the top 1000 genes for scDRS, genes were sorted by MAGMA z-score 1250 
and top 200, 500, and 1000 genes were used for testing the concordance between cohorts in 1251 
subsequent scDRS analysis. scDRS command scdrs.preprocess was run with the default 1252 
parameters of n_mean_bin=20, n_var_bin=20w, while scdrs.score_cell was run using 1253 
n_ctrl=100. Best concordance between FreshMG and PsychAD cohorts of average scDRS 1254 
scores (per myeloids subtype) was achieved using top 1000 genes (Pearson’s R of top n 1255 
MAGMA genes; n = 200 was 0.85, n = 500 was 0.94, n = 1000 was 0.97, hence we proceeded 1256 
with the analysis using top 1000 MAGMA genes). 1257 

We tested the following GWAS summary stats in scDRS/MAGMA pipeline: AD (8), MS (101), 1258 
PD (102), MDD (103), ASD (104), BD (105), SCZ (106) and ALS (107). The scDRS scores were 1259 
highly reproducible between the FreshMG and PsychAD cohorts, with AD having the greatest 1260 
correlation (r = 0.97), followed by MS (r = 0.92), PD (r = 0.83), MDD (r = 0.79), ASD (r = 0.71) 1261 
and ALS (r = 0.66). The lowest correlation was noted for BD (r = 0.60) and SCZ (r = 0.42), both 1262 
of which are neuropsychiatric diseases. This emphasized a high reproducibility of myeloid cell 1263 
heritability estimates in AD, MS, and PD, all of which are neurodegenerative diseases with 1264 
progressive damage to neuronal cell types, and whose primary pathogenic mechanisms 1265 
involve non-neuronal cells, including microglia and PVM. Neuropsychiatric diseases such as 1266 
SCZ and BD, whose primary risks are enriched in synaptic dysfunctions of neurons, had lower 1267 
correlations (Supplementary Fig. S3C). Per cluster association z-scores (scDRS assoc_mcz) 1268 
were obtained using scdrs.method.downstream_group_analysis function. Stouffer's 1269 
method for meta-analysis was used to combine FreshMG and PsychAD scDRS association z-1270 
scores using the number of cells per cell cluster as cluster weights. For each cohort, scDRS 1271 
permutation p-values per cluster were combined using Stouffer’s method on p-values with 1272 
weights (cell counts of clusters). Meta p-values were further corrected for multiple testing using 1273 
FDR correction (both per cell type and using all cell types combined). A more stringent 1274 
correction was achieved using the per-cell type method hence we applied this correction. 1275 

 1276 
Case-control residual analysis of heritability estimates 1277 

To test for concordance in heritability estimates, we separated cases and controls and 1278 
repeated MAGMA/scDRS pipe for both FreshMG and PsychAD single-cell cohorts. We 1279 
calculated meta z-scores for cases and controls separately using Stouffer's method with 1280 
weights (cluster’s cell counts). We correlated meta-z-scores of cases and controls using linear 1281 
regression and derived residuals as a deviation from the regression line, indicative of per-cell 1282 
cluster heritability. For both cohorts, per-cell pseudotime scores were correlated with per-cell 1283 
scDRS scores for every microglia subtype and the correlation coefficient was calculated using 1284 
Spearman’s test. FreshMG and PsychAD coefficients were combined in a meta value by 1285 
applying Stouffer’s method and the number of cells per cell cluster as cluster weights.  1286 
 1287 
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Processing of genotypes 1288 
The FreshMG cohort genotype data consisted of samples from the Mount Sinai and Rush 1289 

brain banks, as has been previously described(9). The PsychAD cohort genotype data 1290 
consisted of samples from the Mount Sinai brain bank. For both cohorts, DNA extraction and 1291 
genotyping were performed as described previously(9). In brief, genomic DNA was extracted 1292 
from buffy coat or frozen brain tissue using the QIAamp DNA Mini Kit (Qiagen), according to 1293 
the manufacturer's instructions. Samples were genotyped using the Infinium Psych Chip Array 1294 
(Illumina) at the Mount Sinai Sequencing Core. Pre-imputation processing consisted of running 1295 
the quality control script HRC-1000G-check-bim.pl from the McCarthy Lab Group 1296 
(https://www.well.ox.ac.uk/~wrayner/tools/), using the Trans-Omics for Precision Medicine 1297 
(TOPMed) reference(108). Genotypes were then phased and imputed on the TOPMed 1298 
Imputation Server (https://imputation.biodatacatalyst.nhlbi.nih.gov). Samples with a mismatch 1299 
between one’s self-reported and genetically inferred sex, suspected sex chromosome 1300 
aneuploidies, high relatedness as defined by the KING kinship coefficient (109) (KING > 0.177), 1301 
and outlier heterozygosity (+/- 3SD from mean) were removed. Additionally, samples with a 1302 
sample-level missingness > 0.05 were removed and calculated within a subset of high-quality 1303 
variants (variant-level missingness ≤ 0.02).  1304 

Samples of European (EUR) ancestry, as defined by assignment to the EUR 1305 
superpopulation described by the 1000 Genomes Project (110, 111), were isolated using a 3SD 1306 
ellipsoid method. Genotypes were first merged with GRCh38 v2a 1000 Genomes Project data 1307 
(https://wellcomeopenresearch.org/articles/4-50)(111) using BCFtools version 1.9 (112). PLINK 1308 
2.0 (113) was then used to calculate the merged genotypes’ principal components (PCs), 1309 
following filtering (minor allele frequency (MAF) ≥ 0.01, Hardy-Weinberg equilibrium (HWE) p-1310 
value ≥ 1 × 10−10, variant-level missingness ≤ 0.01, regions with high linkage disequilibrium (LD) 1311 
removed) and LD pruning (window size = 1000 kb, step size = 10, r2 = 0.2) steps. An ellipsoid 1312 
with a radius of 3SD, corresponding to the 1000 Genomes Project EUR superpopulation, was 1313 
constructed using the first three genotype PCs. Only samples that fell within this ellipsoid 1314 
(FreshMG: n = 178, PsychAD: n = 759) were retained for subsequent variant-level filtering. 1315 
Autosomal bi-allelic variants with an imputation R2 > 0.8, HWE p-value ≥ 1 × 10−6, and variant-1316 
level missingness ≤ 0.02 were retained. Genotypes were then annotated with ancestry-specific 1317 
MAF values from the National Center for Biotechnology Information’s Allele Frequency 1318 
Aggregator (ALFA) (https://ftp.ncbi.nih.gov/snp/population_frequency/latest_release/). Only 1319 
variants with an ancestry-specific ALFA MAF ≥ 0.01 (FreshMG: n = 10,828,658, PsychAD: n = 1320 
18,490,352) were retained. 1321 

 1322 
PRS calculation 1323 

Polygenic risk scores (PRS) were calculated on the FreshMG and PsychAD cohort samples 1324 
using AD GWAS summary statistics (8). The PRS-CS-auto method (114) was used to apply 1325 
continuous shrinkage priors to the effect sizes from these summary statistics. A EUR LD 1326 
reference panel provided by the developers of PRS-CS was utilized 1327 
(https://github.com/getian107/PRScs), which draws from 1000 Genomes Project data (111). 1328 
The following PRS-CS default settings were used: parameter a in the γ-γ prior = 1, parameter b 1329 
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in the γ-γ prior = 0.5, MCMC iterations = 1000, number of burn-in iterations = 500, and thinning 1330 
of the Markov chain factor = 5. The global shrinkage parameter phi was set using a fully 1331 
Bayesian determination method. Individual-level PRS were calculated using PLINK 2.0 (113). 1332 
 1333 
Transcriptional variation with PRS 1334 

PRS analysis was performed using the dreamlet package (v0.99) that applies a linear 1335 
mixed model with precision weights to fit a regression model. Instead of applying a fixed 1336 
contrast between two coefficients, we used AD polygenic risk scores (PRS) as a continuous 1337 
variable to test for the presence of non-linear effects on variance. We subtracted admixed 1338 
donors from this analysis using the PCA analysis of the first 5 genotype PCs (2 individuals were 1339 
removed from PsychAD and 1 from the FreshMG cohort as clear outliers in the PCA plots). In 1340 
addition, we removed a cluster of 200 individuals that were clustering separately on the 1341 
PC1/PC2 plot in psychAD as admixed individuals with a percentage of a non-EUR ancestry 1342 
ranging from 2.5%-10% (mainly AFR ancestry). Similarly, we removed 6 more donors from 1343 
FreshMG that were outliers and showed decreased EUR and increased AFR ancestry. The 1344 
removal of admixed individuals allowed us to achieve a high level of concordance in Dreamlet 1345 
PRS analysis between FreshMG and PsychAD cohorts. For the PsychAD cohort, we 1346 
considered the following covariates to model the variance: source, log(n_counts), PMI, age, 1347 
AD_Bellenguez PRS, sex, dx, genotype PCs 1-5. For the FreshMG cohort, we used the same 1348 
set of covariates, in addition to the sequencing batch as a covariate. We further performed a 1349 
fixed-effect meta-analysis with the R metafor package using effect sizes and standard error 1350 
from the dreamlet output (metafor rma function with parameters: yi = logFC, sei = 1351 
logFC / t, method = "FE"). Meta p-values were further corrected for multiple testing 1352 
using FDR correction (using the per-cell type correction). 1353 

To test whether the observed cell proportions change with PRS as a continuous variable, 1354 
we applied the crumblr R package to each cohort and performed analysis of count ratio data 1355 
with precision-weighted linear mixed models. Similar to the Dreamlet analysis, we modeled 1356 
PRS as a continuous variable and tested for non-linear effects. FreshMG and PsychAD effect 1357 
sizes were combined in a meta value using Stouffer’s method and the number of cells per cell 1358 
cluster as cluster weights. 1359 

  1360 
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Supplementary Information 1361 

Assessment of ex-vivo activation in Microglia 1362 
Microglia are highly reactive cells and prolonged exposure to non-physiological conditions 1363 

could induce unintended responses (115, 116). It has previously been shown that enzymatic 1364 
dissociation of brain tissue performed at elevated temperatures can stimulate microglial cells, 1365 
termed ex-vivo activated microglia (exAM)(17, 79, 117). Failing to account for dissociation-1366 
induced changes can compromise the interpretation of microglial biology (118). Although 1367 
artificially induced, we wondered if the proportion of exAM might reflect microglial reactivity to 1368 
pathological lesions and, as such, could provide valuable insights into disease mechanisms. In 1369 
this study, we are uniquely positioned to interrogate the impact of exAM as myeloids from the 1370 
FreshMG cohort were isolated via enzymatic dissociation at 37˚C while samples from the 1371 
PsychAD cohort, consisting of flash frozen tissue, were processed using an ice-cold, enzyme 1372 
free, dissociation buffer. Assessing the extent and prevalence of the exAM signature in our 1373 
datasets, we observed a distinct subtype in the FreshMG dataset, called MG_exAM_ERN1, 1374 
which accounts for about 14.8% of all myeloid cells, and shows up-regulation of genes 1375 
implicated in cell-cell adhesion, including ERN1, PLK2 (serine/threonine-protein kinase), 1376 
CSKMT, and SNHG5. Notably, PLK2 is an enzyme regulating synaptic activity and has been 1377 
implicated in stimulating Aβ production (119, 120). We note that the PsychAD dataset had very 1378 
few cells identified as the ERN1 subtype, which belongs to the exAM subclass. This result 1379 
suggests a number of possibilities. Given that the transcripts in the PsychAD dataset originate 1380 
from the nuclear fraction of frozen nuclei and are free from enzymatic treatment or dissociation 1381 
bias, it’s possible that the exAM cluster is predominantly derived from fresh tissue and is 1382 
artificially induced during processing (17). In addition, the transcripts that define the ERN1 1383 
subtype may be predominantly cytoplasmic and are, thus, missing from the PsychAD samples. 1384 
Moreover, we acknowledge that we observe a substantial compositional variation among three 1385 
different cohorts. However, to properly assess the extent of compositional variation, we need 1386 
to model this by accounting for various technical effects, including the dissection bias. In 1387 
conclusion, this comparative analysis confirmed the robustness of the human microglial 1388 
taxonomy, independent of tissue source, agonal state, and postmortem interval (PMI). 1389 

 1390 
Disease trajectory of human myeloid cells 1391 

Understanding the dynamic changes that take place during the onset and progression of 1392 
AD at a molecular-level requires modeling of gene expression change along the measures of 1393 
disease progression and identifying corresponding putative drivers. Analyses solely based on 1394 
donor-level clinical covariate, such as CERAD scores or Braak staging, are limited due to the 1395 
discrete nature of these variables. However, we reasoned that each labeled disease stage 1396 
contains observations spanning the range of disease development and sought to identify 1397 
drivers and order cells along a disease pseudotime trajectory. 1398 

Trajectory inference allows us to expand our ability to describe molecular changes at 1399 
single-cell resolution. Trajectory inference methods have been remarkably successful in 1400 
describing normal developmental processes faithfully and identifying regulatory mechanisms 1401 
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based on single-cell sequencing data (90, 121, 122). Classical pseudotime algorithms order 1402 
cells along a developmental axis, with early and late cells being assigned low and high 1403 
pseudotime values, respectively. To take advantage of advances in experimental design and 1404 
different sources of information, alternative methods have been developed. To link 1405 
observations across experimental time points, optimal transport-based solutions have been 1406 
proposed to assign each measurement from one experimental time point its likely future state 1407 
in the following via a probabilistic assignment in the form of transport maps (29, 123). These 1408 
couplings can then be used to quantify cellular change and determine the fate and putative 1409 
drivers using CellRank 2’s RealTimeKernel (30). Using it together with and GPCCA estimator 1410 
(30, 89), we automatically inferred the terminal states of the disease dynamics. As AD onset 1411 
and progression do not result in the emergence or disappearance of novel cell types, we 1412 
expected to recover the major subclasses of the data, i.e., adaptive, homeostatic, ADAM, or 1413 
PVM. In concordance with this ground truth, we recovered the terminal states accordingly and 1414 
observed a high terminal state purity defined by the fraction of cells with the correct cell type 1415 
and Braak stage six (terminal state purity was 1.0 for all subclasses used). Following, we 1416 
computed driver genes of these respective fates by correlating gene expression with fate 1417 
probabilities (Methods). We replicated the same analysis using the PsychAD and observed 1418 
high concordance between the correlations between gene expression and fate probabilities 1419 
associated with each gene (Supplementary Fig. S5I). While CellRank 2 identifies putative 1420 
lineage drivers, it does not align cells along the disease trajectory. To construct this orthogonal 1421 
information, we used the transition matrix computed by the RealTimeKernel to compute a 1422 
Braak-stage-informed pseudotime for the two subsets of the data in a similar fashion as 1423 
previously proposed for experimental time points by the CellRank 2 study (30) (Methods). We 1424 
tested if the gene expression changes over pseudotime inferred on the FreshMG cohort agrees 1425 
with the corresponding change in the PsychAD dataset. As expected, the inferred change in 1426 
gene expression showed high concordance between the two independent cohorts for both 1427 
homeostatic and adaptive lineages (Supplementary Figs. S5J-K). 1428 
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Data availability 1430 

The single-cell dataset, clinical metadata, and analysis outputs are available via the AD 1431 
Knowledge Portal (https://adknowledgeportal.org). The AD Knowledge Portal is a platform for 1432 
accessing data, analyses, and tools generated by the Accelerating Medicines Partnership 1433 
(AMP-AD) Target Discovery Program and other National Institute on Aging (NIA)-supported 1434 
programs to enable open-science practices and accelerate translational learning. The data, 1435 
analyses, and tools are shared early in the research cycle without a publication embargo on 1436 
secondary use. Data is available for general research use according to the following 1437 
requirements for data access and data attribution 1438 
(https://adknowledgeportal.org/DataAccess/Instructions). For access to data described in this 1439 
manuscript see: https://www.synapse.org/#!Synapse:syn52795287. 1440 

Code availability 1441 

All the source codes used in this study are available via GitHub: 1442 
https://github.com/DiseaseNeuroGenomics/scMyeloidAD 1443 
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Supplementary Figure S1. (A) Demographic and clinical metadata of the FreshMG cohort. (B) 1478 
Demographic and clinical metadata of the PsychAD cohort. (C) Pairwise correlation of donor-1479 
level clinical variables. (D) Partition of gene expression variance using technical and donor-1480 
level covariates used in the study. (E) Schematic overview of the FreshMG single-cell data 1481 
processing. (F) Schematic overview of the PsychAD single-cell data processing. 1482 
 1483 
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 1485 
Supplementary Figure S2. (A) Pairwise Pearson correlation between FreshMG and PsychAD 1486 
myeloid subtypes. (B) Compositional differences of myeloid subtypes across independent 1487 
(LivingMG sourced from biopsy specimens and represents living brains) and published 1488 
datasets; Sun2023 (14), Dolan2023 (23), and Zhou2020 (27). (C) Compositional differences of 1489 
myeloid subclasses. (D) Pathway enrichment analysis of human myeloid subtypes using GO 1490 
biological process database. Subtype-specific genes were prioritized using Mann–Whitney U 1491 
tests of one-vs-the-rest subsets. 1492 
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 1493 
Supplementary Figure S3. (A) Enrichment of gene signatures from published studies. DAM: 1494 
disease-associated microglia, LDAM: lipid-droplet accumulating microglia, DIM: disease 1495 
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inflammatory macrophages, YAM: youth-associated microglia, iMGL: human stem-cell-1496 
differentiated microglia. 1497 
(B) Schematic overview of the scDRS and PRS methods for evaluating heritability of AD risk. 1498 
(C) Correlation of the scDRS scores between the FreshMG and PsychAD cohorts across 1499 
human brain disorders. (D) Comparison of myeloid subtypes to microglial states defined in Sun 1500 
et al. 2023 dataset. (E) Pairwise Pearson correlation between FreshMG and LivingMG myeloid 1501 
subtypes. (F) Pairwise Pearson correlation between FreshMG and Xenium myeloid subtypes. 1502 
(G) Pairwise Pearson correlation between FreshMG and Sun et al. 2023 myeloid subtypes. (H) 1503 
Pairwise Pearson correlation between FreshMG and Dolan et al. 2023 myeloid subtypes. (I) 1504 
Pairwise Pearson correlation between FreshMG and Zhou et al. 2020 myeloid subtypes. (J) 1505 
Annotation of the LivingMG (biopsies) dataset using the FreshMG as the reference annotation. 1506 
(K) Subtype-specific surface protein markers from the CITE-seq antibody derived tags (ADT). 1507 
 1508 
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 1509 
Supplementary Figure S4. (A) UMAP of myeloid subclasses and subtypes from the Xenium in 1510 
situ spatial transcriptomics dataset. (B) Representative slide of Xenium in situ spatial 1511 
transcriptomics data with zoomed in region of interest. Left: DAPI stain, Middle: laminar 1512 
distribution of neuronal cell types, Right: distribution of myeloid cells annotated by subclasses. 1513 
(C) Compositional variation of aging and AD phenotypes using Sun et al. 2023 dataset. (D) 1514 
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Covariate adjusted compositional variation with Braak staging using Sun et al. 2023 dataset. (E) 1515 
Comparison of compositional variation of dx_AD between this study and Sun et al. 2023. (F) 1516 
Correlation of scDRS z-scores between AD cases and controls. (G) Compositional variation of 1517 
PRS, side-by-side comparison between one using all donors and another using control donors 1518 
only. Weighted Pearson’s correlation using inverse of average of standard error as weights. 1519 
 1520 
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 1521 
Supplementary Figure S5. (A) Differentially expressed genes by myeloid subtypes associated 1522 
with disease-free aging. (B) Pathway enrichment analysis using the GO biological process 1523 
database for disease-free aging. (C) Pathway enrichment analysis using the GO biological 1524 
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process database for AD phenotypes. (D) Comparison of myeloid subtypes to homogenate 1525 
bulk RNA-seq expression stratified by AD diagnosis. (E) Schematic overview of the pseudotime 1526 
inference based on Braak staging. State transition matrix inferred using the optimal transport 1527 
algorithm (Moscot). (F) Spearman correlations between inferred disease pseudotime and 1528 
different measures of AD phenotypes. (G) Distribution of disease pseudotime between two 1529 
homeostatic subtypes. (H) Magnitude of changes in disease pseudotime between two adjacent 1530 
disease stages measured by Braak and CERAD. (I) Concordance of the putative drivers of two 1531 
fates (adaptive and homeostatic) between FreshMG and PsychAD cohorts. Putative drivers are 1532 
defined by correlating gene expression with fate probabilities. (J) Correlation between gene 1533 
expression change and inferred disease pseudotime showing the concordance of the 1534 
correlation between FreshMG and PsychAD cohorts for homeostatic and (K) adaptive lineages. 1535 
 1536 
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 1538 
Supplementary Figure S6. (A) Pathway enrichment analysis of KLF12, MITF, and GLIS3 1539 
regulons using GO biological process database. (B) Jaccard Index of SCENIC regulon target 1540 
genes. (C) PageRank centrality scores of the GRN nodes. (D) RT-qPCR of GPNMB and MITF 1541 
after CRISPR activation in HMC3 cell line. (E) Relative level of phagocytosis after CRISPR 1542 
activation in HMC3 cell line with or without the MITF pathway inhibitor ML329. 1543 
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 1545 
Supplementary Figure S7. (A) Schematic overview of the methods for inferring disease-1546 
associated CCI. (B) Differential CCI using 4 different measures of AD phenotypes; AD cases vs 1547 
controls (dx_AD), CERAD, Braak, and dementia. (C) Concordance of differential CCIs among 1548 
different measures of AD phenotypes. (D) Relative mRNA expression of GPNMB and MITF 1549 
measured by RT-qPCR for TREM2 knockouts. (E) Relative level of phagocytosis among WT, 1550 
TREM2 heterozygous, and homozygous knockouts in iPSC-derived microglia using Aβ, myelin, 1551 
and synaptic protein as substrates. (F) Relative mRNA expression of GPNMB and MITF 1552 
measured by RT-qPCR for high and low phagocytosing microglia using Aβ, myelin, and 1553 
synaptic protein as substrates. 1554 
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