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Abstract

Genetic and environmental factors play a major role in metabolic health. However, they do not act in isolation, as a change in an environ-
mental factor such as diet may exert different effects based on an individual’s genotype. Here, we sought to understand how such gene–
diet interactions influenced nutrient storage and utilization, a major determinant of metabolic disease. We subjected 178 inbred strains
from the Drosophila genetic reference panel (DGRP) to diets varying in sugar, fat, and protein. We assessed starvation resistance, a holistic
phenotype of nutrient storage and utilization that can be robustly measured. Diet influenced the starvation resistance of most strains, but
the effect varied markedly between strains such that some displayed better survival on a high carbohydrate diet (HCD) compared to a
high-fat diet while others had opposing responses, illustrating a considerable gene � diet interaction. This demonstrates that genetics
plays a major role in diet responses. Furthermore, heritability analysis revealed that the greatest genetic variability arose from diets either
high in sugar or high in protein. To uncover the genetic variants that contribute to the heterogeneity in starvation resistance, we mapped
566 diet-responsive SNPs in 293 genes, 174 of which have human orthologs. Using whole-body knockdown, we identified two genes that
were required for glucose tolerance, storage, and utilization. Strikingly, flies in which the expression of one of these genes, CG4607 a puta-
tive homolog of a mammalian glucose transporter, was reduced at the whole-body level, displayed lethality on a HCD. This study provides
evidence that there is a strong interplay between diet and genetics in governing survival in response to starvation, a surrogate measure of
nutrient storage efficiency and obesity. It is likely that a similar principle applies to higher organisms thus supporting the case for
nutrigenomics as an important health strategy.
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Introduction
Diet is a major risk factor for metabolic disease in humans, as in-
dicated by the marked increase in metabolic disease over the
past 50 years commensurate with increased consumption of high
fructose and processed foods. However, despite being exposed to
the same environment not all individuals acquire the disease,
and this has given rise to the concept that different diets may af-
fect the health of individuals in discrete ways.

Studies in Indigenous populations have provided some sup-
port for this concept. Here, specific populations that subsisted on

different diets, whether rich in fats (Greenlandic Innuits) or car-
bohydrates (American Pima Indians), for thousands of years
(Schulz and Chaudhari 2015; Andersen and Hansen 2018) have
undergone increased incidence of metabolic diseases like diabe-
tes commensurate with their exposure to westernized foods over
the past 30–50 years. This has led to the identification of a hand-
ful of genetic variants. However, for the most part, these are not
found in people of European ancestry. More recently, studies in
mice and humans have demonstrated that individuals display
heterogeneous metabolic responses to the same diets (Parks et al.
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2015; Zeevi et al. 2015). While genome-wide association studies
(GWAS) of body mass index, insulin resistance, and other meta-
bolic traits have identified several causative genetic loci, these
loci do not account for the majority of phenotypic variation
(Phillips 2013). In fact, studies in mono- and di-zygotic twins
revealed that a combination of genetic and environmental fac-
tors contributed to variance in body weight (Stunkard et al. 1986;
Dubois et al. 2012). Overall, this emphasizes the need to consider
not only genetic predisposition or diet alone, but also specifically
gene � diet interactions (Heianza et al. 2017). Furthermore, one’s
genotype can affect metabolic outcomes in response to a particu-
lar diet, and this “diet-responsiveness” can vary markedly be-
tween individuals.

The notion that individuals display discrete sensitivity to
certain macronutrients, with dietary interventions being based
on one’s genotype, is the key premise of the field of personal-
ized nutrition, or nutrigenomics (Sales et al. 2014) and is sup-
ported by recent clinical trials (Qi 2014; Tan et al. 2018).
However, we do not have a thorough understanding of how
genes and diet interact to influence the onset of metabolic dis-
eases (Drabsch and Holzapfel 2019). A major challenge with
such studies in humans is that the environment, particularly
diet and exercise, are difficult to quantify and control at a scale
sufficient to facilitate genetic mapping. Hence, model systems
such as mouse or Drosophila have become invaluable. A num-
ber of mouse or Drosophila genetic reference panels (DGRPs)
have been established comprising a broad range of genetic di-
versity. These are ideal for studying gene � environment inter-
actions as here it is feasible to carefully control environmental
exposures. In this study, we have used the DGRP to compare
the effects of different dietary exposures. This is an ideal sys-
tem because >70% of known human disease genes have fly
orthologs (Reiter et al. 2001), and the DGRP comprises an exten-
sive collection of inbred and fully sequenced lines that are
freely available, thereby allowing identification of causal ge-
netic variants (Mackay et al. 2012).

We capitalized on the high-throughput nature of the DGRP to
study the effect of gene � diet interactions on nutrient storage
and utilization. A phenotype that encapsulates these outcomes is
survival during starvation, which measures an organism’s ability
to metabolize and store dietary nutrients during feeding and uti-
lize them efficiently during fasting. For instance, adult flies fed a
high carbohydrate diet (HCD) showed greater resistance to death
from starvation, as well as higher triacylglyceride (TAG) content,
suggesting a correlation between diets and starvation resistance
via energy storage (Lee and Jang 2014; Krycer et al. 2020).
However, it is not clear if this principle is broadly applicable
across animals of different genetic backgrounds. Notably, previ-
ous studies have shown significant variation in starvation resis-
tance between strains across the DGRP when fed one single diet
(Mackay et al. 2012).

In this study, starvation resistance varied considerably be-
tween flies of distinct genetic backgrounds when fed diets com-
posed of different macronutrient combinations (fat, sugar, and
protein). Notably, while the high protein diet (HPD) reduced
starvation resistance in most strains, highly variable responses
were observed for the high carbohydrate or high-fat diets
(HFDs) across the different fly strains. GWAS revealed SNPs
that contribute to these gene � diet effects. One such gene
CG4607 encoded a putative glucose transporter—knockdown of
CG4607 caused lethality in flies fed high carbohydrate but not
when fed high protein or HFDs. Our study uncovers a previ-
ously under-appreciated influence of diet on the heritability of

starvation resistance, providing a rich resource of diet-specific
genes for further study.

Materials and methods
Drosophila stocks and procedures
Stocks: RNAi knockdown fly lines were obtained from the VDRC:
CGnone, v60000; CG4607 v5450 and v107219; Cip4, v108625. The
following lines were obtained from the Bloomington stock center
(Bloomington, IN, USA): DGRP; ubiquitous(ubi)-GAL4, BL32551;
mef2-GAL4 BL27390; CG-Gal4, 7011 and the midgut NP3084-gal4,
113094 was obtained from the Kyoto Stock center (Kyoto, Japan).

Flies were maintained at 25�C with 12 hours light/dark cycles.
DGRP flies were expanded in bottles before collecting adult males
for experiments. Five replicates of ten 3–5 days old adult males
from each strain were collected and passaged onto each diet.
Food was changed every other day, and the mortality rate was
monitored for the 10 days of diet treatment. As the HFD has a dif-
ferent consistency compared with the other diets, we assessed
whether there was increased lethality during the pre-feeding
with this diet, but we observed no lethality on HFD, ensuring that
all diets were well tolerated. At the conclusion of the dietary ex-
posure, males were placed into starvation vials with Kim wipes
and 1 mL of water and monitored every 12 hours for death. Death
from starvation was assessed in two ways: for screening the
DGRP, we visually inspected flies every 12 hours; for the RNAi val-
idation screen, we used the Drosophila activity monitoring sys-
tem (DAMS) and defined activity (i.e., alive) as a beam crossing
every 5 minutes. Survival time for each fly was defined as the
time-point following the last recording for an activity for that fly.
The mean starvation resistance was calculated as the average
time of death for 50 flies per line on each diet. Heatmaps to as-
sess qualitative differences between strains on the different diets
were created using ggplot2, grid, and ggdendro packages in R. We
used default Euclidean distances for hierarchical clustering as
part of the hclust function in the ggdendro package.

Experimental diets
The experimental diets that were used throughout this study
were made up of agar (Sigma) and torula yeast (H.J Langdon &
Co, VIC, Australia), Sucrose (Table Sugar), and extra virgin coco-
nut oil (Absolute Organics, NSW, Australia). The yeast, sucrose,
and coconut oil correspond to protein, carbohydrate, and fat, re-
spectively, and were combined as detailed in Supplementary
Table S1 to generate a HPD, HCD, and HFD.

Heritability estimates using linear mixed models
We estimated the heritability of log survival, as well as the vari-
ance explained by dietary effects, using a series of linear mixed
models (LMMs). LMM 1 contained strain as a random effect as
well as diet as a fixed effect and was equivalent to:

yij ¼ b0 þ h0j þ ð
Xndiet�1

k¼1

bkxikÞ þ ei;

h0j � Nð0; r2
h0
Þ;

ei � Nð0; r2
e Þ;

where yij is the survival time of individual i from strain j, b0 is the
survival of a typical strain on the reference diet (diet 0; here diet
NF), h0j is a random effect estimating the deviation of strain j
from b0, which is normally distributed with mean 0 and variance
rh02 (i.e., the among-strain variance, which is estimated by the
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model), bk is a fixed effect giving the average response to diet k
(k¼ 1 . . . ndiet—1; ndiet is the number of diets), xik is a dummy pre-
dictor for individual i on diet k and ei is the residual for individual
i, which is normally distributed with mean 0 and variance re2. In
LMM 1 re2 is the nonstrain variance after accounting the effects
of diet. In this model, dietary effects are assumed to be uniform
across strains.

LMM 2 was equivalent to:

yij ¼ b0 þ h0j þ
 Xndiet�1

k¼1

ðbk þ hkjÞxik

!
þ ei;

� h0j
hkj

�
� N

 
0;

 
r2

h0
qh0hk

qh0hk
r2

hk

!!
;

ei � Nð0; r2
e Þ;

where bk now gives the effect of diet k in a typical strain, hkj is the
deviation in response to diet k by strain j (a “random slope”),
which is normally distributed with mean 0 and variance rhk2,
qh0hk is the correlation between strain-specific response to diet k
and diet 0, and all other terms are as above. LMM 2 thus esti-
mates variance between strains in the effect of diet k (rhk2).

We calculated heritability as the percentage of variance in log
starvation response due to strain. Using LMM 1 this was calcu-
lated as rh02/(rh02 þ re2) � 100, which is the genetic variance af-
ter accounting for the effects of diet. For LMM 2, the variance
among strains is diet-specific. The heritability of diet 0 was calcu-
lated as rh02/(rh02 þ re2) � 100 and that on diet k was calcu-
lated as calculated as (rh02 þ rhk2 þ 2 � COVh0hk)/(rh02 þ rhk2
þ 2 � COVh0hk þ re2) � 100. Note the covariance between
responses to diet 0 and effect of diet k was found as qh0hk� rh0�
rh1. Models were implemented using the “lme” function in the
package nlme in R. Code is available in Figshare Supplementary
Figures.

Statistical SNP analysis—overview
Prior to subjecting the starvation resistance data to SNP analysis,
the data were processed. To adjust for the starvation resistance
on normal food (NF), the starvation resistance time for each diet
was divided by the line’s starvation resistance time on NF to cal-
culate the fold change, which was subsequently log2-
transformed and z-scored (per diet), a process termed
“standardization” in this study. This standardized starvation re-
sistance was fed into the analysis pipeline. DGRP SNP genotypes
and gene annotations (FB5.57 annotation file) were downloaded
from the DGRP Freeze 2 online resource http://dgrp2.gnets.ncsu.
edu/data.html for all lines used in this study. SNPs were filtered
to only contain SNPs with a minor allele count of at least 10,
resulting in testing across 1,883,157 SNPs. Lines with missing al-
lele information for a given variant were not considered. In other
words, statistical tests for association of each SNP included only
lines with allele information but discarded those with missing al-
lele information. Statistical testing included multivariate analysis
of variance (MANOVA) testing accounting for outliers, with
Wolbachia status, large genomic inversions and the population
structure relationship matrix (with first 10 principal components
associated with the lines’ population structure relationship ma-
trix, downloaded from DGRP, Huang et al. 2014) as covariates per
variant, with an unadjusted P-value <1�10-3 selected for post-hoc
analysis (see [a] below for details). The overall enrichment of the
multivariate response was assessed by comparison to the null P-
value distribution (Supplementary Figure S3). The post-hoc analy-
sis was performed on selected SNPs for each diet separately using

a Wilcoxon Rank Sum Test (see [b] below for details). Here, we in-

cluded a minimum log2 fold change cut-off in starvation resis-

tance comparing lines containing the “variant” allele with those

containing the “reference” allele. We selected diet-responsive

SNPs for further consideration if they were significant in the

Wilcoxon Rank Sum test (P< 0.005) and had an absolute differ-

ence in mean phenotypes of at least 0.3 (log2 fold change).

[a] MANOVA model
For the diet survival outcomes Yij, we standardized by the control

diet NF, (i.e., for a line i and diet j)
Y*ij¼ log10((Yijþa)/(YiDþa)), where YiD corresponds to the sur-

vival outcome for line i in the NF diet, and a is an offset value to

avoid division by zero. Thus, deviation from zero in Y* corre-

sponds to a relative change of survival outcome between each

treatment diet and the control diet NF. To account for outliers,

we reset extremely negative “relative diet” survival outcomes (i.e.,

with a value < �4), to the minimum value of �4.
For a given SNP, we fit the following multivariate ANOVA

model:

Y� ¼ x þ w þ z1 þ z2 þ . . .þ zi þ p1 þ p2 þ � � � þ p10 þ e;

where Y is the multivariate diet outcome (three diets, standard-

ized to the control diet NF), x is the SNP allele status, w is wolba-

chia status, z1, z2,. . ., zi corresponds to status of the i inversion

events, p1, p2,. . ., p10 correspond to the first 10 principal compo-

nents associated with the lines’ population structure relationship

matrix, and E corresponds to multivariate normally distributed

noise. Only SNPs with a nonmissing allele value were considered

for the MANOVA test, and inversion covariates were filtered to in-

clude at least 10 lines to ensure stability in model estimation.
To assess the MANOVA model, we generated a classic quan-

tile–quantile plot (Q–Q plot) of the P-values (Supplementary

Figure S3). The distribution of the Q–Q plot shows substantial de-

viation from the expected uniform distribution throughout the

range of P-values.

[b] Wilcoxon Rank Sum test per diet
For the Wilcoxon rank-sum test, we first used linear regression to

remove the effect of Wolbachia and inversion status from the

data as well as accounting for the population structure (with first

10 principal components associated with the lines’ population

structure relationship matrix), and then performed the Wilcoxon

test on the residuals from that model. It is important to note that

this resulted in a “corrected fold-change”, which in theory is tech-

nically different from the classical fold-change calculation.

However, in practice, these two values are extremely similar

(Pearson correlation coefficient ¼ 0.98).

Table 1 Analysis of the mean starvation resistance data on all
diets

Diet Mean SEM Broad sense heritability (%)

NF 51.46 1.15 61.6
HCD 68.88 1.64 62.7
HFD 55.10 1.09 59.1
HPD 36.77 0.97 68.9

A summary table of the mean starvation data, SEM, genetic and
environmental variance from the log transformed starvation data across all
the DGRP lines on each diet.
Estimates of genetic variance and heritability are derived from LMMs of log
survival (see Supplementary Table S2).
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Validation/automated starvation resistance
(DAMS assay)
We used the GAL4-UAS gene expression system to validate the
two candidate diet-responsive genes. RNAi knockdown fly lines
were mated with 20 ubi-Gal4 females. Sixteen 3–5-day old males
were placed on four different diets for 10 days. The food was
changed every other day for 10 days until males were placed into
the DAMS apparatus (Trikinetics, inc., USA). The flies were loaded
into DAMS tubes (one fly per tube) containing 2% agar and moni-
tored every 5 minutes for death. Candidate genes were considered
validated when the fold change in survival on each respective
diet (relative to NF) corroborated with the SNP analysis (Table 2).
The gene � diet interaction P-values were generated using the
Cox proportional hazards regression model (survival package, R).

Activity measures
To measure fly activity while eating NF or HCD, we placed 3–5-
day old male flies into DAMs tubes with either NF or HCD and
monitored activity for 10 days. Because CG4607 KD flies died
within the first 24 hours after being placed on HCD, we analyzed
the activity data from the beginning of the monitoring. DAMS
data were analyzed using the R survminer and rethomics pack-
ages (Geissmann et al. 2019).

Capillary feeding assay
We used the CAFE assay as previously described (Ja et al. 2007) to
determine the amount of the experimental diet eaten. Ten repli-
cates of five 3–5-day old adult males were placed into vials with
water soaked Kim wipes and sealed with a rubber stopper with
two holes. Capillary tubes (5 ml) containing food were placed into
the vials to allow flies to feed for 24 hours after which food intake
was assessed by measuring loss of capillary volume. The diets
were composed of yeast (MP Biomedicals cat # 2232731) and su-
crose.

Gas trap assay to measure CO2 and triglycerides
We used a Gas Trap Assay to assess the capability of CG4607 KD

flies to utilize glucose. The gas trap protocol has been previously
described (Francis et al. 2019). Briefly, four replicates of 10 male
adult 3–5-day old flies were starved overnight in vials with a Kim
wipe and 1 mL of water. Flies were then placed into 12 well plates
containing glucose radiolabeled food and blue dye. We measured
glucose oxidation and processed the flies for measurement of
TAGs and blue dye content as described.

Blue dye extraction and measurements
To determine the amount of food ingested during the gas-trap as-
say, we extracted and measured blue dye that was mixed with
the radiolabeled food. In short-term experiments, the blue dye
serves as a proxy for food intake (Krycer et al. 2019). Four

replicates of 10 flies were collected and homogenized (Reche

MM400) in 100 ml of water. Samples were briefly centrifuged, and

the supernatant was dried in a Genevac evaporator. Dried sam-

ples were reconstituted in 50 ml of water, vortexed, and placed

into a 96 well plate for absorbance measurement at 628 nm in a

spectrophotometer. Dilutions of blue dye (Queenie Brand, Coles

Supermarket, Australia) were used as a standard. Data were ana-

lyzed in Excel (Microsoft) and plotted in Prism (GraphPad).

Statistical significance was calculated between genotypes using

Student’s t-test.

Triglyceride assay
To measure TAG content, we used a triglyceride extraction

method as previously described (FOLCH et al. 1957). Six to ten rep-

licates of six 3–5-day old flies were collected and washed in four

dilutions (1:2,1:4,1:10,1:20) of isopropanol to remove excess food.

The aqueous phase was used for glucose assays. The lipids were

collected after extraction, evaporated under N2 gas and reconsti-

tuted with 95% ethanol. Scintillant was added to samples with ra-

dioactive tracer instead of ethanol and analyzed on a beta

counter (Beckman Coulter). For nonradioactive samples, samples

were spun and placed into 96 well plates (Sigma-Aldrich, #

CLS9018BC) and incubated with triglyceride reagent (200 ml;

Thermo Fischer Cat #TR22421) at 37�C for 30 minutes. Precimat

glycerol reagent (Thermo Fischer # NC0091901) was used as a

standard. Total absorbance at 500 nm was measured in a plate

reader (Beckman) and subtracted from a blank before determin-

ing the amount of triglyceride using the reference standard curve.

All calculations were performed in Excel (Microsoft) and graphed

in Prism.

Glycogen assay
To determine the amount of glycogen, we collected six replicates

of six male flies and washed them in dilutions of isopropanol to

remove food. Fasted flies were collected after 24 hours of starva-

tion. Flies were homogenized in 1 M KOH for 30 seconds using

steel balls and a tissue lyser (Resche MM400). Samples were

heated for 30 minutes at 70�C. Saturated Na2SO4 was added prior

to addition of 95% Ethanol for precipitation. The pellet was spun

down and then reconstituted in water, heated at 70�C, before

adding 95% Ethanol again. The pellet was centrifuged in the wa-

ter/95% ethanol solution, the supernatant was removed and

amyloglucosidase (Merck # A7420) was added overnight at 37�C.

Samples were centrifuged and placed into 96-well plates (Sigma-

Aldrich, # CLS9018BC) and incubated with glucose oxidase re-

agent (200 ml; Thermo Fischer, TR15221) at 37�C for 30 minutes.

Glucose (1 mg/ml) was used as a standard. Total absorbance at

500 nm was measured in a plate reader (Beckman) and sub-

tracted from a blank before determining the amount of glucose

Table 2 Validated candidate genes

Gene/orthologa SNP class Manova P-value b Dietc vHCDd vHPDe vHFDf G � D P-valueg Functionh

CG4607/SLC2A6 UPSTREAM 7.97E-05 HPD DOA �1.29 �0.11 8.77E-09 Glucose transmembrane
transporter activity

Cip4/TRIP10 SYNONYMOUS
_CODING

3.94E-04 HFD 0.42 �0.51 �0.67 0.0013 Lipid binding

a Gene symbol/human ortholog.
b The significance from the multivariate ANOVA of the diet responsive SNP.
c The diet upon which the gene is predicted to affect starvation resistance.
d–f The log fold change in starvation resistance (Log 2 (SRcontrol Diet/NF/SRKD Diet/NF)).
g The significance of the gene-by-diet interaction for each gene and it’s fold change on the predicted diet (from d).
h The functional annotation of the gene from www.flybase.org.
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using the reference standard curve. All calculations were per-

formed in Excel (Microsoft) and graphed in Prism.

Glucose assay
Glucose was measured from the aqueous phase of the triglycer-

ide extraction (see above): the aqueous mixture was evaporated

in a Genevac evaporator until a dried pellet was visible. The pellet

was reconstituted with water and glucose was measured as de-

scribed for glycogen.

Generation of CG4607-mRuby3 plasmid
CG4607-mRuby3 construct was created through Gibson cloning

(Gibson et al. 2009). The CG4607 cDNA (clone RH58543 #11058,

Drosophila Genome Resource Center, IN, USA) was PCR amplified

using the following primers:

dCG4607GibF1: GGACTCAGATCTCGAGACAAGATGAAGGGCCA

GCAGGAGGAG

dCG4607GibR1: CATGCTGCCttCAGCTGAGGACAATTTCTTTAG

GAACACTT

The backbone was PCR amplified using GLUT4-mRuby3 plas-

mid to include overhangs using the following primers:

mRuby3GibF1: TCCTCAGCTGAAGGCAGCATG

mRuby3GibR1: AGCTGAGGATCCCTTGTCTCGAGATCTGAGT

CC.

PCR products were combined with Gibson master mix, and the

resulting plasmid was sequenced before cell transfection.

Cell culture and immunostaining
HeLa cells were maintained in DMEM with 1% glutamax and 10%

FCS at 37�C and 5% CO2. Cells were transfected with lipofect-

amine 2000 and split onto coverslips at 2 � 105 cells/mL.

Coverslips were fixed in 4% paraformaldehyde, washed with PBS,

and blocked for 30 minutes with 0.02% saponin (Sigma) and 2%

BSA in PBS. Primary antibodies: ms anti-LAMP1 (1:100,

Developmental Studies Hybridoma Bank). Secondary antibodies:

Gt anti-mouse 488 (1:200, Invitrogen). Coverslips were mounted

in Mowiol and imaged using a 60x water objective on the A1R

confocal (Nikon). Colocalization analysis was performed using

the coloc2 plugin in Fiji (Schindelin et al. 2012, ImageJ, NIH,

Bethesda, MD, USA).

qPCR of knockdown
Three replicates of 10 flies were homogenized in TRIzolTM

Reagent (Invitrogen, 15596026). RNA isolation and qPCR were per-

formed as previously described (Krycer et al. 2019). Tubulin was

used as a housekeeping gene and the following primers were

used:

CG4607: F: 50-ACTCCCACGCGAAGGAGAA-30 R: 50-GCTGATTGA

GAGTAACTGCCG-30

Tubulin: F: 50-TGTCGCGTGTGAAACACTTC-30 R: 50- AGCAGG

CGTTTCCAATCTG-30

The samples were run using the ROCHE Lightcycler 480 II

(Roche). The knockdown efficiency was calculated using the

delta-delta Ct method (Excel and GraphPad, Prism) and the Ct-

values were graphed. Significance between the control and

knockdown transcript was calculated using a Student’s t-test

(P< 0.0001 ****).

Results
Starvation resistance of DGRP across
4 different diets
We first sought to identify novel diet-responsive genes that affect
nutrient storage and utilization in Drosophila. We used survival
during starvation as a surrogate for an obesogenic phenotype to
screen for dietary effects. Starvation resistance is the ability of
certain fly strains, often with abundant energy stores, to live lon-
ger under starvation conditions, compared to others. This is a
powerful and sensitive assay as starvation resistant flies are of-
ten replete with fat stores immediately prior to starvation and
feeding flies a high sugar diet (HCD) increases fat stores and pro-
longs starvation survival (Djawdan et al. 1998; Harshman et al.
1999; Bjedov et al. 2010). The diets (NF, HCD, HFD, and HPD,
Supplementary Table S1) were selected based on previous studies
that explored the effect of different sugar and protein concentra-
tions on starvation resistance in a single strain (Skorupa et al.
2008; Lee and Jang 2014). The dietary composition is indicated in
Supplementary Table S1: the carbohydrate is sucrose; the protein
is yeast, and the fat is coconut oil. We exposed 3–5-day old adult
male flies from 178 DGRP strains to the four diets for 10 days and
then measured starvation resistance by removing food and
assessing survival every 12 hours until all the flies were dead
(Figure 1A, Supplementary Table S7). The DGRP has previously
been used to examine starvation resistance in flies on a stan-
dard diet (Mackay et al. 2012) and there was a strong correlation
in mean starvation resistance across the 178 strains between
the two studies (males, fed NF, Pearson’s R¼ 0.58, Figure 1B),
demonstrating the robustness of the starvation phenotype
and the DGRP resource. Interestingly, we found that previously
published food intake data in DGRP (Garlapow et al. 2015)
was negatively correlated with starvation resistance across
strains (males, fed NF, Pearson’s R ¼ �0.32, Figure 1B) in both
our study and previously published starvation resistance data
(Mackay et al. 2012). This is intriguing as it suggests that strains
that ate the most were the least resistant to starvation. This
could be due to differences in metabolic rate, an increase in
hunger cues, nutrient storage capacity, or differences in hor-
monal responses.

We observed variation in starvation resistance across all DGRP
strains within each diet (Figure 1C). Unsupervised hierarchical
clustering of the raw starvation resistance data revealed consid-
erable variability in how strains responded to different diets with
fly strains clustering into groups with distinct diet-specific star-
vation responses (Figure 1D). Starvation resistance on NF was not
a predictor for starvation resistance on other diets. Some strains
showed improved starvation resistance on both HCD and HFD,
while others only displayed extended starvation resistance on
HCD, and some did not show any difference between NF, HCD, or
HFD. Notably, most strains showed reduced starvation resistance
on HPD. Clustering was used to segregate flies into discrete star-
vation response groups. As illustrated in Figure 2, three different
classes of response were observed: the “E” responders were those
strains that responded only to the different diets in the same way
(Figure 2A); the “G” responders were those that did not elicit any
difference in their starvation response regardless of type of diet
but showed differences between strains (Figure 2B); and the “G þ
E” responders were those that showed differences amongst
strains and between diets as illustrated by the cross-over pat-
terns (Figure 2C). Notably, the latter class was the most preva-
lent. To specifically identify diet-specific effects on starvation
resistance, we next standardized each diet response to that
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observed in response to NF. This analysis clearly revealed clus-
ters of strains that exhibited vastly different diet-responses
(Figures 1D, 2, Supplementary Figure S1). While many strains
exhibited high starvation responses on high fat and HCDs and
low responses on HPD, there were many strains that showed
quite different patterns. For example, some strains showed high
responses to carbohydrate but low responses to HFD while others
showed converse responses. Notably, these data included strains
that did not tolerate a particular diet, where all flies died during
the 10-day feeding period, prior to commencement of the starva-
tion resistance analysis. These strains were assigned the lowest
observed log2 fold change (�5.9) and include two strains that
died on HCD (#26, #45) and HPD (#336, #849) (Supplementary
Figure S1).

Gene 3 diet interactions and heritability
To accurately determine gene-by-diet interactions would require
comparison of the effects of different diets in the same individu-
als. Obviously, this is not possible in this case. However, because
we are using inbred lines we reasoned that it would be feasible to
obtain gene-by-diet estimates using more qualitative approaches.
We quantified the differential contributions of diet and gene-by-
diet interactions to the variation in starvation resistance among
DGRP strains. We determined the broad-sense heritability (H2) of
the starvation response using two linear-mixed models (LMMs).
LMM1, which assumed common effects of diets across all strains,
and LMM2 (random-regression), which assumed strain-specific
effects of diet. LMM 1 estimated the H2 of starvation resistance,
after accounting for dietary effects at 48.9% (see Supplementary

Figure 1 Inter-strain variation in response to diet. (A) DGRP screen schematic outlines the workflow. Each individually colored fly represents an
individual DGRP line and survival curves represent the measured starvation resistance (in hours) after exposure of flies to each diet. (B) A pairs plot
showing correlations of the mean starvation resistance data fed the NF diet from this study with previously published starvation resistance data
(Mackay et al. 2012) and food intake data (Garlapow et al. 2015). The red lines represent local linear regression (locally estimated scatterplot smoothing)
of the correlations. (C) Histograms of the mean Log-transformed starvation resistance data for each strain on each diet. (D) Heatmap and Euclidean
hierarchical clustering of the raw mean starvation resistance (in hours) of each DGRP strain on each diet.
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Table S2 for LMM coefficients). LMM2 had a significantly better fit
than LMM1 (likelihood ratio test, L¼ 85543, d.f. ¼ 15, P< 0.001) in-
dicating the presence of gene by environment (G�E) interactions.
Within-diet, the H2 of starvation resistance on NF, HCD, HFD, and
HPD was 61.6, 62.7, 59.1, and 68.9%, respectively (Supplementary
Table S2), thus illustrating the importance of genetics in govern-
ing phenotypic outcomes such as starvation resistance in re-
sponse to diets of different macronutrient compositions.

Mapping “diet-responsive genes”
We aimed to identify gene–diet interactions by uncovering SNPs
associated with diet-responsive starvation resistance using a
multi-step analysis (Figure 3A). For this analysis, the starvation
resistance data (log2 fold change) was z-scored for each diet. This
resulted in relatively normally distributed data with the excep-
tion of several outliers, which comprised the strains that were in-
tolerant to particular diets, including the strains (#26 and #45)
that displayed lethality on HCD (Supplementary Figure S2). As we
were interested in mapping the genetic contribution to starvation
resistance in flies exposed to three separate diets compared to
NF, we used a multivariate approach to identify SNPs rather than
three separate univariate analyses. With more than one trait,
multivariate approaches have proven to be more powerful in
identifying biologically meaningful associations (Pitchers et al.
2019). We included 1,883,157 SNPs with a minor allele count of
�10 in the multivariate ANOVA (MANOVA) (Garlapow et al. 2015).
Large genomic inversions, Wolbachia status, and the population
structure relationship matrix were included as covariates in the
analysis. We observed no significant association of the starvation
resistance responses to Wolbachia, inversion status, or popula-
tion structure (Supplementary Table S5). A quantile–quantile (Q–
Q) plot was generated to examine the distribution of the P-values,
which is expected to have uniform distribution under the null as-
sumption. This Q–Q plot showed an enrichment of significant
SNPs compared to the expected P-value distribution
(Supplementary Figure S3), notably persistent after accounting
for possible confounders such as population structure, large ge-
nomic inversions, or Wolbachia infection status. Overall conven-
tional SNP analysis resulted in an enrichment of SNPs associated
with starvation resistance across all diets.

Using the MANOVA, accounting for outliers, we selected 3574
SNPs across all diets (P-value < 10�3) for further analysis. These
SNPs were distributed across the entire fly genome (Figure 3B,
black dots). This approach is a departure from traditional DGRP
screens which tend to use a more stringent statistical threshold

and these studies often fail to identify significant SNPs. Such sub-
threshold approaches are valid provided they are accompanied
by rigorous secondary screens. Similar approaches are now being
used in human GWAS to identify biologically relevant sub-
threshold loci (Wang et al. 2016; Nelson et al. 2017). In our case,
we performed a post-hoc analysis on the 3574 SNPs using a
Wilcoxon test. We next performed a post-hoc analysis on the 3574
SNPs using a Wilcoxon Test. This enabled us to identify diet-
responsive SNPs that showed a significant difference between a
particular diet and NF (P< 0.005). In addition, we applied a more
stringent filter with a minimum log2 fold change of 60.3 in star-
vation resistance. This yielded 566 variants that showed a signifi-
cant change in starvation resistance on at least one diet
(Supplementary Table S9). Of these, 7 were found to have signifi-
cant variance in response to two diets (4 in HPD & HFD and 3 in
HCD & HFD, Figure 3C). Notably, most of the 566 SNPs were asso-
ciated with reduced starvation resistance in HFD and HPD, with
fewer SNPs identified in HCD, as illustrated in volcano plots in
Figure 3, D–F.

The 566 significant diet-responsive SNPs were located within
293 genes (Supplementary Table S9), 174 of which had human
orthologs, with a high proportion of the SNPs (>60%) found in
noncoding regions (Supplementary Tables S3 and S4), consistent
with previous studies using DGRP (Mackay et al. 2012). These data
provide an abundant and valuable resource of diet-responsive
genes.

Candidate gene validation
Aside from the post-hoc Wilcoxon cut-off P-value of <0.005 and
>60.3 log2 fold change, we employed additional selection criteria
to select genes for validation. These criteria included: the pres-
ence of a human ortholog with an ortholog score greater than
five; an annotated gene function; and an annotated role in
“transcription factor binding, enhancer or regulatory region”; ex-
cluding any gene with multiple SNPs with opposing phenotype
directions (Supplementary Table S10). This resulted in 91 diet-
responsive SNPs in 72 genes. In view of starvation resistance phe-
notype involving nutrient storage and/or metabolism, these 72
genes were screened for a potential role in nutrient sensing. Only
two genes matched this criterion, one encoded for a glucose
transporter (CG4607) and the other has been implicated in
insulin-regulated glucose transport (Cip4), thus these two genes
were selected for further validation. CG4607 is an ortholog of the
glucose transporter GLUT8/GLUT6 and Cdc42-interacting protein 4
(Cip4) is involved in the trafficking of the insulin-responsive
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glucose transporter GLUT4 to the cell surface to facilitate glucose
uptake in mice and is also implicated in phospholipid binding in
Drosophila (Feng et al. 2010; Zobel et al. 2015). We used RNAi
knockdown with the GAL4-UAS system (Brand and Perrimon
1993) to generate whole-body knockdown flies for these genes in
the W1118 strain and assessed starvation resistance on all four
diets using a more precise (low-throughput) method for monitor-
ing starvation with the DAMS (Pfeiffenberger et al. 2010). Based on
the Wilcoxon test, the SNPs in CG4607 (upstream SNP) and Cip4
(synonymous-coding SNPs) were associated with reduced starva-
tion resistance on HPD or HFD, respectively. Notably, whole body
knockdown of both genes confirmed the reduction in starvation
resistance on the respective diet compared to NF (Figure 4 and
Supplementary Figure S4, Table 2). We used the significance test
from a cox hazard multivariate regression analysis, which inves-
tigates the effect of multiple variables on the time it takes for a
specific event to happen, to determine if the relationship between
diet and starvation survival was significant (Table 2). The results
using RNAi knockdown suggest that the SNPs identified here
likely result in a change in expression of the associated gene.

Analysis of CG4607, an example of a diet
responsive gene
In view of the striking starvation resistance phenotype observed
in flies bearing the CG4607 variant allele in response to HPD and
because CG4607 encodes a putative glucose transporter, which is
likely involved in diet responses, we decided to focus on this
gene. CG4607 is homologous to the human glucose transporters

SLC2A6 (GLUT6) and SLC2A8 (GLUT8). GLUT6 (formerly GLUT9) is
overexpressed in endometrial cancer and is highly expressed in
the brain, spleen, and leukocytes in mice (Doege et al. 2000).
GLUT8 is highly expressed in the testis, heart, brain, liver, fat, and
kidneys in mouse and has been shown to respond to insulin and
transports trehalose in hepatocytes (Carayannopoulos et al. 2000;
Mueckler and Thorens 2013; Mayer et al. 2016). In flies, CG4607 is
highly expressed in the adult midgut and is modestly expressed
in other tissues such as the heart, fat body, salivary gland, and fly
heads (Robinson et al. 2013). Two RNAi hairpins were available to
knockdown CG4607, CG4607 KK104152, and CG4607 GD3268. Whole-
body expression of the latter was lethal while whole-body expres-
sion of the former was viable presumably because it led to an in-
complete, 79% reduction in CG4607 expression (Supplementary
Figure S5).

We next investigated the mechanism by which CG4607 con-
trolled nutrient storage or utilization in response to HPD com-
pared to NF. Starvation resistance was not significantly different
between NF or HPD pre-fed control flies (Figure 4A). However, NF
pre-fed flies expressing UAS-CG4607 KK104152 RNAi in the whole
body (CG4607 KD) were starvation resistant but showed starvation
sensitivity on HPD, suggesting they were low carbohydrate
stressed (Figure 4A, Table 2). We posited that the starvation phe-
notype was reflected in the levels and handling of energy stores.
To determine whether the change in starvation resistance arose
from differences in nutrient storage during feeding or utilization
during starvation, we measured energy stores during feeding and
after 24 hours of fasting. Fed nutrient levels were similar between

Figure 3 Mapping the SNPs in diet-responsive genes (A) Schematic of SNP analysis used in this study. (B) Manhattan plot of the MANOVA SNP analysis
shows all SNPs with 3574 significant SNPs (P-value of < 1 � 10�3, dashed line) in black. The x-axis represents the fly chromosomes and y-axis displays -
Log (P-value) of the MANOVA. (C) An upset plot indicating the degree of overlap of the numbers of highly significant SNPs between each diet and the
number of SNPs per diet. (D–F) Volcano plots of Wilcoxon Test of the 566 significant SNPs in (C) for HCD (D), HFD (E), and HPD (F). The y-axis shows the -
Log (P-value) of the Wilcoxon Test and the x-axis displays the Log2 fold change in starvation resistance of the indicated diet compared to NF. Highly
significant SNPs with a P-value <0.01 and a fold change >60.3 are in black with validated genes labeled and indicated in red.
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CG4607 KD and control flies on both NF and HPD (Figure 4, B–E),
with the exception of TAGs on NF and glycogen on HPD, both of
which were higher in CG4607 KD animals (Figure 4, B and D).
However, major differences in nutrient storage levels between
control and CG4607 KD flies were observed upon starvation on
both diets. Fasted glycogen and TAG levels were significantly
higher in CG4607 KD flies compared to control flies when pre-fed
NF (Figure 4, F and H). While fasting of HPD-fed flies for 24 hours
resulted in a marked depletion of nutrients in both genotypes,
the CG4607 KD flies showed detectable levels of energy storage, in
contrast to control flies, where none of the nutrients were
detected (Figure 4, F–H).

Knockdown of CG4607 results in HCD-intolerance
As part of the validation process, CG4607 KD and control flies

were subjected to the other diets. Remarkably, CG4607 KD flies

died after only 3 days exposure to the HCD (Figure 5A), while sur-

viving on the other diets. It is worth emphasizing that these flies

died prior to any food removal, indicating that they were intoler-

ant to HCD. Notably, one of the two DGRP strains (#26) that died

only while feeding on the HCD but not on any other diets, con-

tained the CG4607 variant allele (Supplementary Table S9), sug-

gesting that the HCD-intolerance of strain 26 may in part be due

to the presence of the variant in CG4607. However, other strains

Figure 4 CG4607 interacts with HPD to regulate starvation resistance. Assessment of energy storage in control and ubi-GAL4>CG4607 KD male flies on NF
or HPD. (A) Starvation survival curves of control and ubi-GAL4>CG4607 KD male flies fed NF or HPD for 10 days followed by food removal and monitoring
until flies died (data from two independent experiments, n¼ 32 flies/genotype). (B–E) Fed nutrient levels were measured in control and ubi-GAL4>CG4607
KD flies after feeding NF or HPD for 10 days, including glycogen (B), glucose (C), triglycerides (TAG) (D, E). (F–H) Fasted nutrient levels were measured in
control and ubi-GAL4>CG4607 KD flies fed NF or HPD for 10 days and then starved for 24 hours including glycogen (F), glucose (G), TAGs (H). (B–H): n¼ 36
flies/genotype and representative of two experiments. Significance between genotypes (*) and diets (#) was calculated using a one-way ANOVA, **/##
P< 0.01, ***/### P< 0.001 (Prism).
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containing the CG4607 variant allele survived on HCD suggesting

that additional genetic modifiers are involved in the HCD intoler-

ance. To further assess this HCD-intolerance phenotype, we

sought to monitor the behavior of single-housed control and

CG4607 KD flies while they were eating NF or HCD. We found a

striking hyperactivity in CG4607 KD flies on HCD that abruptly

stopped after 12 hours when flies died, as indicated by a total

lack of activity (Figure 5, B and C). For the first 6 hours, control

flies fed NF displayed a mean activity of 2.85 (n¼ 16) beam

crosses, and this did not change upon feeding HCD (mean ¼ 2.85,

n¼ 14) (Figure 5D). Knockdown of CG4607 increased activity, with

a mean of 4.22 (n¼ 14) for CG4607 KD flies fed NF, and this was ex-

acerbated with the HCD diet (mean ¼ 14.24, n¼ 13) (Figure 5D).

This hyperactivity was reminiscent of flies that experience star-

vation (Keene et al. 2010) and we speculate that the lethality of

the CG4607 KD flies was due to their inability to consume and/or

metabolize HCD, thereby experiencing starvation. However, upon

measuring caloric intake in control and CG4607 KD flies we ob-

served that although both ate less calories when fed HCD com-

pared to NF, the CG4607 KD flies ate 38% more calories when fed

HCD compared to controls on HCD (Figure 5E). This indicates a

genotype � diet interaction, albeit not significant by two-way

ANOVA (Supplementary Table S6). Thus, the observed hyperac-

tivity of CG4607 KD flies on HCD may be due to a perception of

hunger brought about by the loss of glucose sensitivity, or a de-

fect in the ability to utilize stored nutrients that ultimately lead

to lethality.

We next attempted to determine which tissue is responsible
for these CG4607 knockdown phenotypes. While depletion of
CG4607 with both midgut and fat body drivers was viable, they
did not reproduce the phenotype observed with whole-body
knockdown of CG4607 as described above. Intriguingly, the ex-
pression of two hairpins using the muscle-specific driver mef2-
GAL4 was lethal (data not shown). Hence, while we were unable
to pursue the starvation sensitivity of these flies, these data raise
the possibility that the major site of CG4607 starvation sensitivity
is the heart, where both mef2 and CG4607 are expressed.

To further probe the role that CG4607 plays in mobilizing en-
ergy stores during starvation, we wanted to explore if CG4607
functions like a glucose transporter. To address this, we mea-
sured glucose utilization by feeding flies a NF diet containing 14C-
radiolabelled glucose and monitoring glucose incorporation into
CO2 and lipids (Francis et al. 2019; Krycer et al. 2019). We observed
that CG4607 KD flies exhibited lower levels of glucose oxidation
and incorporation into lipids compared to controls (Figure 6, A
and B), indicating reduced glucose utilization. This was not due
to lower food intake in the CG4607 KD flies (Figure 6C). Given the
effect of CG4607 knockdown on glucose utilization, we wanted to
determine its subcellular localization and posited that its locali-
zation would be similar to its mammalian homologs. The mam-
malian GLUT6 and GLUT8 both localize to lysosomes (Lisinski
et al. 2001; Diril et al. 2009; Maedera et al. 2019). To determine if
CG4607 is also localized to lysosomes, we expressed mRUBY3-
tagged CG4607 in HeLa cells, a commonly-used mammalian cell-
line that is adherent and easily genetically manipulatable. We
used immunofluorescence microscopy to observe that, like
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GLUT6 and GLUT8, CG4607 partially co-localized (Avg. Pearson’s

r¼ 0.40, n¼ 15 cells) with lysosomal markers (Figure 6, D and E).

Taken together, our data show that CG4607, a GLUT6/8 ortholog,

is an example of a diet-responsive gene and that responds to die-

tary sugar possibly by regulating lysosomal glucose metabolism.

Discussion
The DGRP is a powerful tool for understanding the genetics driv-

ing variation of metabolic phenotypes (Mackay et al. 2012;

Garlapow et al. 2015; Unckless et al. 2015; Nelson et al. 2016; Jin

et al. 2020). Our approach measured starvation resistance in the

adult male population after exposure to diets that vary in sugar,

protein, and fat content. Using this method, the DGRP supported

the notion that nutrition responses vary considerably between

individuals of different genetic backgrounds. Furthermore, gen-

der has been shown to have a significant impact on diet pheno-

types (Chandegra et al. 2017) and thus should be explored in

future diet–gene interaction studies. Although diet had a major

influence on starvation resistance, the diets that enhanced or re-

duced starvation resistance differed markedly between Drosophila

strains. In particular, exposure to a diet high in protein (HPD) eli-

cited a greater genetic contribution to phenotypic variation.

These data highlight a heterogeneity in the response to diet that

underlies the fundamental principles of personalized nutrition.

The SNPs we identified provide a resource dataset for further

study and we validated 2 genes as bona fide diet responsive genes.

Knock down of CG4607, was linked to increased caloric intake

and nutrient storage combined with reduced glucose utilization.
In relation to our study, since the natural food sources of

Drosophila are rotting fruits that contain sugar and yeast (Markow

2015), we postulate that genetic variants involved in the process-

ing, storage, and utilization of sugar or protein (from yeast) con-

tribute to differences in starvation resistance. Indeed, changes in

sugar and lipid handling enzymes have previously been linked to

starvation resistance (Harshman et al. 1999). Alternatively, sugar

and protein (from yeast) are dominant drivers of food intake with

major sensory systems to control intake of these macronutrients,

and hence these are more likely to be under genetic control

(Chng et al. 2017; May et al. 2019). Overall, this demonstrates that

the mechanisms that underpin diet sensitivity are complex and

involve differences in food preference and thus food intake as

well as differences in nutrient metabolism (energy storage and

utilization), all of which are regulated at least in part by one’s ge-
notype.

This study provides a rich resource of diet-responsive genes
and pathways. The majority of the SNPs in candidate genes were
in noncoding regions (>60%), a finding that is consistent with
previous DGRP (Mackay et al. 2012) and human GWAS (Gallagher
and Chen-Plotkin 2018), and the functional consequences of such
SNPs remain to be identified. As a proof of principle, we were able
to validate candidate genes with synonymous coding SNPs using
RNAi knockdown indicating that these types of mutations may
control expression of these genes. However, further studies ex-
amining transcriptional control are required to validate this con-
clusion.

We focused on CG4607, a validated diet-responsive gene.
The SNP in CG4607 was noncoding and 506 bp upstream of the
start site, suggesting that it could affect transcription, splicing,
or post-transcriptional processing. Additionally, the SNP was
within a regulatory transcription factor binding site for the in-
vective transcriptional repressor. While it may be of interest to
determine if the SNP alters the expression of CG4607, our vali-
dation using RNAi knock down clearly showed that CG4607 is a
diet-responsive gene. SNPs in CG4607 were identified in a
GWAS of sleep/activity (Harbison et al. 2013). Consistent with
this, CG4607 KD flies showed significantly elevated activity
when fed a HCD. Although CG4607 is highly expressed in the
midgut, CG4607 knockdown in this tissue did not reproduce the
starvation resistance phenotype on HPD, nor lethality on HCD.
We found a similar result when CG4607 was selectively
knocked down in the fat body. These results suggest that the
function of CG4607 in the midgut or fat body alone are not re-
quired to regulate starvation survival in response to these diets
and it may be that CG4607 mediates its metabolic effects
through multiple tissues. Notably, we observed lethality when
using the muscle-specific promoter mef2 to knock down
CG4607, and so we cannot exclude the possibility that the mus-
cle or cardiac tissue is the site of CG4607 starvation resistance
sensitivity. Further studies using alternate muscle-specific pro-
moters are required to resolve this.

Our study provides several lines of evidence that CG4607
mediates its effects via regulating glucose metabolism. First,
whole body depletion of CG4607 resulted in lethality after only 3
days on a HCD (Figure 5A). The HCD lethality was accompanied
by hyperactivity and an increase in caloric intake on HCD com-
pared to control flies. This is symptomatic of a starvation
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phenotype (Yang et al. 2015; Yu et al. 2016). Second, CG4607 KD ani-
mals have higher energy stores on NF compared to control flies.
Third, our metabolic labeling experiments show that CG4607 KD

animals exhibit reduced glucose utilization. Finally, the closest
mammalian orthologs of CG4607 are the human glucose trans-
porters GLUT6 and GLUT8. Recently, GLUT8 has been shown to
transport trehalose in mammalian cells (Mayer et al. 2016) sug-
gesting that CG4607 may play a similar role in flies given that tre-
halose is the major circulating sugar in flies. Furthermore, GLUT8
was shown to regulate AMPK phosphorylation and signaling via
trehalose transport (Mayer et al. 2016; Narita et al. 2019) and
AMPK deficient flies are starvation sensitive (Johnson et al. 2010).
It would be of interest to determine if CG4607 regulates AMPK in
a similar manner as its mammalian ortholog. Given that AMPK is
an energy sensor perhaps energy-sensing pathways play a part in
diet-dependent differences in starvation resistance.

CG4607 is targeted to lysosomes instead of the plasma mem-
brane, unlike other facilitative sugar transporters (Lisinski et al.
2001; Maedera et al. 2019). This is intriguing as mTORC1 (Lee et al.
2009; Efeyan and Sabatini 2013), which regulates numerous met-
abolic processes including glycogen breakdown in autophagic
vesicles also localizes to lysosomes (Mony et al. 2016; Zhao et al.
2018). Given that compared to control flies, CG4607 KD flies exhib-
ited higher glycogen levels after starvation, and broke down more
TAGs during starvation, the metabolic phenotype of CG4607 KD

flies resembles a lysosomal glycogen storage disease, where lyso-
somal glycogen cannot be accessed for energy utilization in the
cytosol. Together, this provides strong evidence that CG4607
mediates its effects on starvation resistance by regulating glucose
metabolism. Hence this highlights the importance of glucose me-
tabolism as a potential diet responsive pathway.

Overall, our findings demonstrate that gene–diet interactions
are an important factor to consider in metabolic homeostasis.
This has substantial ramifications for human health because it
means that the concept of a “healthy” diet varies between indi-
viduals, thus questioning population-wide nutritional recom-
mendations. While our study provides the basis for a
nutrigenomics initiative such an endeavor is likely to require a
substantial future investment at the clinical level.

Data availability
The authors confirm that the data supporting the findings of this
study are available within the article [and/or] its supplementary
materials. Supplementary Figure S1 contains a heatmap of NF-
standardised mean starvation survival data. Supplementary
Figure S2 contains a histogram of NF-standardized data.
Supplementary Figure S3 contains a Q–Q plot of the MANOVA P-
values. Supplementary Figure S4 contains the starvation survival
plot for control and knockdown of Cip4. Supplementary Figure S5
contains plot validating CG4607 RNAi knockdown with qPCR.
Supplementary Table S1 contains the composition of diets used
in the study. Supplementary Table S2 contains the Linear-Mixed
Model Estimates, and Derived Heritability. Supplementary Table
S3 contains the numbers of SNPS associated with decreased star-
vation resistance on 1 diet and Supplementary Table S4 contains
the numbers of SNPs associated with increased starvation resis-
tance on 1 diet. Supplementary Table S5 contains the ANOVAs
for covariates for HCD, HFD, and HPD. Supplementary Table S6
contains ANOVA tests to determine the significance of gene–diet
interaction on caloric intake of NF or HCD. Supplementary Table
S7 contains the raw mean starvation survival data for each DGRP
line on each diet. Supplementary Table S8 is a dataset containing

3574 SNPs above the P< 1 � 10�3 MANOVA threshold.
Supplementary Table S9 is a dataset containing 566 SNPs filtered
from the 3574 (Supplementary Table S8) by Wilcoxon P-value
<0.005 and a dietary fold change greater than 60.3.
Supplementary Table S10 is a dataset containing the 91 SNPs (out
of the 566 from Supplementary Table S9) that meet criteria out-
lined in the “candidate gene validation” section of the Results.
Supplementary File S1 is the code used to generate the heritabil-
ity data, which includes two accompanying files:
Francis_Long_Data.csv and ln_data_long.csv. These supplemen-
tary files, Figures, and datasets are found in Figshare DOI:
https://doi.org/10.6084/m9.figshare.9740801.
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