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ABSTRACT: Prokaryotic regulatory proteins respond to diverse signals
and represent a rich resource for building synthetic sensors and circuits. The
TetR family contains >105 members that use a simple mechanism to
respond to stimuli and bind distinct DNA operators. We present a platform
that enables the transfer of these regulators to mammalian cells, which is
demonstrated using human embryonic kidney (HEK293) and Chinese
hamster ovary (CHO) cells. The repressors are modified to include nuclear
localization signals (NLS) and responsive promoters are built by
incorporating multiple operators. Activators are also constructed by
modifying the protein to include a VP16 domain. Together, this approach
yields 15 new regulators that demonstrate 19- to 551-fold induction and
retain both the low levels of crosstalk in DNA binding specificity observed
between the parent regulators in Escherichia coli, as well as their dynamic range of activity. By taking advantage of the DAPG
small molecule sensing mediated by the PhlF repressor, we introduce a new inducible system with 50-fold induction and a
threshold of 0.9 μM DAPG, which is comparable to the classic Dox-induced TetR system. A set of NOT gates is constructed
from the new repressors and their response function quantified. Finally, the Dox- and DAPG- inducible systems and two new
activators are used to build a synthetic enhancer (fuzzy AND gate), requiring the coordination of 5 transcription factors
organized into two layers. This work introduces a generic approach for the development of mammalian genetic sensors and
circuits to populate a toolbox that can be applied to diverse applications from biomanufacturing to living therapeutics.
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Realizing the potential of engineering mammalian cells requires
the predictable construction of synthetic sensors and circuits. In
the clinic, cell-based therapies could function to integrate
physiological markers, migrate to a disease location, and
execute a multistep treatment.1−4 Cells involved in the
manufacturing of biologics, such as the workhorse Chinese
hamster ovary (CHO) cell line, could be engineered to respond
to inducers that stage a multistep production process.5−7 Other
applications include the programmable spatial organization
needed for artificial organs and regenerative medicine,
responsive living prosthetics (e.g., sensing blood glucose and
controlling insulin production), and high-throughput drug
screens based on readouts of cell state.1,8,9 These advanced
applications require circuitry that encodes signal processing and
control algorithms, the implementation of which requires more
regulatory parts than are currently available.2,4 While the
number of such parts for prokaryotes has exploded,10 there is
currently a lag in building the analogous toolboxes for
mammalian circuit design.11

In prokaryotes, TetR transcriptional repressors constitute
one of the most abundant and plastic family of regulators.12,13

These repressors consist of a single protein that contains both

small molecule sensing and DNA-binding domains. Over
200 000 TetR homologues have been sequenced that are
representative of a wide range of sensing and DNA binding
specificities. To date, sensing domains have been characterized
that respond to >60 ligands, including antibiotics, metabolites,
hormones, cell−cell signaling molecules, and metals.13 In the
absence of its ligand, TetR forms a dimer that strongly binds to
the TetR operator sequence (tetO). In the presence of ligand,
the dimer is disrupted, TetR dissociates from the DNA, and
gene expression is activated. The DNA-binding domains of
different repressors bind unique 17−30 bp sequences, and it
has been shown that these are highly orthogonal, with few off-
target interactions between noncognate operators.14 Thus, this
family provides a rich resource for mining ligand- and DNA-
binding domains to build synthetic sensors and circuits.
The most common method for inducing mammalian gene

expression is based on the TetR repressor, whose ligand is the
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antibiotic tetracycline.15,16 In mammalian cells, TetR can be
used as both a repressor, or converted into an activator by
fusing it to the transactivation domain from virion protein 16 of
the Herpes simplex virus (VP16),17 which recruits RNA
polymerase (RNAP). Multiple copies of tetO are placed
upstream of the minimal CMV promoter (referred to as a
Tetracycline Response Element or TRE), and in this fashion,
reporter expression is activated when TetR is bound to the
TRE, and becomes inactivated upon the addition of
doxycycline (this system is referred to as “Tet-Off”). A “Tet-
On” system has also been developed, whereby reporter
expression is activated upon addition of doxycycline; this
behavior is mediated by the reverse TetR transcription factor
(rtTA).18 In both cases, the VP16 domain recruits RNA
polymerase (RNAP) when TetR is bound to a synthetic, TRE-
containing promoter. These switches typically have low basal
expression, exhibit a large dynamic range (from 10 to several
thousand-fold induction), and have been shown to function in a
wide range of tissue culture systems, including embryonic stem
cells,19,20 CHO,21 HEK,22 HeLa,23 and MCF-724 cells, as well
as in living animals.25

Homologues of TetR have been used to build synthetic gene
switches for various applications,2,26 and switches responding to
other antibiotics, including erythromycin (MphR)27 and
pristinamycin (Pip)28 have also been constructed. To expand
upon the available inducible systems, sensors that respond to
other small molecules (cumate, CymR29) have been developed,
including some that can be delivered to cells in gas form
(acetaldehyde, AlcR;30 6-hydroxy-nicotine, HdnoR31). Quorum
sensing systems involved in cell−cell communication have been
ported from Streptomyces (ScbR and SpbR),32 Agrobacterium
(TraR),32,33 and Vibrio f ischeri (LuxR).34 These sensors have
largely been developed for research purposes or in the context
of a bioreactor. For clinical uses in patients, switches have been
built that respond to nontoxic molecules, including amino acids
(arginine, ArgR;35 tryptophan, TrpR36), food additives and
metabolites (vanillic acid, VanR;37 phlorectin, TtgR38), and
vitamins (biotin,39 BirA40) . Beyond cell cultures, many of these
switches have been demonstrated to function in living animals,
including mice.27 In one compelling application, a uric acid
(HucR) sensing circuit was constructed as part of a feedback
mechanism to maintain blood urate homeostasis, the disruption
of which can lead to gout.41 Furthermore, a sensor that reacts
to the inactivation of antituberculosis compounds (EthR),42

which serves as an application for drug discovery, has also been
constructed.
Of the many synthetic mammalian circuits that have been

built using TetR and its homologues,43 several of the resulting
genetic switches and cascades based on these regulators exhibit
ultrasensitivity and bistability.44−47 To build more sophisticated
functions, logic operations such as inverters and 2-input
Boolean gates have been layered together to generate
feedforward circuits,48 half adders (and subtractors),49 2-input
decoders,50 and a cell type classifier.51 Dynamic circuits have
also been constructed, including time delays and oscilla-
tors.40,52−54 Furthermore, channels for cell−cell communica-
tion have also been developed where the sender signal (which
consists of a metabolic pathway) produces the signaling
molecule and the receiver acts as the signal sensor.40,55,56 To
date, as many as 3 TetR homologues have been incorporated
into a single mammalian circuit (tTA, PIP-KRAB, and E-
KRAB57,58), and in one case, up to 3 repressors (TtgR, TetR,
and ScbR) were combined into a single protein.59 However, the

construction of circuits that can perform more sophisticated
signal processing operations will require a larger set of
transcription factors that are orthogonal to one another, or in
other words, that do not cross react with one another’s DNA
operators.
TetR and its homologues are not the only transcriptional

regulators commonly used to construct genetic circuits, and
several classes of transcription factors have modular DNA-
binding domains that allow them to be programmed to target a
specific nucleotide sequence.59 This can be based on a
combination of residues that bind to specific base pairs, as is
the case for zinc finger proteins (ZFPs)60 and transcription-
activator-like effectors (TALEs).61 Similarly, the CRISPRi
technique is based on the targeting of a catalytically inactive
Cas9 protein to a specific DNA sequence through the use of a
guide RNA.62,63 All of these systems can be moved into
mammalian cells and retooled to function as activators or
repressors by fusing VP16- or KRAB-like peptides, respec-
tively,64−72 or by relying on steric hindrance of Cas9 alone.67

However, it remains a challenge to add sensing capability to
these DNA-binding domains. A generalizable approach (based
on two-hybrid systems) has been to utilize two proteins whose
dimerization is induced by a stimulus; such an approach has
been used to build ZFPs and TALEs that respond to small
molecules (e.g., rapamycin, hydroxytamoxifen, or RU486),73,74

hypoxia,75 and light.76,77 The advantage of the TetR family is
that a compact single protein has both the capability to sense a
wide range of stimuli and transduce this to a DNA-binding
event. Further, TetR and its homologues bind to small operator
sequences with high specificity, which is desirable for promoter
design but also comes at the cost of the inability to target them
to arbitrary sequences.
Here, we present a systematic approach to retool a group of

TetR-family repressors to operate as repressors and activators
in mammalian cells. In previous work, we applied a part mining
approach to build a set of 20 TetR homologues and
characterized their orthogonality in Escherichia coli. Borrowing
a strategy based off of designs used to convert TALEs into
potent mammalian transcription factors,78 we move 8 new
TetR homologues (AmtR, BM3R1, ButR, IcaR, LmrA, McbR,
PhlF, and QacR) into human embryonic kidney (HEK293)
cells, retooled as 15 new activators and repressors. Remarkably,
these transcription factors retain both the orthogonality and
fold-change observed in prokaryotic cells.14 Ligand sensing is
also preserved, and we use this to build a new inducible system,
which we characterize in both HEK293 and CHO cells. We also
measure their response functions as gates to aide in the
construction of larger circuits. Collectively, this work
demonstrates that prokaryotic part mining is an effective
strategy for expanding the regulatory parts available for
mammalian cell engineering.

■ RESULTS AND DISCUSSION
Functional Characterization of Retooled TetR Homo-

logues in HEK293 Cells. In previous work, we used DNA
synthesis to build a library of 73 TetR homologues,12 of which
we built responsive promoters for 20 in E. coli. The crosstalk
within this subset was quantified by measuring the activity of
400 combinations of repressors and promoters. From these
data, we selected a subset of 8 that are highly orthogonal to
move into mammalian cells. The mammalian regulators were
built using the complete protein sequence for each TetR
homologue, where the corresponding gene was codon
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optimized for expression in mammalian cells and resynthesized
(Methods). Both activator (Figure 1a) and repressor (Figure
1b) versions were generated. Activators (TFA) were built by

adding a destabilization domain,79 a Nuclear Export signal
(NES), a VP16 activation domain,80 and a Nuclear Localization
signal (NLS). Due to high levels of activation observed in the

Figure 1. Design and characterization of synthetic transcription factors. (a) Expression of TFA is controlled by the constitutive hEF1a promoter.
Operator sequences are shown as boxes. pTFA controls expression of the YFP output, which is activated by its cognate transcription factor. (b) The
control system for TFR is similar to part a except that Gal4-VP16 is constitutively expressed from a third plasmid. pTFR controls expression of the
YFP output, which is activated by Gal4-VP16 and repressed by its cognate transcription factor. (c) A detailed positional view of the activated
(pLmrAA, top) and repressed (pLmrAR, bottom) LmrA promoters is illustrated. The pLmrAA promoter contains a minimal CMV promoter core
with six upstream operators. The pLmrAR promoter consists of a minimal CMV promoter that is surrounded by two LmrA operators and five
upstream Gal4 operators. The corresponding transcriptional start site (TSS) and TATA box are illustrated. (d) The function of the activators are
shown and compared to the TetR activator (TetRA). The fold-activation was calculated by comparing the average fluorescence in the presence of a
plasmid encoding the activator (P-constitutive TFA) with that obtained from the reporter plasmid (P-pTFA reporter) in the absence of the P-
constitutive TFA plasmid. Cells were grown for 48 h post-transfection and assayed using flow cytometry (Methods). Representative histograms are
shown in Supporting Information Figure 5. Microscopic images of cells transfected with the reporter only (−, top panel) or the cotransfected
reporter and activator (+, bottom panel) are shown. BFP transfection controls are shown in Supporting Information Figure 6. (e) The function of
the repressors are shown and compared to the TetR repressor (TetRR). Fold-repression is calculated by comparing the average fluorescence in the
presence and absence of the plasmid containing the repressor (P-constitutive TFR). Microscopic images of cells transfected with the reporter and
Gal4-VP16 (−, top panel) or the reporter, Gal4-VP16, and the repressor (+, bottom panel) are shown. Fluorescence histograms generated from the
FITC-A geometric mean and BFP transfection control images are shown in Supporting Information Figures 7 and 8, respectively. In both parts d and
e, the error bars were calculated based on the standard deviation of three independent experiments performed on different days. Cells are visualized
using a YFP filter at 10× magnification, and images were taken 48 h post-transfection. The scale bars correspond to 400 μm. Gray boxes indicate that
a particular TetR homologue was converted into only an activator or repressor and the other version was either not built or is nonfunctional.

Table 1. Transcription Factor Operators and Inducer Molecules

TF operator sequence inducer molecule

AmtR TTCTATCGATCTATAGATAAT Gln K protein112

BM3R1 CGGAATGAACGTTCATTCCG pentobarbital113

ButR GTGTCACTTTGACAGCAGTGTCAC unknown
IcaR TTCACCTACCTTTCGTTAGGTTAGGTTGT gentamicin114

LmrA GATAATAGACCAGTCACTATATTT lincomycin115

McbR ATAGACTGGCCTGTCTA L-methionine116

PhlF ATGATACGAAACGTACCGTATCGTTAAGGT 2,4-diacetylphloroglucinol85

QacR TATAGACCGTGCGATCGGTCTATA plant alkaloids117

TetR TCCCTATCAGTGATAGA doxycycline118
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absence of inducer, destabilization domains were added to the
activator design. Only an NLS was added to build repressors
(TFR), which therefore rely on steric hindrance to achieve
repression. The genes encoding TFA and TFR were placed
under the control of the human elongation factor 1α promoter
(hEF1a)81 and inserted into the pZDonor 1-GTW-2 plasmid82

(Supporting Information Figures 1 and 2).
Synthetic promoters were built for each of the mammalian

transcription factors (Figure 1c). To generate activatable
promoters, six copies of the cognate operator (Table 1) were
inserted upstream of a minimal CMV promoter.78,83 A more
complex promoter architecture is required in order to generate
the repressible promoters, as the promoter itself must be
activated in the absence of repressor. This behavior was
achieved by designing a Gal4-VP16 activatable promoter.
Specifically, each repressible promoter was designed to contain
5 Gal4 binding sequences upstream of a minimal CMV
promoter, where Gal4-VP16 is constitutively expressed.67,78

The resulting promoter is rendered repressible by the inclusion
of operators on either side of the CMV promoter. To measure
activity, the promoters were placed upstream of a yellow
fluorescent protein (YFP) coding sequence (Supporting
Information Figure 3).84 The transcription factors and
reporters were maintained on separate pZDonor 1-GTW-2
plasmids.
The two-plasmid system containing the constitutively

expressed transcription factor and the reporter were transiently
transfected into HEK293 cells, as well as a single-plasmid
transfection of the reporter alone. For the repressible system, a
third plasmid was included from which Gal4-VP16 was
expressed, and in all cases, a plasmid containing the
constitutively expressed eBFP transfection control plasmid
was included (Supporting Information Figure 4). Cells were
then trypsinized 48 h post-transfection, and their fluorescence
quantified using flow cytometry (Methods). The induction of
the reporter in the presence and absence of the plasmid
containing the constitutively expressed activator or repressor
was then compared (Figure 1c and d, respectively, and
Supporting Information Figures 5−8). Seven of the activators
are highly functional and demonstrate an average of 225-fold
activation (ranging from 33- to 416-fold). For comparison, an
activator based on TetR is able to achieve 75-fold activation. In
addition, six new repressors were obtained with an average of
172-fold repression (ranging from 18- to 551-fold). These
levels of repression are comparable to the 50-fold repression
that is achieved by TetRR. While most of the TetR homologues
could be systematically converted into both repressors and
activators, for some only a single variant was found to be both
functional and robust (BM3R1R, ButRA, and IcaRA).
The division of transcription factors and reporters on

separate plasmids facilitates the rapid measurement of crosstalk
between noncognate pairs, and all combinations of reporters
and transcription factors were cotransfected into HEK293 cells.
The activators are largely orthogonal, with the exception of a
few cross-reactions (Figure 2a and Supporting Information
Figure 9). Notably, LmrAA activates pQacRA, and LmrAA and
QacRA both activate pMcbRA. The repressors are also highly
orthogonal, although there is some activity of LmrAR against
pMcbRR and pQacRR (Figure 2b and Supporting Information
Figure 10). Interestingly, the off-target interactions observed
here are not present in the E. coli system.14 This may be due to
changes in the expression level of the transcription factors,
having multiple operators in the synthetic promoters, and/or

the ability of VP16 to recruit the transcriptional machinery even
when delivered to a promoter at low affinity.

Construction of a DAPG-Inducible System. The TetR
homologues that were selected for this study are associated
with different classes of ligands, including metabolites, natural
products, and plant alkaloids (Table 1). Similar to the
doxycycline (Dox) induction of TetR in the Tet-On inducible
system (Figure 3a),18 the PhlF repressor responds to 2,4-
diacetylphloroglucinol (DAPG), which is a polyketide antibiotic
produced by Pseudomonas f luorescens that has activity against
plant pathogens (Figure 3b).85,86 DAPG has the potential to be
a similarly useful inducible system, because it freely diffuses
through eukaryotic membranes and can be purchased from
chemical suppliers (Methods).

Figure 2. Orthogonality between synthetic transcription factors. (a)
Crosstalk is shown between all combinations of activators and
promoters. The fold-activation is calculated by dividing the average
fluorescence of cells containing both the reporter and activator
plasmids by the average fluorescence of cells only transfected with the
reporter plasmid. Raw data underlying the matrix are shown in
Supporting Information Figure 9, and data correspond to the average
FITC-A geometric mean values from flow cytometry data collected
from three independent transfections carried out on separate days. (b)
Crosstalk is shown between all combinations of repressors and
promoters. The fold-repression is calculated by dividing the average
fluorescence of cells containing the reporter and Gal4-VP16 encoded
plasmids by the fluorescence of cells transfected with plasmids
encoding the reporter, Gal4-VP16, and cognate repressor. Raw data
underlying the matrix are shown in Supporting Information Figure 10,
and data correspond to the average FITC-A geometric mean values
from flow cytometry data collected from three independent trans-
fections carried out on separate days.
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The inducibility of PhlFR was tested by adding DAPG to
transfected cells and measuring the response from the pPhlFR

reporter (Figure 3c; Supporting Information Figure 11 and
Table 1). For cells supplemented with DAPG at the time of
transfection, a drastic decrease in transfection efficiency was
observed. To alleviate this decrease in transfection efficiency,

the inducer was instead added 6 h post transfection, and cells
were incubated for 42 h (Methods). After induction, YFP
expression was measured using flow cytometry. In HEK293
cells, the response yields a robust 54-fold induction with a
notably ultrasensitive transition (n = 4.7 when fit to a Hill
function), with a threshold (half-maximum) of 1 μM DAPG.
This response is similar to what has been observed for the Tet-
On inducible system, which has a similar dynamic range (70-
fold) but a less cooperative transition (n = 1.4). However,
greater leakiness is associated with the DAPG-inducible system
(240 versus 18 au), and because of this, the response curve is
shifted higher. We also tested the PhlFR system in CHO cells,
due to their importance in the manufacturing of biologics. This
yielded a strong response, albeit with a lower dynamic range
(15-fold) and less cooperative behavior (n = 1.0). The
threshold of the switch is nearly identical among the two cell
lines (5 μM DAPG in CHO cells), and the leakiness is also
greater.
These discrepancies between the Dox- and DAPG-inducible

systems can likely be attributed to their variable mechanisms
used to control expression. For instance, our PhlFR system is
based on dual and opposing activities (activation by Gal4-VP16
and repression by PhlF). Such an architecture has been shown
to result in ultrasensitivity.87 In contrast, the Tet-On system
relies on a more direct mechanism, whereby Dox induces rtTA3
binding to the promoter and subsequent activation of gene
expression. Because of the large dynamic range associated with
varying their inducer concentrations, both systems can be used
to examine input-output relationships.

Measurement of 1-Input Response Functions. The
response function of a gate captures how the output changes as
a function of the input; for transcriptional gates, promoter
activity serves as both the input and output. Our new repressors
(TFRs) were used to build NOT gates,88,89 (which can be
further converted into NOR gates by placing several upstream
promoters in series).14,90 To deliver an input to the gate, the
TRE-tight promoter (inducible by Dox) was used to drive
expression of each TFR (Figure 4a). The response function of
this inducible system was measured separately in the same
genetic context using a fluorescent reporter, where the output
of each gate corresponds to the fluorescence of the TFR-
responsive promoter.
The response function for five repressors (McbRR, PhlFR,

AmtRR, BM3R1R, and LmrAR) was determined (Figure 4b and
Supporting Information Figure 12). The average fluorescence
was calculated by taking the mean YFP fluorescence from three
experiments for each data point in the response curve; from
these values, background fluorescence was subtracted, and the
resulting output fluorescence values were converted into units
of output promoter activity (this is done by separately
measuring the activity of the various input promoters as a
function of inducer). These values were used to generate a
response function for each gate, where data were fit to a hill
equation:

= = + −
+

y f x y y y
K

K x
( ) ( )

n

n nmin max min (1)

where y is the activity of the output promoter, ymin is the
minimum output, ymax is the maximum output, n is the Hill
coefficient, and K is the threshold level of input where the
output is half-maximal (Table 2). The output from the ON
state (Dox = 1 nM) differs between each gate because it
depends on the activity of the TFR-responsive promoter, which

Figure 3. Characterization of the DAPG-inducible PhlFR system. (a)
The structure of doxycycline and the Tet-On inducible system,
comprised of the rtTA3 regulator, are shown.111 In this system, rtTA3
is constitutively expressed from the phEF1a constitutive promoter and
activates expression of its cognate promoter which contains 6 copies of
the TetR operator sequence situated upstream of the minimal CMV
promoter (referred to as pTRE-tight). The rtTA3 regulator binds to
and activates expression from the pTRE-tight promoter in the
presence of doxycycline. (b) The structure of DAPG and the PhlF
inducible system are shown. In this system, PhlFR is constitutively
expressed from the phEF1a promoter. The pPhlFR output promoter is
activated by Gal4-VP16, which is constitutively expressed by the
phEF1a promoter. PhlFR binds to and represses expression from the
pPhlFR promoter in the absence of DAPG. (c) Induction of the Dox-
and DAPG- inducible systems are compared and were measured in
both HEK293 (Dox and DAPG systems) and CHO cells (DAPG
system only). YFP fluorescence was measured after induction at [0,
0.01, 0.1, 1, 10, and 30 μM DAPG] or [0, 0.01, 0.05, 0.1, 0.5, 1, 2, 5,
10, 20 μM Dox]. The lines were fit to a Hill equation (Methods), the
parameters for which are shown in Supporting Information Table 1.
The data shown correspond to the average of three experiments from
different transfections performed on different days, and error bars
correspond to the standard deviation. Representative cytometry
histograms for the three inducible systems are shown in Supporting
Information Figure 11.
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vary based on operator sequence. When maximally induced
(Dox = 20 μM), all of the response functions converge on the
same OFF state. The dynamic range is defined as the ON state
divided by the OFF state, and this varies from 23- to 78-fold.
All of the switches are noncooperative with a Hill coefficient

approaching unity (n ≈ 1), which is expected because the
promoters contain two noninteracting operators.
Buffer gates were also built based on the activators, which

turn ON in response to induction from their input promoter.
The response functions of the activators were measured either
using the Dox-inducible pTRE-tight promoter, as above, or the
DAPG-inducible pPhlFR promoter from this study (Figure 4c).
Using this approach, the response function of two activators
(AmtRA and QacRA) was determined following the same
approach used for the NOT gates (Figure 4d and Supporting
Information Figure 13). The data for each switch were fit using
the following hill equation:

= = + −
+

y f x y y y
x

K x
( ) ( )

n

n nmin max min (2)

where the variables correspond to those used in equation 1
(parameters listed in Table 3).
When characterizing gates, it is useful to report the input and

output promoters in the same units,14,91,92 which would allow

Figure 4. Gate and circuit response functions. (a) The Dox inducible system is used to characterize NOT gates. Symbols are as described in Figure 1.
Expression of TFR is controlled by the TRE-tight promoter, which is activated by the TetR activator (rtTA3) in the presence of Dox. Expression of
the rtTA3 gene is controlled by the constitutive hEF1a promoter. (b) The response of each NOT gate is shown: McbR (blue inverted triangles),
PhlF (red squares), AmtR (green circles), BM3R1 (purple triangles), and LmrA (light blue diamonds). The expression of the fluorescent reporter
from the output promoter (pTFR) with respect to the induction of the input promoter (pTRE-tight) via Dox is shown. The average and standard
deviation are plotted from three replicates from transfections performed on different days. Cytometry distributions corresponding to the FITC-A
geometric mean of the 0, 0.5, and 5 μM induction points are shown in Supporting Information Figure 12 and fit parameters for each curve are listed
in Table 2. (c) Two inducible systems (Dox or DAPG via pPhlFR) are used to measure the response function of the buffer gates based on
transcriptional activators (TFA). (d) The response functions of the buffer gates are shown. The Dox-inducible system is used to characterize the
AmtRA gate (circles) and the DAPG-inducible system is used to characterize the QacRA gate (squares). The inset shows the response as a function of
input promoter activity (pTRE-tight or pPhlFR), rather than inducer concentration (Methods). Cytometry distributions corresponding to data for
several induction points are shown in Supporting Information Figure 13 and fit parameters for each curve are listed in Table 3. (e) A schematic of
the circuit that behaves as an enhancer is shown. The pAmtRA-QacRA promoter contains three upstream operators for each TF. (f) Enhancer fold
activation of the output promoter (pAmtRA-QacRA) is shown as a function of the two inducers, where inducer concentrations vary from 0 to 20 μM
doxycyline and 0−30 μM DAPG. Activation is indicated in blue, and data correspond to average fluorescence values from three replicates collected
on different days. Cytometry distributions and error bars are shown in Supporting Information Figures 15 and 16, respectively.

Table 2. NOT Gate Response Function Parameters

name inducer Ka n ymax
b ymin

b
fold-

changec

McbRR Dox 0.13 1.22 1.6 × 104 6.6 × 102 24
PhlFR Dox 0.05 1.50 1.2 × 104 3.6 × 102 33
AmtRR Dox 0.17 1.07 8.4 × 104 2.9 × 102 28
BM3R1R Dox 0.09 1.07 3.6 × 104 1.7 × 102 21
LmrAR Dox 0.12 1.46 9.3 × 104 1.2 × 102 77

aThe threshold at which the NOT gate is at the half-maximum output,
in μM doxycycline. bThe maximum and minimum levels of expression,
in arbitrary units of YFP fluorescence. cThe fold-change is calculated
by dividing the maximum average fluorescence (20 μM Dox) by the
fluorescence of cells containing no inducer.
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the predictable connection of gates to form larger circuits
(although this can be complicated by context effects93,94). Yet
the main challenge in doing so is that gates are typically
measured using inducible systems and reported in terms of the
concentration of the chemical inducer. When characterizing
prokaryotic gates, we have separately measured the response of
promoter output of the inducible system, and this information
is used to build a response function that has the same units for
the inputs and outputs.95 Similarly, we could characterize the
Dox- and DAPG-inducible systems and use this to renormalize
the transfer functions of the NOT gates (Supporting
Information Figure 15) and the switches (inset, Figure 4d).
The hill coefficients for the inverters change after renormaliza-
tion but are consistent with respect to one another. This
variation can be attributed to the limited resolution in input
promoter activity in our measurements that increases regression
error. The characterized switches illustrated above act
individually upon a promoter, yet composite promoters that
respond to multiple transcription factors can also be
constructed to provide tunable output control.
Signal Integration: Construction of an “Enhancer”

Promoter That Responds to Two Activators. To generate
a promoter capable of responding to combinations of input
signals, operators for different transcription factors are typically
combined into a single synthetic promoter. Similar approaches
have been applied to build several classes of 2-input gates based
on modified TetR homologues.58 These circuits consist of a
single activator (e.g., ScbR modified with VP16) and up to two
repressors (e.g., Pip modified with KRAB). For example, a
NOT IF gate was built by constructing a promoter that
contains 8 upstream ScbR operators, followed by 3 pir operators
in between and a minimum promoter motif. The resulting
promoter is ON only in the presence of ScbR and in the
absence of Pip. Here, we sought to determine whether our
promoter architecture could integrate multiple positive
regulators to converge on a single output.
To construct a hybrid promoter that is responsive to multiple

transcription factors, we modified our initial architecture used
to build synthetic promoters containing six upstream
operators.78 We postulated that this architecture could be
altered to integrate signals from multiple TFs whose
corresponding operators are present in different locations
within the promoter. The full output of the promoter would
not be achievable without induction of all of the TFs; thus, they
would collectively enhance the activity of the promoter. The
resulting circuit is not expected to function as an “AND gate”
because each input increases activity toward the maximum.
However, it does have features similar to fuzzy logic96 and
analog adder circuitry.97

The integrating promoter was constructed by combining the
operators for AmtRA (3 downstream) and QacRA (3 upstream,

Figure 4e). Specifically, AmtRA expression is controlled by the
Dox-inducible Tet-ON system, while QacRA expression is
controlled by the DAPG-inducible PhlFR system (which also
requires Gal4-VP16). Thus, the resulting circuit requires the
control of 5 transcription factors carried on 7 distinct plasmids.
All of the plasmids were cotransfected and the resulting YFP
fluorescence measured using flow cytometry (Methods). The
output was measured across varying concentrations of the two
inducers (Dox and DAPG), and the resulting 25 data points
were used to build a two-dimensional response function
(Figure 4f and Supporting Information Figures 15 and 16). As
expected, each inducible system is able to turn on the promoter
independently, and the Dox-inducible system alone is able to
induce the system 4.5-fold, while the DAPG-inducible system
independently activates the system 8.5-fold. When both
systems are maximally induced, the promoter is activated 19-
fold. Thus, there is a near-perfect multiplicative effect between
the induction of the two systems in isolation, compared to their
collective impact on the promoter.
To gain insight into how transfection efficiency affects circuit

performance, the fluorescence of the BFP-transfection control
plasmid (a plasmid that constitutively expresses eBFP under the
control of the hEF1a promoter) was used as a proxy for “copy
number.” Since all plasmids are transfected in equal
concentrations, it is expected that transfected cells contain
the same relative amount of individual plasmids.98 Therefore,
cells with a higher “copy number” will have higher levels of
eBFP expression, and a larger quantity of each plasmid. To
assess the effect of “copy number” on circuit performance, cells
were separated into 360 logarithmically spaced bins based on
their BFP fluorescence, and the maximally inducing and
noninducing conditions were compared for each bin (Support-
ing Information Figure 17). The “fuzzy” AND gate is quite
robust, as it exhibits a consistent fold activation over a wide
range of “copy numbers”.

Expanding the Mammalian Parts Toolbox and
Beyond. The “fuzzy” AND gate demonstrated here, as well
as the increased number of both sensors and circuits illustrated
throughout, significantly expands upon the tools available for
use in mammalian cells. We also systematically verify that these
components exhibit minimal crosstalk and robust levels of fold
change similar to their bacterial predecessors.14 Furthermore,
we demonstrate their functionality across a variety of cell types
including HEK293 and CHO cells. Finally, we reveal that these
components can be combined in a single cell to coordinately
fine-tune the expression of an individual output.
To obtain variable and specific output levels, we utilized a

hybrid promoter architecture whereby two distinct TFs
converge on a single promoter, through the inclusion of
multiple copies of each TFs operator sequence. In mammalian
cells, variable output levels are typically achieved through
adjusting the number of transcriptional enhancer elements.99

Enhancers integrate multiple signals in vivo, and act in cis to
regulate transcriptional activity.100 Not only the spacing but
also the content of cis-regulatory elements have been shown to
have a dramatic effect on biological processes (such as
development) in eukaryotes.101 While enhancer elements
alone can lack discernible activity, in concert with other
elements they typically evoke robust expression patterns upon
associated genes.102 Recent efforts have been dedicated to
identifying mammalian enhancer elements, where naturally
occurring sequences were assessed in parallel to identify the
essential elements of transcriptional networks.103,104

Table 3. Activator Response Function Parameters

name inducer Ka n ymax
b ymin

b fold-changec

AmtRA Dox 0.1 3.00 1.3 × 103 15 82
QacRA DAPG 4.6 1.89 1.1 × 104 122 91

aThe threshold at which the buffer gate is at the half-maximum output,
in μM doxycyline (for AmtRA) or μM DAPG (for QacRA). bThe
maximum and minimum levels of expression, in arbitrary units of YFP
fluorescence. cThe fold-change is calculated by dividing the maximum
average fluorescence (20 μM Dox or 30 μM DAPG) by the
fluorescence of cells containing no inducer.
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Although much work has been done to characterize the
behavior and identity of naturally occurring enhancers, and to
develop synthetic tools to control mammalian gene expression,
issues persist in the implementation of such components
toward broader applications. For example, the development of
systems via transient transfection of tissue culture cells, and
nonsite-specific integration make measurements difficult, and
systems developed in this manner are not suited for clinical
applications.3 Furthermore, it is known that enhancers exhibit
negligible activity when transiently transfected but far more
robust activity upon genomic integration.105−107 For these and
other reasons, a safe harbor for genetic insertions should be
developed, either through artificial chromosomes or designed
integration sites.108 Based on these findings, future efforts
should focus upon rigorously characterizing the behavior of
these and other components upon genomic integration.
Delineating the contribution of integration site and copy
number should be at the forefront of these efforts, as well as the
engineering of epigenetic tools to ensure active expression of
integrated circuitry. Breakthroughs in these areas will aide in
the implementation of the tools presented here toward real
world applications that span from living therapeutics to the
production of complex pharmaceuticals.

■ METHODS
Cell Culture, Strains, and Media. E. coli strain DH10B

[F−mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15ΔlacX74
recA1 endA1 araΔ139 Δ(ara, leu)7697 galU galK λ-rpsL
(StrR) nupG] was used for cloning and to propagate DNA,
except in the case where the propagated plasmids were used for
Gateway cloning. In such cases, the ccdB Survival 2 T1R strain
(Life Technologies, [F-mcrA Δ(mrr-hsdRMS-mcrBC)
Φ80lacZΔM15 ΔlacX74 recA1 araΔ139 Δ(ara-leu)7697 galU
galK rpsL (StrR) endA1 nupG fhuA::IS2]) was used. The
HEK293 (293FT) cell line was purchased from Invitrogen
(product number R700-07), and CHO cells were obtained
from ATCC (strain number CCL-61). HEK293 and CHO cells
were cultured in high-glucose DMEM complete media
(Dulbecco’s modified Eagle’s medium (DMEM), 4.5 g/L
glucose, 0.045 units/mL of penicillin and 0.045 g/mL
streptomycin and 10% FBS (Sigma)) at 37 °C, 100% humidity,
and 5% CO2. Doxycycline was purchased from Clontech
(product number 631311), and 2,4-diacetylphloroglucinol
(DAPG) was purchased from Santa Cruz Biotechnology
(product number 206518).
Mammalian Genetic Parts. Supporting Information Table

3 contains all of the part sequences used in this study. Plasmid
maps are provided in Supporting Information Figures 1−4.
Prokaryotic repressor coding sequences were optimized for
production in mammalian cells using multiparameter gene
optimization methods and synthesized by Geneart.109 The
constitutive mammalian promoter (human elongation factor 1
alpha promoter, phEF1a) was from pLEIGW, a gift from Ihor
R. Lemischka. The rtTA3 coding sequence and the pTRE-tight
promoter (containing the CMV minimal promoter) were
amplified from pTRIPZ (GE Healthcare, product number
RHS4743). Constitutively expressed BFP (phEF1a-eBFP2) was
used as a transfection control and was purchased from Addgene
(plasmid 14891). The rb glob PA terminator was amplified
from Addgene vector AAV-CAGGS-EGFP (plasmid 22212). In
all cases, the reporter used corresponds to the Yellow
Fluorescent Protein (eYFP),84 and the DD-tag was purchased
from Clonetech (product number 632172).

Plasmids were constructed using a combination of GeneArt
gene synthesis, Gateway cloning,110 and/or inverse PCR.
Specifically, transcription factor coding sequences and their
cognate promoters were synthesized into basic cloning vectors
and were subcloned into expression or reporter vectors,
respectively, via Gateway cloning. Hybrid promoters were
constructed using inverse PCR to insert operator sequences
upstream of the CMV minimal promoter within the reporter
vector. In the case where inverse PCR was used to construct
reporter vectors, whole plasmids were PCR amplified using
Phusion DNA polymerase (NEB) along with multiple operator
containing oligonucleotides. The resulting product was run on
an agarose gel, extracted, and digested with DpnI. The blunted-
ended, DpnI-digested product was phosphorylated (T4
Polynucleotide Kinase) and ligated (T4 DNA ligase) in a
single reaction at room temperature, transformed into chemi-
cally competent DH10B cells, and plated on selective LB
medium.

Transfection, Growth, and Processing of Cells.
HEK293 FT and CHO cells were transfected using the
Attractene transfection reagent (Qiagen) as described in the
manual with several modifications. Specifically, 100 ng of each
plasmid was combined into the appropriate combinations in a
total volume of 7 μL or less, and 60 μL Dulbecco’s Modified
Eagle Medium (DMEM) was added. To this mixture, 1.5 μL
Attractene was added, and each sample was mixed by vortexing.
The samples were incubated at room temperature for 10 min
and then added to ∼8 × 104 cells in 0.5 mL DMEM that had
been supplemented with penicillin, streptomycin, and amino
acids (referred to as media complete) in a 24-well culture plate
(Corning, product number 3473). For cells transfected with
plasmids containing the pTRE-tight promoter, doxycycline was
supplemented at the time of transfection. For cells containing
plasmids harboring the DAPG-inducible system, DAPG was
added 6 h post-transfection. Transfections were supplemented
with 0.5 mL media complete 24 h post-transfection and
doxycycline where appropriate. Cells were trypsinized 48 h
post-transfection and subjected to flow cytometry (see below).
Specifically, cells were trypsinized by aspirating the growth
medium and applying 0.5 mL 0.25% trypsin-EDTA (Corning,
product number 25-053) to adherent cells. Once cells were
liberated from the plate, 2 mL media complete was added to
each sample to halt trypsinization. Trypsinized cells were then
spun down at 950 rpm for 10 min at 25 °C, the supernatant
removed, and resuspended in 300 μL 1× phosphate buffered
saline (PBS). From here, the trypsinized, PBS suspended cells
were subjected to flow cytometry.

Flow Cytometry. Cells were analyzed by flow cytometry
using a BD Biosciences LSRII flow cytometer. eBFP2 was
measured using a 405 nm laser and a 450/50 filter, and eYFP
with a 488 nm laser and a 530/30 filter. Cells were analyzed
using FlowJo (TreeStar Inc., Ashland, OR), and populations
were selected by gating out the background BFP signal of
untransfected cells. Specifically, a gate was applied to
encompass those cells that did not correspond to background
(or where no signal was present on a BFP histogram of
untransfected cells). The resulting gate was applied to all
samples, to ensure that only cells expressing the eBFP2
transfection control were included in the analysis. Gated
populations of >25 000 cells were used to calculate the
geometric mean of the FITC-A fluorescence. When used to
assay a promoter, this is referred to as the “Promoter Activity.”
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Fold Change and Circuit Copy Number Calculations.
All circuit plasmids were cotransfected with the transfection
control marker, P-constitutive-eBFP. BFP-positive cells were
separated into 360 logarithmically spaced bins based on raw
fluorescence, referred to as the “Transfection Marker”. Fold-
activation was calculated by dividing FITC-A fluorescence
values from fully induced cells (20 μM DOX and 30 μM
DAPG) by uninduced cells within each bin.
Hill Equation Curve Fitting. Response curves parameters

for all activators and repressors were calculated by fitting to
their respective Hill equations (equations 1 and 2). For each
input, average fluorescence values from biological triplicates
(collected on different days) were fit to the appropriate form of
the Hill equation. Nonlinear least-squares regression was used
to determine values for the Hill coefficient (n) and dissociation
constant (K), and to minimize the error between the fitted and
actual values.
Calculation of Fold-Change. The fold-change was

determined by dividing the background subtracted YFP
fluorescence values for cells containing the reporter plasmid
alone (P-pTFx-reporter) by that of cells containing both the
reporter and the transcription factor (either P-constitutive TFx,
P-TRE-tight/TFx, or P-PhlFR/TFx) encoding plasmids, in the
case of the repressors (where both transfections contained
plasmids P-constitutive-Gal4-VP16 and P-constitutive-eBFP).
For the activators, fold-change was calculated by taking the
inverse of the equation used to calculate the fold-change for the
repressors (where both transfections contained the P-
constitutive-eBFP plasmid).
Microscope Imaging. Images were taken using an EVOS

Digital inverted microscope (containing a 3MP color digital
camera and LCD display). The excitation and emission
wavelengths to obtain fluorescent images were as follows: 357
nm excitation 447 nm emission for eBFP, and 500 nm
excitation 542 nm emission for eYFP. Images were taken at a
10× objective.
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