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Abstract

Background: Myelin asymmetry ratios (MARs) relate and contribute to motor impairment and function after stroke. Physical
activity (PA) may induce myelin plasticity, potentially mitigating hemispheric myelin asymmetries that can occur after a stroke.

Objective: The aim of this study was to determine whether individuals with higher levels of PA showed lower MAR compared
to individuals with lower levels of PA.

Methods: Myelin water fraction was obtained from 5 bilateral motor regions in 22 individuals with chronic stroke and 26
healthy older adults. Activity levels were quantified with wrist accelerometers worn for a period of 72 hours (3 days). Higher
and lower PA levels were defined by a cluster analysis within each group.

Results: MAR was similar regardless of PA level within the older adult group. Compared to the higher PA stroke group, lower
PA stroke participants displayed greater MAR. There was no difference in MAR between the stroke and older adult higher PA
groups. Within the lower PA groups, individuals with stroke showed greater MAR compared to the older adults. Arm im-
pairment, lesion volume, age, time since stroke, and preferential arm use were not different between the PA stroke groups,
suggesting that motor impairment severity and extent of brain damage did not drive differences in PA.

Conclusion: Individuals who have had a stroke and are also physically active display lower MAR (i.e., similar myelin in both
hemispheres) in motor regions. High levels of PA may be neuroprotective and mitigate myelin asymmetries once a neurological
insult, such as a stroke, occurs. Alternately, it is possible that promoting high levels of PA after a stroke may reduce myelin
asymmetries.
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Introduction

Due to a reduction in mortality rates, there are an increasing
number of individuals living with long-term disabilities post-
stroke. Consequently, people with stroke have the highest
need for rehabilitation among neurological disorders
worldwide.1 Identifying effective interventions that optimize
recovery of motor function represents an important challenge
to improve quality of life after stroke.

Inducing myelin plasticity has become a viable therapeutic
target for improving recovery after stroke.2,3 White matter
plays a crucial role in the formation and function of neural
circuits4,5 and undergoes use-dependent plasticity in young6,7

and older8 adults. However, following a stroke, there is
considerable loss of myelin in both the contra- and
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ipsilesional hemispheres,9-11 which contributes to sensori-
motor deficits.2,9,12 Specifically, myelin asymmetry ratios
(MARs), calculated as a ratio of contralesional to ipsilesional
myelin water fraction, in the posterior limb of the internal
capsule are greater (e.g., >1 and therefore less symmetrical) in
individuals who have had a stroke compared with older adults.11

Additionally, there is a negative relationship between MAR in
the precentral gyrus9 and corticospinal tract13,14 and upper-
extremity motor impairment. Approaches that target and re-
duce MAR may also improve function after stroke.

Physical activity (PA) induces white matter plasticity. In
animal models, exercise increased myelin debris removal and
enhanced remyelination in chronic cerebral hypoperfusion
rats,15 and increased the rate of remyelination after a de-
myelinating injury.16 In older adults, there is a positive re-
lationship between white matter structure in the fornix,
temporal, and frontal brain regions and amount of PA.17,18

Further, aerobic exercise and resistance training increases
white matter volume in the prefrontal cortex19 and decreases
white matter lesion volume,20 respectively. Taken together,
PA appears to be a promising, cost-effective approach to
promote white matter plasticity in older adults. An open
question, however, is whether individuals who are more
physically active have more symmetrical MAR (i.e., values
close to 1). Yet, PA is often obtained through self-report
questionnaires, which are subjective and may not accurately
reflect real-world activity.21

The current study investigated MAR (contralesional/
ipsilesional or dominant/non-dominant hemispheres) from
five motor regions of interest (ROIs) in low and high
physically active individuals with chronic stroke
(>6 months) and older adults. Physical activity levels were
obtained using accelerometers which participants wore for
72 consecutive hours (3 days). We hypothesized that: (1)
individuals with stroke would display greater MAR (i.e., >1)
relative to older adults, and (2) individuals in the lower PA
stroke group would display greater MAR in motor ROIs
relative to individuals in the higher PA stroke group as well
as the older adult group.

Methods

Participants

Thirty individuals with chronic stroke (>6 months)22 were
recruited to participate in the study along with 27 older
healthy controls. All participants were between the ages of 40
and 85 and had no contraindications to magnetic resonance
imaging (MRI). Participants were excluded if they had a
history of head trauma, seizures, psychiatric diagnosis, or a
neurodegenerative or neurological disorder other than stroke.
Informed consent was obtained prior to the administration of
any experimental protocol. The Clinical Research Ethics
Board at the University of British Columbia approved all
protocols.

Experimental Design

Participants underwent MRI, and individuals with stroke
completed the upper-extremity portion of the Fugl-Meyer
(UE-FM)23 (seeMotor assessments below). Participants wore
accelerometers placed on their wrists for 3 consecutive days
(72 hours). It should be noted that the data presented here are
from the baseline portion of a larger, 10-day upper-extremity
study. To date, we have not published any of the acceler-
ometer or myelin water fraction data.

MRI Acquisition

MRI data were acquired on a 3.0 T Philips Achieva whole
body MRI (Philips Healthcare, Best, NL). Scans used an
eight-channel SENSE head coil and parallel imaging and
included: (1) 3D T1 turbo field echo (TE/TR = 3.6/7.4 ms, flip
angle θ = 6°, FOV = 256 × 256 mm2, 160 slices, 1 mm slice
thickness, scan time = 3.2 min); and (2) whole-cerebrum 32-
echo 3D Gradient and Spin Echo (GRASE) for T2 mea-
surement (TE/TR = 10/1000ms, echo times = 10-320 ms with
10 ms spacing, 20 slices acquired at 5 mm slice thickness, 40
slices reconstructed at 2.5 mm slice thickness (zero filled
interpolation), slice oversampling factor = 1.3 (26 slices were
actually acquired but only the central 20 were reconstructed),
in-plane voxel size = 1 × 1 mm2, SENSE = 2, 232 × 192
matrix, receiver bandwidth = 188 kHz, axial orientation,
acquisition time = 14.4 min).24 T1-weighted and GRASE
sequences were obtained in the same session.

MRI Pre-Processing

Using the 32-echo GRASE data, voxel-wise T2 distributions
were calculated using a non-negative least-squares algorithm
with the Extended Phase Graph algorithm and flip angle
optimization (in-house software developed at the University
of British Columbia using MATLAB R2010b, The Math-
Works, Inc.; analysis code can be requested here: https://
mriresearchWi.med.ubc.ca/news-projects/myelin-water-
fraction/).24,25 MWF was defined as the sum of the am-
plitudes within a short T2 signal (15–40 ms) divided by the
sum of the amplitudes for the total T2 distribution and voxel-
wise MWF maps were created for each participant.

Myelin Water Fraction Region of Interest Analysis

The first echo of the GRASE scan was linearly registered to
their respective T1 scans using FSL FLIRT.26 T1 scans were
then non-linearly registered (using FSL FNIRT) to 1 mm
MNI space. Transformation matrices were inverted to create a
warping field of MNI to GRASE space. This warp was used
to transform John Hopkins University International Con-
sortium of Brain Mapping (ICBM) DTI-81 white matter
ROIs27 to GRASE space. Mean MWF for each ROI in
GRASE space was extracted using FSL STATS. Stroke lesion
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Table 1. Demographic data of participants. Hem = hemisphere; TSS = time since stroke in months.

Participant ID Sex Age Activity level Lesion volume (Voxel) Stroke Hem TSS Fugl-Meyer score

Stroke 1 F 57 Low 1910 L 162 32
2 F 51 Low 8792 R 47 29
3 M 58 Low 31 282 L 96 59
4 M 72 High 261 R 49 50
5 M 71 High 208 R 117 59
6 M 77 High 52 L 32 58
7 F 70 Low 220 R 76 64
8 M 60 Low 34 024 R 188 31
9 M 73 Low 237 L 60 54
10 M 69 Low 268 L 66 25
11 F 37 High 1863 L 84 18
12 M 79 High 480 R 27 54
13 M 62 High 324 R 8 59
14 M 80 Low 738 R 40 62
15 F 78 High 74 R 28 64
16 M 75 Low 1051 L 41 65
17 M 59 Low 29 095 L 61 33
18 M 61 Low 1198 L 62 28
19 F 67 Low 44 L 94 52
20 F 74 Low 1588 R 19 39
21 M 51 Low 590 R 14 23
22 M 62 High 1254 L 6 62

Mean (SD) 7 F/15 M 65.6 (10.9) 8 H/14 L 5252.4 (10 841.6) 11 L/11 R 54.5 (44.7) 46.4 (16.0)

Older adults 1 M 67 High
2 M 72 Low
3 F 63 High
4 M 81 Low
5 F 58 High
6 F 74 High
7 F 62 High
8 F 62 High
9 F 61 Low
10 M 63 High
11 M 51 High
12 F 73 Low
13 F 67 High
14 M 75 Low
15 M 71 Low
16 F 65 High
17 F 77 Low
18 F 63 Low
19 M 61 Low
20 F 58 Low
21 M 68 High
22 M 58 Low
23 F 47 High
24 F 50 High
25 F 58 Low
26 F 73 High

Mean (SD) 16 F/10 M 64.5 (8.5) 14 H/12 L
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masks (created manually in T1 space) were used to assist with
registration and to subtract the stroke lesion from ROIs before
extracting MWF. Given their importance in motor recovery
and function after stroke,28-34 the following motor ROIs were
chosen a priori: anterior limb of internal capsule (ALIC),
cerebral peduncle (CP), posterior corona radiata (PCR),
posterior limb of the internal capsule (PLIC), and superior
corona radiata (SCR). MWF asymmetry ratio was calculated
for each ROI using the following equation

MAR ¼ MWF contralesional or dominant hemisphere

MWF ipsilesional or non� dominant hemisphere

Greater values correspond to a greater asymmetry skewed
toward the contralesional/dominant hemisphere for a given
ROI.

Activity Monitoring

Actical accelerometers (Phillips, Amsterdam, Netherlands)
were used to measure participants’ PA level. Accelerometers
were placed on the participants’ left and right wrists,35-39

and worn for 72 consecutive hours and were told to go about
their normal daily activities. The accelerometers are light-
weight, small (28 × 27 × 10 mm3), and waterproof. Arm
activity was sampled at 32 Hz and binned into 15 second
epochs. Movement occurring during each epoch was con-
verted from mechanical motion into an electrical signal
using the Actical Software package and stored as the in-
tensity of the activity performed during the interval of time
specified. Activity counts collected were averaged to de-
termine total activity (affected or unaffected for stroke, non-
dominant or dominant for older adults). Previously reported
findings have established high test-retest reliability (r > .86)
of accelerometers for measurement of arm activity in stroke,
with 72 consecutive hours (3 days) been validated as an
index of arm activity during normal daily activities in
chronic stroke.40,41

Motor Assessments

FM-UE was administered by trained physiotherapists and
was used to quantify upper-extremity impairment. The upper-
extremity portion of the Fugl-Meyer is out of a total of 66
points.23

Statistical Analysis

We performed cluster analyses to categorize participants into
either higher or lower PA levels. One advantage of a this
analysis is it allows the classification of similar observations
into clusters with high internal homogeneity and external
heterogeneity,42 yielding more informative and consistent
findings than median split methods.43,44 The variables en-
tered in the cluster analyses were averaged activity values

which were quantified from the accelerometers. The vari-
ables were as follows: the amount of wrist steps, percentage
of time spent in sedentary activity, percentage of time spent
in light activity, percentage of time spent in moderate ac-
tivity, and percentage of time spent in vigorous activity. We
allowed for a maximum of 10 iterations, with a convergence
criterion of 0.

Next, we performed a mixed repeated measures ANOVA.
We performed a 2 (Group: older adults and stroke) by 2
(Activity Level: high and low) by 5 (ROI: ALIC, CP, PCR,
PLIC, and SCR) by repeated measures ANOVA, with Group
and Activity Level as between-subjects variables and ROI as
a within-subject variable. Post hoc pairwise comparisons
were Sidak corrected.

To better understand what was driving group differences
between the higher and lower PA stroke groups, we per-
formed multiple one-way ANOVAs comparing FM-UE
scores, lesion volume, age, and time since stroke be-
tween the 2 physically active stroke groups. We also
performed a series of 2 Arm (Arm: contralesional and
ipsilesional) by 2 (Activity Level: high and low) repeated
measures ANOVAs comparing each PA metric used in the
cluster analysis (steps, percentage in sedentary, light, and
moderate activity).

Finally, to understand brain structure and arm function
relationships, we also conducted exploratory analyses using
multiple Spearman bivariate correlations between MAR and
asymmetry ratios of wrist steps (e.g., contralesional or
dominant wrist/ipsilesional or non-dominant wrist) by
pooling the data from all participants in the stroke and older
adult groups. Because previous work has demonstrated a
relationship between myelin and age,9 correlation analyses of
MARwithin each ROI and age were first conducted and ROIs
that were significantly correlated with age were removed
from further analyses to avoid spurious correlations. Due to
the exploratory nature of this analysis, we did not correct for
multiple comparisons.

All variables were tested for normality using the Shapiro–
Wilk test (P < .01).45 If normality was violated, variables were
natural log transformed or outliers were removed. All sta-
tistical analyses were carried out using SPSS version 23 (IBM
Corp).

Results

We could not extract MWF values from 5 stroke participants
due to registration issues in FSL (involving registration is-
sues of T1 to MNI or MNI to GRASE space). Three addi-
tional participants were excluded (2 stroke and 1 older adult)
due to incomplete wrist accelerometry data and 1 participant
was excluded from the lower PA stroke group due to an
extreme PLIC MAR (>3 SD). Therefore, the statistical an-
alyses included 22 stroke participants and 26 older adults.
All participant demographic characteristics are presented in
Table 1.
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Cluster Analysis

Cluster analysis revealed 14 older adults with higher and 12
with lower PA levels, respectively. In contrast, there were 8
individuals in the stroke group classified as having higher PA
levels and 14 individuals in the stroke group classified as
having lower PA levels (Table 2).

Myelin Water Fraction Asymmetry Ratios

Ipsi-/non-dominant and contralesional/dominant myelin
water fraction values can be viewed in Supplementary Table
1. The mixed repeated measures ANOVA revealed a main
effect of Group (F(1,44) = 18.080, P < .001, ηp

2 = .29) with
greater MAR for the stroke group (M = 1.152, SE ± .028)
relative to the older adults (M = .991, SE ± .025;
Supplementary Figure 1). There was also a main effect of
Physical Activity Level (F(1,44) = 6.203, P = .017, ηp

2 = .12)
with individuals in the low PA group showing greater MAR
(M = 1.119, SE ± .025) relative to the high PA group (M =
1.024, SE ± .033; Supplementary Figure 2).

There was also a Group by Physical Activity Level inter-
action (F(1,44) = 4.854, P = .033, ηp

2 = .10) driven by a lack of
difference between older adults in the low PA level (M = .997,
SE ± .043) and the high PA level group (P = .691; M = .986, SE
± .039), while individuals who had a stroke in the low PA group
displayed significantly greater MAR (M = 1.241, SE ± .034)
compared to individuals who had a stroke in the high PA group
(P = .032; M = 1.063, SE ± .045; Figure 1). Importantly, within
the high PA group, there was no significant difference between
individuals with stroke and older adults (P = .122), whereas
within the low physical active group, individuals with stroke
displayed a significantly greater MAR compared to the older
adults (P <.001; Figure 1).

Finally, to understand how time since stroke and motor
impairment as measured by the Fugl-Meyer impacts MAR,
we performed 3 separate mixed repeated measures ANOVAs
limited to the stroke group. We used the same 5 ROIs as the
within-subjects factor and Physical Activity Level (high and
low) as the between-subject factor. In each of the 3 analyses,
we used time since stroke, FM score, or time since stroke and
FM score as a covariate, respectively. We found no main
effect of physical activity level emerge when using time since
stroke (P = .071), logged FM score (P = .059), or using both

time since stroke and logged FM score (P = .097) as co-
variates. It should be noted that while there is no longer a
difference between the 2 stroke groups, our main comparison
is between the older adult group and those with high and low
PA levels in the stroke group.

High and Low Physical Activity Stroke Groups

There was no main effect of ROI (F(4,176) = .194, P = .941,
ηp

2 < .01), and no ROI by Group (F(4,176) = 2.235, P = .067,
ηp

2 = .05), ROI by Physical Activity Level (F(4,176) = .466,
P = .761, ηp

2 = .01), and ROI by Group by Physical Activity
Level (F(4,176) = .400, P = .809, ηp

2 = .01) interactions.
There was no difference between logged UE-FM scores

(F(1,20) = .730, P = .403), logged lesion volume (F(1,20) =
3.901, P = .062), age (F(1,20) = .221, P = .643), or time since
stroke (F(1,20) = 2.088, P = .403) between the high and low
physically active stroke groups.

Table 2. Wrist accelerometry data averaged across arms across 3 days. Values are presented as mean (SD).

Older adults Stroke

High (n = 14) Low (n = 12) High (n = 8) Low (n = 14)

Steps number 19 839.1 (5910.6) 9959.0 (2549.7) 16 225.7 (2893.8) 7000.2 (2332.9)
Sedentary 49.6% (7.3) 65.6% (7.2) 56.5% (4.4) 70.7% (7.4)
Light 21.3% (4.4) 18.4% (4.3) 21.2% (2.5) 18.7% (5.1)
Moderate 28.5% (6.4) 16.0% (4.5) 22.0% (3.1) 10.6% (3.5)
Vigorous .6% (.7) .0% (.1) .3% (.6) .0% (.0)

Figure 1. Mean myelin asymmetry ratios (MARs) for physical
activity (PA) group in individuals who have had a stroke and older
adults. There was a significant group by PA level interaction (P =
.031). The low PA stroke group had greater MAR compared to the
high PA stroke group (P = .032). There was no difference between
the PA groups within older adults (P = .691). Within the high PA
group there was no difference between the stroke and older adult
group (P = .122), whereas within the low PA group, stroke had an
overall greater MAR compared to older adults (P < .001). Error
bars represent standard error. Circles represent individual
datapoints.
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To understand which arm (ipsilesional or contralesional)
drove the overall difference between the 2 PA level stroke
groups, we completed a series of post hoc repeated measures
ANOVAs. There was no Arm by Activity Level interactions
for number of wrist steps (F(1,20) = .312, P = .583), percent
time spent in sedentary activity (F(1,20) = .696, P = .414),
percent time spent in light activity (F(1,20) = .035, P = .853),
and percent time spent in moderate activity (F(1,20) = 1.658,
P = .213). Because there were only 4 and 3 non-zero values
for percent time spent in vigorous activity for the contrale-
sional and ipsilesional wrist, respectively, we did not com-
plete a test for this metric. Therefore, the high and low
physically active groups were using both arms equally.

Bivariate correlations of MAR and asymmetry of wrist
use across all participants (stroke and older adults)

MAR in the CP ROI was significantly related to age, so it was
excluded from the exploratory, bivariate analysis. We ob-
served a significant relationship emerge between the wrist
steps asymmetry ratios and MAR in the ALIC (rs = .45, P =
.001, n = 48), PCR (rs = .35, P = .016, n = 48), and SCR (rs =
.31, P = .033, n = 48). MARs in the PLIC were not related to
wrist asymmetry ratios (rs = .09, P = .561, n = 48).

Discussion

Our data suggest that physical activity levels may affect
patterns of myelination after stroke. Stroke damages white
matter,9-11 which has a negative impact on motor recovery11

and contributes to motor impairment.9 Here, individuals in
the high PA stroke group had comparable MAR to that noted
in older adults. In contrast, individuals in the low PA stroke
group showed greater MAR relative to older adults. These
differences were not related to arm motor impairment, age,
lesion volume, time since stroke, or preferential arm use all of
which did not differ between the high and low PA stroke
groups. This suggests that motor impairment was not a barrier
to being more physically active, and that individuals who
engaged in low levels of PA have the capacity to be more
active. Further, in three ROIs (ALIC, PCR, and SCR), MAR
was positively related to wrist use across all participants, with
those having greater MAR also displaying greater asymmetry
in arm use. Taken together these results suggest that PA serves
to mitigate MAR and that maintaining high levels of PA is
associated with a normative range of MAR after stroke.

Findings from the current study provide a foundation for
future work. Our data raise the question: when (if at all) will
engaging in high levels of PA mitigate the negative impact
of a stroke on MAR? After stroke, the central nervous
system is in a period of heightened plasticity with syn-
aptogenesis,46 distal dendritic growth,47 and turnover of
dendritic spines and vascular axonal remodeling.48 Inter-
estingly, exercise enhances the rate of remyelination im-
mediately following a demyelinating insult in mice.16

Therefore, it seems reasonable that engaging in high
levels of PA can exploit the period of heightened plasticity
following stroke which may mitigate the negative impact of
stroke on myelin. Additional research is required to better
understand the how PA linked to myelination change across
phases of stroke recovery.

Our findings also support the idea that engaging in high
levels of PA may be neuroprotective. Animal model studies
have demonstrated a myriad of plausible mechanisms in
which PA is neuroprotective.49 It is possible that individuals
in the high PA group were also physically active prior to their
stroke, which in turn may have mitigated the negative effects
of brain damage on MAR. Data from the older adults may
also elucidate this neuroprotective process. MAR did not
differ between the high and low PA older adult groups,
suggesting that while engaging in high levels of PA is
neuroprotective, it may be that only once a neurological insult
occurs (e.g., advanced aging and stroke) that the benefits of
PA are evident. Furthermore, maintenance of high levels of
PA after brain injury may serve to sustain this neuroprotective
benefit. Longitudinal databases that include MRI and PA
measures might be used to test this neuroprotection
hypothesis.

White matter projection fibers such as the corona
radiata,34,50 PLIC,28,33,34 ALIC,33 and the cerebral peduncles
(CP)31 play an integral role in upper-extremity motor re-
covery after stroke. While we did not observe a main effect or
interaction involving ROI, the exploratory correlations re-
vealed positive associations between asymmetry in arm use
and MAR limited to ALIC, PCR, and SCR across all par-
ticipants (i.e., stroke and older adults). Unlike the CP and
PLIC, which are strictly motoric projection tracts, the
ALIC,51 SCR, and PCR52 have been implicated in both
cognitive and motor function. Anatomically, ALIC and the
corona radiata carry thalamic and brainstem fibers from
prefrontal and parietal cortices.53 It may be that projection
tracts that subserve cognitive-motor functions may be more
susceptible to change and/or influenced by PA compared
with strictly motoric projection tracts. For example, in older
adults, exercise increased white matter volume in the pre-
frontal cortex19 and in the corona radiata54; and individuals
that reported higher levels of PA displayed greater white
matter in the ALIC.55

The lack of a difference between the high and low PA
stroke groups in terms of arm motor impairment, number of
steps, and percentage of time spent in each activity level for
each arm was unexpected. Previous work found that MARs in
the precentral gyrus9 and the corticospinal tract13,14 relate to
arm motor impairment in stroke. Based on these previous
findings, we expected to observe an arm impairment dif-
ference between the low and high PA stroke groups that also
showed high and low MARs, respectively. The lack of dif-
ference may be due to our methodological approach. We used
five ROIs, encompassing various motor regions, whereas
previous research has solely focused on the corticospinal
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tract. It is possible that the addition of other motor regions
such as the posterior and superior corona radiata, which have
reciprocal connections to other cortical regions such as the
primary auditory cortex and the visual cortex,56 may account
for this difference.

This study had several limitations. Since it was a cross-
sectional study, it is currently unknown when PA contributes,
and is most impactful, to mitigating MAR after stroke. This
makes it difficult to form precise recommendations as to
when to prescribe exercise. Second, while we followed
recommendations and collected physical activity over the
course of 72 hours (3 days),57,58 a longer duration (e.g.,
7 days) would have likely been more accurate. Additionally,
the cluster analysis resulted in a smaller sample for the high
PA stroke group. While we acknowledge this is a limitation of
using a cluster analysis, a median split would have resulted in
less informative and inconsistent findings.43,44 Future studies
should consider recruiting larger samples sizes including
more physically active stroke participants to understand
whether the same pattern of results is still present in a larger
population.

In conclusion, we found that after stroke, individuals who
are more physically active have less myelin asymmetry in
brain regions known to support movement. This finding was
not a result of preferential arm use or differences in motor
impairment between people with stroke who engaged in low
vs high levels of physical activity. Our data support the
beneficial role of physical activity for brain health, especially
following stroke.
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