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Estrogen receptor-positive and human epidermal growth factor receptor 2-

negative (ER+HER2�) breast cancer accounts for ~ 60–70% of all cases of

invasive breast carcinoma. High-grade ER+HER2� tumors respond poorly

to endocrine therapy. In this study, we systematically analyzed clinical and

multi-omics data to find potential strategies for personalized therapy of

patients with high-grade ER+HER2� disease. Six different cohorts were

analyzed, for which multi-omics data were available. Grade III ER+HER2�

cases harbored higher proportions of large tumor size (> 5 cm), lymph

node metastasis, chemotherapy use, and luminal B subtypes defined by

PAM50, as compared with grade I/II tumors. DNA methylation (HM450)

data and methylation-specific PCR indicated that the cg18629132 locus in

the MKI67 promoter was hypermethylated in grade I/II cases and normal

tissue, but hypomethylated in grade III cases or triple-negative breast can-

cer, resulting in higher expression of MKI67. Mutations in ESR1 and TP53

were detected in post-endocrine treatment metastatic samples at a higher

rate than in treatment-naive tumors in grade III cases. We identified

42 and 20 focal copy number events in nonmetastatic and metastatic

high-grade ER+HER2� cases, respectively, with either MYC or MDM2

amplification representing an independent prognostic event in grade III

cases. Transcriptional profiling within grade III tumors highlighted ER sig-

naling downregulation and upregulation of immune-related pathways in

non-luminal-like tumors defined by PAM50. Recursive partitioning analysis
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was employed to construct a decision tree of an endocrine-resistant sub-

group (GATA3-negative and AGR-negative) of two genes that was vali-

dated by immunohistochemistry in a Chinese cohort. All together, these

data suggest that grade III ER+HER2� tumors have distinct clinical and

molecular characteristics compared with low-grade tumors, particularly

in cases with non-luminal-like biology. Due to the dismal prognosis in

this group, clinical trials are warranted to test the efficacy of potential

novel therapies.

1. Introduction

Breast cancer is classified into different molecular sub-

types based on estrogen receptor (ER), progesterone

receptor (PR), and human epidermal growth factor

receptor 2 (HER2) status, which dictate distinct thera-

peutic choices and clinical outcomes [1]. Histologic

grade, representing degree of tumor cell differentiation

(tubule formation, nuclear pleomorphism, and mitotic

count), is one of the best-established prognostic factors

in breast cancer, but has a differential effect on sur-

vival for each molecular subtype [2]. Previous studies

have demonstrated that the maximum benefit of histo-

logic grade assessment would be in the subgroup of

patients with early ER-positive/HER2-negative

(ER+HER2�) tumors [3–8], which contributes to 60–
70% of all breast cancer [9]. A series of studies high-

lighted that histologic grade is an independent prog-

nostic factor for patients with ER+HER2� tumors in

gene signature-based models [2,10,11]. Notably, high

histologic grade might be associated with resistance to

endocrine therapy in node-negative ER+HER2� sub-

group, when only receiving adjuvant endocrine ther-

apy, with 7% rate of 10-year risk of relapse for grade

I, 14% for grade II, and 31% for grade III tumors [5].

Given substantial inter- and intralaboratory varia-

tion in histologic grading [12], numerous studies inves-

tigating the molecular basis of morphological

phenotypes in breast cancer and its integration with

molecular data have identified room for improvement

in terms of breast cancer classification, therapy

response prediction, and clinical management [13–16].
Several genetic abnormalities are found to be statisti-

cally associated with higher histologic grade in invasive

breast cancer, including three most prevalent cancer

driver events, TP53 and PIK3CA mutations and MYC

amplification [16–20]. Transcriptomic profiles at gene

and isoform level can be used to stratify grade II

tumors into two distinct groups with different prog-

nostic outcomes, which has the potential to reduce

both under- and overtreatment of breast cancer

patients [14]. Nevertheless, previous omics-based inves-

tigations have not considered the role of molecular

subtype when studying histologic grade in breast can-

cer [3,21], especially for ER+HER2� subtype.

High histologic grade is associated with significantly

increased risk of breast cancer-specific mortality

among patients with ER+HER2� tumors, but the

cause for worse outcomes in this subset remains

unknown. Therefore, a comprehensive assessment

based on multi-omics data is needed in order to pro-

vide evidence of individualized decision-making for

those high-grade ER+HER2� cases. In this study, we

analyzed six different breast cancer cohorts aiming to

characterize clinicopathological features, epigenetic

regulation factors, genomic alterations, and develop

gene panel to identify its intrinsic molecular subtypes,

which may serve as novel biomarkers or therapeutic

targets for grade III ER+HER2� breast cancer

patients’ treatments.

2. Methods

2.1. Patients and samples

This study included six cohorts comprising clinico-

pathological, multi-omics, and follow-up data.

Patients’ selection included ER+HER2� status with

known nuclear grade. Additionally, the study also

included triple-negative breast cancer (TNBC) cases, as

a comparison because of their HER2-negative status

and worse survival in breast cancer. The first longitu-

dinal cohort study used the April 2019 release of the

Surveillance, Epidemiology, and End Results (SEER)

database of the National Cancer Institute (NCI). This

database included 18 population-based cancer reg-

istries covering 34.6% of the US population [22]. Of

150 060 enrolled HER2-negative patients, 25 629

(17.1%) were grade III ER+HER2�. The second and

third cohorts were the Molecular Taxonomy of Breast

Cancer International Consortium (METABRIC) and
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The Cancer Genome Atlas (TCGA) including 404 and

88 grade III ER+HER� cases, respectively, with RNA-

seq, somatic mutation, copy number alterations

(CNAs), and clinical data. The pathway or signature

scores were obtained for breast cancer samples within

TCGA from the supplementary table of Perou and

colleagues, which can be accessed by the link: https://

www.ncbi.nlm.nih.gov/pmc/articles/PMC4603750/bin/

NIHMS724218-supplement-2.xlsx. The fourth study

was from Memorial Sloan Kettering Cancer Center

(MSKCC) [23], containing 272 nonmetastatic and 39

metastatic grade III ER+HER- patients with somatic

mutation and CNA data. The fifth and sixth cohorts

are from China including 546 and 348 grade III

ER+HER2� patients obtained from Western China

Clinical Cooperation Group (WCCCG) and Fudan

University Shanghai Cancer Center (FUSCC),

respectively.

Treatment-na€ıve breast cancer tissues and adjacent

normal breast tissues were obtained from patients who

had undergone surgery at the Department of Endo-

crine and Breast Surgery, the First Affiliated Hospital

of Chongqing Medical University. All samples were

stored at �80 °C until evaluation by pathologists. All

tumor sample tissues were macrodissected with 50–
70% of tumor cells. All participants provided written

consent before enrollment, and the research was

approved (ref #2020-311) by Institutional Ethics Com-

mittees of the First Affiliated Hospital of Chongqing

Medical University. All procedures performed in stud-

ies involving human participants were in accordance

with the ethical standards of the institutional and/or

national research committee and with the 1964 Hel-

sinki Declaration and its later amendments or compa-

rable ethical standards.

2.2. Multi-omics analyses

2.2.1. Somatic copy number alterations

We applied GISTIC2.0 (genomic identification of sig-

nificant targets in cancer) to identify regions of copy

number alteration, which is a statistical method that

calculates a score that is based on both amplitude and

frequency of copy number changes at each position in

the genome, using permutation testing to determine

significance [24]. Significant focal regions of amplifica-

tion and deletion were identified by applying GISTIC

with following parameters (-ta 0.2 -td 0.2 -genegistic 1

-smallmem 1 -broad 1 -conf 0.95 -rx 0 –brlen 0.7 -cap

2.5 –armpeel 1). The CNA events were defined accord-

ing to the discrete copy number calls provided by

GISTIC 2.0: �2 = homozygous deletion; �1 = hemizy-

gous deletion; 0 = neutral; 1 = gain; and 2 = amplifica-

tion. In addition, CNApp (https://github.com/elifescie

nces-pub-lications/CNApp), developed by our group,

was used to compute CNA scores based on the num-

ber, length, and amplitude of broad and focal genomic

alterations, to assess differentially altered genomic

regions, and to perform machine learning-based pre-

dictions to classify high and low/intermediate grade

ER+HER2� tumors. First, CNApp applies a resegmen-

tation approach to adjust for amplitude divergence

due to technical variability and correct for estimated

tumor purity. Resegmented data are then used to cal-

culate the broad (BCS), focal (FCS), and global (GCS)

CAN scores, which provide three different quantifica-

tions of CNA levels for each sample. To compute

these scores, CNApp classifies and weights CNAs

based on their length and amplitude. For each sample,

BCS is computed by considering broad (chromosome

and arm-level) segment weights according to the

amplitude value. Likewise, calculation of FCS takes

into account weighted focal CNAs corrected by the

amplitude and length of the segment. Finally, GCS is

computed by considering the sum of normalized BCS

and FCS, providing an overall assessment of the CNA

burden. We downloaded segmented CAN data of

TCGA and MSKCC cohorts form cbioportal (http://

www.cbioportal.org). Mapping information for CNA,

Refgene and cytoband locations are based on the hg19

build of the human genome sequence from the Univer-

sity of California, Santa Cruz (http://genome.ucsc.ed

u).

2.2.2. Somatic mutation

Somatic mutation data of the TCGA and METAB-

RIC cohort were acquired from the ‘data_muta-

tions_extended’ file downloaded from cBioPortal

(http://www.cbioportal.org). We employed chi-square

test or Fisher’s exact test to compare the mutation

rates between grade I/II ER+HER2�, grade III

ER+HER2�, and TNBC cases. Furthermore, muta-

tional signatures were, respectively, estimated in three

groups, and extracted signatures can also be compared

to those validated signatures (https://cancer.sanger.ac.

uk/cosmic/signatures). APOBEC-induced mutations

are more frequent in solid tumors and are mainly asso-

ciated with C>T transition events occurring in TCW

motif. APOBEC enrichment scores in the above com-

mand are estimated using the method described by

Roberts et al. [25]. The further analyses and visualiza-

tions were conducted according to the workflow of

Bioconductor package ‘maftools’ (https://bioconduc
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tor.org/packages/release/bioc/vignettes/maftools/inst/

doc/maftools.html).

2.3. DNA methylation (HM450)

We employed the strategies of ELMER v.2 [26] to pro-

cess the DNA methylation (HM450) data of TCGA

cohort downloaded by Bioconductor package

‘TCGAbiolinks’ from Genomic Data Commons

(GDC) [27], which provides a systematic approach that

reconstructs altered gene regulatory networks by com-

bining enhancer methylation and gene expression data

derived from the same sample set using

MultiAssayExperiment (MAE) data structure. The

methylation level of CpGs was represented as b values

(b = Intensity of the methylated allele (M)/[Intensity

of the unmethylated allele (U) + Intensity of the

methylated allele (M) + 100], ranging from 0 to 1).

ELMER first identifies differentially methylated CpGs

(DMCs) occurring at promoter probes within two

comparisons (grade III ER+HER2� vs normal tissue;

grade III ER+HER2� vs grade I/II ER+HER2�) and

then searches for up/downstream gene targets for each

DMC. For each probe-gene pair tested, the raw P-

value Pr was corrected for multiple hypothesis using a

permutation approach.

2.4. GSVA/GSEA

Gene set enrichment analyses (GSEAs) were per-

formed using the GSEA software (v 4.0.3) [28] and the

Molecular Signature Database (v 6.1; http://www.b

road.mit.edu/gsea/) using the GSEA preranked func-

tion. One thousand total permutations were used. The

‘‘gsva’’ function in the R package ‘‘GSVA’’ [29]was

used to calculate the pathway scores.

2.5. Development of IHC classifier

We constructed an immunohistochemistry (IHC) clas-

sifier to identify non-luminal-like cases in grade III

ER+HER2� patients. Firstly, differential gene expres-

sion (DGE) analyses were conducted between grade

non-luminal-like and luminal-like III ER+HER2�

cases, setting parameters as |Fold change| > 2 and

adjusted P < 0.05. Among 641 DGEs, 386 genes

upregulated and 255 genes downregulated. To ascer-

tain it tested by IHC in clinical practice, we only kept

genes that had evidence of protein level in The Human

Protein Atlas (TCPA; http://www.proteinatlas.org/),

where we excluded 182 genes. Then, we further

selected 184 genes that had positive correlations (corre-

lation coefficient < 0.5, P < 0.05) with their proteins

based on CPTAC database (https://proteomics.cancer.

gov/programs/cptac). At last, a nonparametric classifi-

cation recursive partitioning analysis (RPA) model was

constructed based on 184 DGEs. The expressions of

GATA3 and AGR3 were identified as joint determi-

nants for non-luminal-like cases. Also, the prediction

ability and clinical significance of this IHC classifier

was validated using METABRIC cohort.

2.6. Methylation-specific PCR

To evaluate MKI67 methylation status, methylation-

specific PCR (MSP) was performed by using

AmpliTaq-Gold DNA Polymerase (Applied Biosys-

tems) [30]. Vector was used as a loading control. MSP

products were separated on 2% agarose gels (MBI

Fermentas, Vilnius, Lithuania) and photographed on a

gel imaging system (Bio-RAD Gel Doc XR+, CA,

USA). The methylation-specific primers were ascer-

tained based on location of cg18629132 and shown in

Table S1.

2.7. Immunohistochemistry

To evaluate the expression levels of GATA3 and

AGR3 in tumor tissues of grade III ER+HER2�

patients, IHC was performed using anti-GATA3 (sc-

269; Santa Cruz) and anti-AGR3 (sc-390940; Santa

Cruz). Tissue sections were fixed with 4% formalde-

hyde and embedded with paraffin. The expression

levels (i.e., positive or negative) were assessed by mean

density using IMAGE PRO PLUS software.

2.8. Statistical analysis

To present the demographic, clinicopathological, and

follow-up characteristics of the study cases, mean and

standard deviation (SD) values for continuous vari-

ables that are non-normally distributed as indicated by

Shapiro–Wilk normality test (all P < 0.05) and fre-

quencies (percentages) for categorical variables were

calculated. Kruskal–Wallis tests were conducted for

non-normally distributed continuous variables, and

two-sided Fisher exact tests or chi-square tests were

used to analyze contingency tables.

For outcomes in this study, patients were followed

from diagnosis of primary invasive breast cancer until

cancer relapse, death, loss to follow-up, or the end of

follow-up. Disease-free survival (DFS) was defined as

days from breast cancer diagnosis until confirmation

of cancer recurrence or death. Overall survival (OS)

was defined as an interval from breast cancer diagnosis

to death from any cause. Breast cancer-specific
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survival (BCSS) was defined as the time from diagnosis

to death from breast cancer. Cox proportional risk

modeling was fitted to estimate crude and

multivariable-adjusted hazard ratios (HRs) and 95%

confidence intervals (CI). To minimize the potential

impacts of competing risk bias, competing risk regres-

sion models were employed to estimate subdistribution

HR and 95% CI of BCSS, with nonbreast cancer

causes of death as competing risk events [31]. The

Kaplan–Meier method was used to estimate plotted

survival probabilities, whose P values for differences

between survival curves were calculated using the log-

rank test.

All statistical analyses were conducted using R-3.6.1

(https://www.r-project.org/), and the P values were

two-sided. P values of < 0.05 were considered statisti-

cally significant. For multiple testing adjustment, a

false discovery rate (FDR) was calculated.

3. Results

3.1. Clinicopathological characteristics and

survival outcomes of grade III ER+HER2� tumors

As shown in Tables S2–S4, compared with cases with

grade I/II ER+HER2� tumors, grade III ER+HER2�

patients had younger age at diagnosis, more intrinsic

luminal B-like subtypes, invasive ductal carcinomas,

larger tumors, greater risk of lymph node metastasis,

and a higher chance of receiving chemotherapy.

After the full adjustment for confounders, patients

with grade III ER+HER2� tumors had worse interme-

diate survival outcomes compared with grade I/II

ER+HER2� cases or TNBC, including DFS [multivari-

ate HR (95% CI) ER+HER2� grade III vs grade I/II,

MSKCC, 2.08 (1.22–3.56), P < 0.001; WCCCG, 2.52

(1.32–4.81), P < 0.001; FUSSC, 1.56 (1.00–2.44),
P = .04; Fig. 1; Table S5], OS [multivariate HR (95%

CI) ER+HER2� grade III vs grade I/II, SEER, 1.95

(1.85–2.04), P < 0.001; METABRIC, 1.20 (1.00–1.45),
P = 0.04; Fig. 1; Table S6], and BCSS [multivariate

HR (95% CI) ER+HER2� grade III vs grade I/II,

SEER, 3.06 (2.85–3.27), P < 0.001; METABRIC, 1.79

(1.44–2.22), P < 0.001; Fig. 1; Table S6].

To systematically assess interaction effect of molecular

subtype and histologic grade on BCSS, we conducted

survival analyses for all nonmetastatic, female breast

cancer patients diagnosed between 2010 and 2014 in

SEER cohort. When observing the association between

histologic grade and BCSS, this differed between the sub-

groups stratified by IHC-defined molecular subtypes

(i.e., ER+HER2�, ER+HER2+, ER�PR�HER2+, and

TNBC; Table S7, Pinteraction < 0.001). Higher histologic

grade was strongly associated with an increased risk of

mortality in subjects with ER+HER2� tumors (multi-

variate HR grade III vs grade I, 4.31; 95% CI, 3.85–4.82;
Ptrend, < 0.01; Fig. 1E; Table S7), but moderate

(ER+HER2+ and TNBC) and no associations

(ER�PR�HER2+) were found in other phenotypes.

In the ER+HER2� subsets receiving endocrine ther-

apy, grade III cases were associated with worse DFS

compared with their grade I/II counterparts (Fig. 1C,

D,H,K), but there was no difference in DFS between

grade III and I/II cases who did not receive endocrine

therapy (Fig. 1G,H).

3.2. Overview of multi-omics profiling data

Patients with grade III ER+HER2� presented higher

oncogenic pathway score proliferation, cell cycle, DNA

damage response score, and lower hormone score than

those with grade I/II ER+HER2� cases (all P < 0.05,

see Fig. 2A and Table S2). Somatic alterations, includ-

ing gene-level mutations and CNAs, were compared

between three groups (Fig. 2B,C and Figs S1 and S2).

Notably, known cancer driver events such as mutated

TP53 (42.0% vs 8.8%) and RB1 loss (60.9% vs 35.8%)

were enriched in grade III cases compared to grade I/II

cases. Mutation signatures represent characteristic

mutation patterns of DNA damage as a result of inter-

play between exogenous or endogenous mutagenic

agents and DNA repair system [32]. In order to identify

mutagenic agents specifically present in grade III

ER+HER2� patients, we conducted signature extrac-

tion and compared them to known signatures from

COSMIC database [33]. The mutational signatures of

grade III ER+HER2� patients were found to be similar

with Single Base Substitution (https://cancer.sanger.ac.

uk/signatures/sbs/) Fig. S1–S3, where signature 3 was

associated with defective DNA double-strand break-

repair system by homologous recombination.

3.3. Genome-wide DNA methylation profiling of

histologic grade III ER+HER2� patients

To elucidate epigenetic alterations and their roles

among grade III ER+HER2� patients, we attempted

to identify significantly hyper/hypomethylated genes

by integrating results from DNA methylation assay

produced by Illumina Infinium HumanMethylation450

BeadChip platform (HM450) and RNA-seq data from

TCGA consortium. Subsequent comparisons were

assessed: (a) grade III vs grade I/II ER+HER2�

tumors and (b) grade III ER+HER2� tumors vs nor-

mal tissues. We first identified DMCs occurring at
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promoter probes and searched for downstream gene

targets for each DMC (Fig. S4). DNA methylation

data from grade III (n = 54) and I/II ER+HER2�

(n = 202) tumors were used in the differential methyla-

tion analysis (|b value difference| > 0.3 and

FDR < 0.05). Compared with grade I/II cases, patients

with grade III ER+HER2� cases harbored 17

hypermethylated and 135 hypomethylated DMCs, cor-

responding to 5 hypermethylated and 14 hypomethy-

lated genes (Table S8 and Fig. S5). When comparing

normal tissues (n = 14), 11 085 hypermethylated and

14 829 hypomethylated DMCs were, respectively, asso-

ciated with 678 downregulated and 3726 upregulated

mRNA expression of genes in grade III ER+HER2�
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Fig. 1. Survival analysis between histologic grade I/II ER+HER2�, III ER+ HER2�, and TNBC breast cancer. Kaplan–Meier curves of OS from

the SEER (A) and the METABRIC cohort (B); BCSS within grade III ER+HER2� patients who received endocrine therapy group from the

METABRIC (C) and MSKCC cohort (D); BCSS from the SEER (E) and METABRIC cohort (F); BCSS within grade III ER+HER2� patients who

did not receive endocrine therapy group from the METABRIC (G) and MSKCC cohort (H); DFS from WCCCG (I) and FUSCC (K); DFS within

grade III ER+HER2� cases who received more than 1-year endocrine therapy from WCCCG (J) and FUSCC (L).
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cases (Fig. 3A and Fig. S5). The only overlapped

CpG-gene pair, cg18629132-MKI67 (grade III vs grade

I/II ER+HER2�, mean b value difference = �0.41,

FDR < 0.001; mRNA logFC = 1.15; FDR < 0.001;

Fig. 3B,C and Fig. S6; grade I/II ER+HER2� vs nor-

mal tissues, mean b value difference = �0.49,

FDR < .001; mRNA logFC = 3.65; FDR < 0.001),

between assessed comparisons was revealed, when only

considering CpG-gene pairs with statistically signifi-

cant FDR values. This result suggested that grade III

ER+HER2� cases may lose DNA methylation in the

process of differentiation, contributing to proliferation

of tumors by epigenetically upregulating MKI67

expression.

To validate these prior results, we performed the

MSP analysis on specimens from the First Affiliated

Hospital of Chongqing Medical University, where we

had access to 10 grade I/II ER+HER2�, 10 grade III

ER+HER2�, 15 TNBC tumors, and 15 normal breast

tissues. The methylation in MKI67 promoter was

detected in all grade I/II ER+HER2� tumors (10/10)

and normal breast tissue samples (15/15), but in only 3

out of 10 (30%) grade III ER+HER2� tumors and 0

out of 15 TNBC tissues (Fig. 3E).

We further confirmed that grade III ER+HER2�

tumors were associated with higher mRNA and pro-

tein expression level of MKI67 than those with grade

I/II tumors in the TCGA and WCCCG cohorts,

respectively (Fig. 3F,G). We also found more copy

number gain events overlapping the MKI67 genomic

region in patients with grade III ER+HER2� than

those with grade I/II tumors, potentially contributing

to high mRNA expression of MKI67 (Fig. 3H,I).

Interestingly, the mRNA MKI67 expression level inter-

acted with nuclear grade on survival, suggesting

ER+HER2� patient with grade III and high MKI67

expression harbored worst BCSS (Fig. S7).

3.4. CNA profiling of histologic grade III

ER+HER2� tumors

The CNApp tool [34] (https://github.com/elifesciences-

pub-lications/CNApp) previously developed by

Sebasti�a et al. was used to compute CNA scores based

on the number, length, and amplitude of broad and

focal genomic alterations and to assess differentially

altered genomic region. Accordingly, the broad (BCS),

focal (FCS), and global (GCS) CNA scores were,
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Fig. 2. The genomic landscape of HER2-negative breast cancers from the TCGA. (A) HER2-negative samples are classified into three groups

according to the IHC-based ER status and histologic grade. Clinical and molecular features are annotated below. (B) Waterfall plot showing

the somatic mutations that affected the most frequently altered genes (rows). (C) CNAs affecting cancer genes (significant GISTIC peaks

with residual q < 1 9 10�4) as defined by The Sanger Institute: Cancer Gene Census (https://cancer.sanger.ac.uk/census). *T test or

Pearson’s chi-square test indicating statistically difference with histologic grade III ER+HER2� patients.
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Fig. 3. Genome-wide DNA methylation profiling of histologic grade III ER+HER2� patients. (A) Overall summary of differential DNA methylation

levels between histologic grade III ER+HER2� tumors with normal samples, and their corresponding gene expression levels. (B) Volcano plot

showing the DNA methylation probes hypomethylated within histologic grade III ER+HER2� patients compared with I/II ER+HER2� cases. (C)

Correlation betweenmRNAMKI67 expression and DNAmethylation levels at cg18629132 by Pearson’s correlation test. (D) Schematic plot showing

relationship between the probe-gene pairs inferred. (E) cg18629132 methylation within primary normal breast tissues (n = 16), histologic grade III

ER+HER2� tumor tissues (n = 10), histologic grade I/II ER+HER2� tumor tissues (n = 10), and TNBC tissues (n = 16), measured by MSP. M,

methylated and U, unmethylated, where the experiments were replicated twice. (F) Log2-transformed mRNA expression levels (RSEM) of ESR1,

PR, and MKI67. P-value was calculated by the Mann–Whitney test. (G) Protein levels (IHC, %) within histologic grade III ER+HER2� tumors, I/II

ER+HER2� tumors, and TNBC fromWCCCG. P-value was calculated by the Mann–Whitney test. (H) Distribution of the copy deletion, loss, neutral,

gain, and amplification groupwithin histologic grade III ER+HER2� tumors, I/II ER+HER2� tumors, and TNBC. (I) Log2-transformedmRNA expression

levels (RSEM) ofMKI67 between the copy loss, neutral, and gain groupwithin histologic grade III ER+HER2� tumors.
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respectively, calculated, providing three different quan-

tifications of CNA levels for each sample (see details

in Appendix S1). Histologic grade III ER+HER2�

tumors harbored higher FCS (median value of 296 vs

94), BCS (median value of 40.5 vs 10), and GCS (me-

dian value of 0.95 vs �0.72) than those with low-grade

ER+HER2� tumors (Fig. 4A,B). Considering that can-

cer type-specific patterns of genomic gains and losses

determined the tissue-of-origin [35], we conducted sub-

sequent analysis aimed at generating genome-wide pat-

terns for each group based on chromosome-arm

genomic windows and the overall corresponding fre-

quencies. Chromosome arms altered in more than

25% across low/intermediate and high histologic grade

ER+HER2� tumors were 1q, 8q, 16p, and 20q for

copy number gains, and 8p, 13q, 16q, 17p, and 22q

for copy number losses. Moreover, the top five distinc-

tive chromosome arms affected by CNAs between his-

tologic grade III and I/II tumors included

chromosome arms 8q (75.9% vs 39.2%), 20p (38.0%

vs 18.2%) and 20q (62.1% vs 26.1%), and 9p (36.8%

vs 15.1%) and 14q (25.3% vs 6.5%) for copy number

gains and for copy number losses.

3.5. Identification of candidate driver events in

grade III ER+HER2� tumors

We sought to identify candidate driver events for

patients with grade III ER+HER2�tumors based on

treatment-naive primary (n = 270) and post-treatment

metastatic diseases (n = 243) from MSKCC cohort.

Mutation enrichment in genes ESR1 (10.3% vs 1.1%)

and TP53 (48.6% vs 31.1%) was detected in metastatic

samples with aromatase inhibitor treatment compared

to treatment-naive tumors (Fig. 4D; Tables S9–S12).
The majority of the TP53 alterations in patients with

metastatic disease were missense mutations located in

the DNA binding domain, while some were also pre-

sent in the tetramerization domain (Fig. 4E).

To identify regions of CNA, we applied GISTIC

(genomic identification of significant targets in cancer)

[36], a statistical method that calculates a score that is

based on both the amplitude and frequency of copy

number changes at each position in the genome. GIS-

TIC identified 16 oncogenic focal events in grade III

ER+HER2� cases from TCGA (Fig. 4F and Fig. S8;

Table S13) and 10 focal events in metastatic grade III

ER+HER2� from MSKCC (Fig. 4G and Fig. S8;

Table S14). The overlap among two cohorts is only

limited to the amplification of MYC on 8q24.13/

8q24.21, which was found in 46.6% and 42.3% of

samples from TCGA and MSKCC cohorts, respec-

tively. The enrichment of specific focal events in grade

III ER+HER2� patients was also observed in the

METABRIC cohort, where amplification events of

CCND1 (26.8% vs 13.3%), MYC (28% vs 12.4%),

and MDM2 (18.6% vs 7.4%) were present when com-

pared with grade I/II cases (Tables S15 and S16).

In the METABRIC cohort, multivariate Cox pro-

portional hazards regression adjusted for age at diag-

nosis, tumor stage, radiotherapy, endocrine therapy,

chemotherapy, and surgery indicated that MDM2

amplification was an independently prognostic factor

on OS (HR AMP vs no AMP, 1.40, 95% CI, 1.01–
1.96, P = 0.045; Fig. 4H and Table S17) and BCSS

(HR AMP vs no AMP, 1.72, 95% CI, 1.17–2.53,
P = 0.006; Fig. 4F and Table S17). Similarly, there

was a trend toward shorter OS in grade III

ER+HER2� patients with MYC amplification com-

pared with those without (HR AMP vs no AMP, 1.26,

95% CI, 0.95–1.68, P = 0.11; Fig. 4I). When assessing

enrichment pathways in the MDM2/MYC amplifica-

tion group by GSEA within grade III ER+HER2�

breast cancer, we identified that grade III ER+HER2�

Fig. 4. Elucidating therapeutic molecular targets for histologic grade III ER+HER2� breast cancer patients. (A) Genome-wide profiling by

chromosome arms distributed according to the histologic grade. (B) FCS, BCS, and GCS distribution by the histologic grade. (C) CNApp

frequencies for chromosome arm regions using default cutoffs, corresponding to 2.3/1.7 copies for gains and losses, respectively. (D)

Forest plot showing the tumor evolution under endocrine therapy (Pearson’s chi-square or Fisher exact test; ***P < 0.001, **P < 0.01, and

*P < 0.05), where somatic mutations within treatment-na€ıve primary disease were compared with that of metastatic disease from MSKCC

cohort. (E) Two top differential mutated genes (ESR1 and TP53) between treatment-na€ıve primary disease and metastatic disease

discovered in MSKCC cohort. Mutations were labeled in a diagram of the gene coding region, and the heights of the ‘‘lollipop’’ sticks

indicate the number of the indicated mutation. (F) GISTIC plots. Regions of gain and loss delineated by GISTIC analysis of grade III

ER+HER2� breast cancer samples from TCGA cohort. Significance is reported as false discovery rate-corrected q-value. Known tumor

suppressor genes and proto-oncogenes defined as found in COSMIC; if there is more than one known proto-oncogene in the region, only

one is listed (priority for listing is, in order: known breast mutation; other known mutation (by COSMIC frequency). (G) GISTIC plots.

Regions of gain and loss delineated by GISTIC analysis of metastatic grade III ER+HER2� breast cancer cases from MSKCC cohort. (H)

Kaplan–Meier curves of OS and BCSS between grade III ER+HER2� breast cancer patients with MYC amplification and non-MYC

amplification. (I) Kaplan–Meier curves of OS and BCSS between grade III ER+HER2� breast cancer patients with MDM2 amplification and

non-MDM2 amplification. (J) Enriched pathways related to MYC amplification and (K) related to MDM2 amplification within grade III

ER+HER2� breast cancer from the TCGA cohort by gene set enrichment analysis (GSEA).
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patients with MDM2/MYC amplification were

enriched in cell cycle KEGG pathway (Fig. 4J,K,

Tables S18 and S19). Specifically, amplification events

of MYC were associated with higher expression of cell

cycle-related genes (i.e., CCNE2, MKI67) compared to

patients without MYC amplification. No association

between MYC copy number status and TP53 mutation

status within grade III ER+HER2� tumors was

observed (Figs S9 and S10), indicating that MYC

amplification correlated with TP53-independent cell

cycle progression. Additionally, significantly enriched

DNA damage checkpoint gene sets were related to

MDM2 amplification (Fig. 4K; Table S19).

3.6. Therapeutic response of grade III ER+HER2�

breast cancers differs according to the intrinsic

subtypes

Considering intrinsic molecular profiling (PAM50)

provides additional prognostic information for early-

stage ER+HER2� breast cancers [37,38], we compared

intrinsic subtypes distribution between grade I/II and

III ER+HER2� tumors. There are more luminal B-like

subtype and non-luminal-like subtypes (i.e., normal-

like, HER2 enriched and basal-like) among grade III

ER+HER2� breast cancer patients than those with

grade I/II tumors (Fig. 5A), indicating that high-grade

tumors are heterogeneous. In addition, given that

intrinsic luminal A and B subtypes predict 10-year out-

come [38], we grouped ER+HER2� breast cancer into

intrinsic luminal-like and nonluminal cases.

There were 74 (84.1%) luminal cases and 14

(15.9%) nonluminal cases in patients with grade III

ER+HER2� from TCGA cohort. Similarly, a quarter

of grade III ER+HER2� patients (24.0%) from

METABRIC were enriched in nonluminal subtypes.

To identify molecular differences between the nonlumi-

nal and luminal subtype, we performed differential

gene expression analysis between the two groups of

tumors, identifying a total of 641 differentially

expressed genes (FDR < 0.05, |logFC| > 2; Fig. 5B

and Table S20), with 255 of these upregulated in non-

luminal and 386 upregulated in luminal subtype. We

then computed GSVA scores of 6475 known pathways

and performed similar differential comparisons

between non-luminal-like and luminal-like tumors

from III ER+HER2� patients. We found that 147 sta-

tistically differential pathways were upregulated in

non-luminal-like tumors and 25 were upregulated in

luminal-like tumors (FDR < 0.05, |logFC| > 0.2;

Fig. 5C; Tables S21 and S22). In brief, 10 out of the

22 top differential pathways were associated with ER+

factors, further supporting the resistance mechanism to

endocrine therapy that ER signaling is a rarer driver

in non-luminal-like compared to luminal group within

grade III ER+HER2� patients. T-cell markers,

epithelial-to-mesenchymal transition, TNF signaling

via NF-kB pathway, cytokine signaling genes as well

as immune-related pathways such as PD-1, CD8, IL-2,

and IL-12 signaling pathways, and immune cell type

signatures such as cytotoxic cells and NK cells were

upregulated in the nonluminal group (Fig. 5C,D).

To shed light on non-luminal-like predictive panel in

the clinical practice, we conducted recursive partition-

ing analyses using optimized binary partition algo-

rithm based on 641 differentially expressed genes in

the TCGA cohort. Detailed genes’ selection strategy is

shown in Fig. S11, where genes with evidence at pro-

tein level and satisfying correlation between mRNA

and protein expression were considered as candidates

(Fig. S12). We developed a two-gene panel (GATA3

and AGR3) to identify non-luminal-like cases within

grade III ER+HER2� patients, where both GATA3

and AGR3 tended to associate with the luminal-like

subtype (Fig. 5E). The confusion matrix of two-gene

classifier in TCGA database and METABRIC data-

base indicated that our panel harbored 98.8% and

84.2% accuracy for the training (TCGA) and valida-

tion (METABRIC) sets, respectively (Fig. 5F and

Fig. S13). Additional cross-validation procedures were

processed within METABRIC cohort, and we

observed the survival difference between luminal and

nonluminal cases identified by our two-gene panel in

the endocrine therapy subgroups. Specifically, when

receiving endocrine therapy, nonluminal cases had

inferior BCSS compared to luminal-like patients, but

the survival difference disappeared if they did not

receive endocrine therapy (Fig. S14).

We further validated this two-gene panel by per-

forming feasible IHC experiments as follows (Fig. 5G,

H): (a) Tumors were defined as luminal-like if both

GATA3 and AGR3, or either one of them, were posi-

tive; and (b) tumors were defined as non-luminal-like

only if they were profiled as negative GATA3 and neg-

ative AGR3. In our IHC-based cohort involving 81

Chinese histologic grade III ER+HER2� patients, we

found that non-luminal-like patients had larger tumor

size, more metastatic lymph nodes, and worse DFS

(multivariate HR non-luminal-like vs luminal-like,

3.48, 95% CI, 1.17–10.42, P < 0.001) than those with

luminal-like tumors (Fig. 5J; Table S23).

4. Discussion

In this study, multi-omics profiling of breast cancer

tumors from six cohorts enriched with grade III
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ER+HER2� patients was performed, portraying a dis-

tinctive patient subgroup that remained poorly

characterized and underrepresented in previous geno-

mic and molecular profiling studies [14–16]. Compared
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Fig. 5. An IHC-based model to identify PAM50 nonluminal intrinsic disease in histologic grade III ER+HER2� breast cancer. (A) Intrinsic

subtypes distribution between high and low/intermediate grade ER+HER2� tumors. P values were calculated based on Pearson’s chi-

squared tests. (B) Analyzing differential gene expression between non-luminal-like and luminal-like grade III ER+HER2� cases. (C) Differential

pathways in nonluminal grade III ER+HER2� tumors in C2 sets (curated sets) by GSVA (FDR < 0.05, |logFC|> 0.2) compared with

counterparts with luminal-like tumors. (D) Enriched pathways related to chemokine and T-cell receptor signaling pathways, and natural killer

cell mediated cytotoxicity within non-luminal-like grade III ER+HER2� tumors. (E) RPA-generated non-luminal-like stratification of patients

with grade III ER+HER2� tumors from TCGA. (F) Confusion Matrix of 2-gene classifier in TCGA database and METABRIC database. (G)
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with low/intermediate histologic grade ER+HER2�

patients, grade III cases tended to have earlier age at

diagnosis, larger tumors, greater risk of lymph node

metastasis, and a higher chance of receiving

chemotherapy.

Grade III ER+HER2� patients had inferior survival

outcomes compared to patients with grade I/II

ER+HER2�, and future clinical trials are warranted to

assess the predictive value of histologic grade. The

landscapes of oncogenic alterations in grade III

ER+HER2� patients within benchmarked TCGA

cohort bear different cancer driver events such as

TP53 and ESR1, compared with low/intermediate

grade cases, and one of their most prevalent mutation

signatures was associated with defective DNA double-

strand break-repair by homologous recombination.

Interestingly, genome-wide DNA methylation profiling

revealed certain hypomethylated loci in the promoter

of MKI67 within grade III ER+HER2� patients com-

pared to grade I/II tumors or normal tissues, leading

to upregulating mRNA expression level of MKI67.

Identification of focal amplifications of CCND1,

MYC, and MDM2, representing potential candidate

driver events in grade III ER+HER2� tumors, was dis-

tinct from those of grade I/II tumors. Similarly, the

GSEAs indicated that cell cycle and immune-related

factors were enriched in grade III ER+HER2� tumors

compared with counterparts with grade I/II tumors

(Fig. S15). Dissecting the heterogeneity of intrinsic

molecular subtypes within grade III ER+HER2� cases,

we found that patients with non-luminal-like tumors

were associated with worse survival than those with

luminal-like. Furthermore, we developed a two-protein

IHC panel that reliably identified this high-risk sub-

group and demonstrated its association with increased

levels of immune-related signaling, such as CD8 effec-

tor T cells and dendritic cells (Fig. S16). Hence, high

histologic grade ER+HER2� patients appeared to har-

bor significant molecular differences from those with

low/intermediate tumors that could hold important

implications for patient stratification and treatment.

Several mechanisms of de novo and acquired endo-

crine therapy resistance have been described, including

loss of ER expression, ER crosstalk with growth factor

receptors, subclonal genomic alterations of tumor sup-

pressors or drivers, and acquisition of ESR1 fusions or

activating ESR1 missense mutations [23,39,40]. Our

findings identified more acquired activating ESR1

mutations within metastatic diseases, demonstrating

that metastatic tumor cells with ESR1 mutations are

most frequently acquired under the aromatase inhibi-

tor therapy [23]. In addition, targetable pathways were

identified in ESR1 mutant cells such as growth factor

receptor (GFR), PI3K, cyclin-dependent kinases

(CDK) 2/7, and NOTCH signaling pathways [41], and

clinical trials of inhibitors of these novel targets are

urgently warranted. In addition, amplifications in

MYC have been identified within primary and meta-

static histologic grade III ER+HER2� breast cancer

and described as transcriptional regulator [23] with

negative impact on survival. Pelicci et al. reported that

deregulation of the TP53-MYC axis in mammary

tumors increased cancer stem cell content and plastic-

ity and was a critical determinant of tumor growth

and clinical aggressiveness [42], where MYC was a

transcriptional target of TP53 in mammary stem cells

and was activated in breast tumors as a consequence

of TP53 loss, and similar findings were observed

within TNBC [43,44]. However, we found that MYC

amplification was correlated with TP53-independent

cell cycle progression among patients with grade III

ER+HER2� tumors. FDA-approved drug screen with

in vivo validation thus provides a rationale for clinical

evaluation of MYC inhibition, such as bortezomib in

MYC-driven neuroblastoma [45], and further experi-

mental and clinical studies are warranted to validate

efficacy of any MYC inhibition within ER+ or ER-

breast cancer with MYC amplifications. Interestingly,

those driver events (MYC/MDM2 amplifications) were

consistently enriched in deregulation of cell cycle sig-

naling molecules, which were related to novel thera-

peutic targets, such as cyclin-dependent kinase (CDK)

4/6 inhibitors [46]. Three CDK4/6 inhibitors (i.e., pal-

bociclib, ribociclib, and abemaciclib), in combination

with endocrine therapies as a first-line therapy, demon-

strated greater efficacy for ER+HER2� metastatic

breast cancer in postmenopausal women [47–49].
Although interruption of the senescence pathway by

MDM2 amplification within grade III ER+HER2�

tumors cases may cause resistance to CDK4/6 inhibi-

tors [46], CGM097, a MDM2 inhibitor, showed syner-

gistic effects in combination with CDK4/6 inhibitors or

fulvestrant, abrogating cells that are resistant to

CDK4/6 inhibitors [50]. Taken together, those results

highlighted opportunities of optimizing endocrine ther-

apy for grade III ER+HER2� breast cancer patients.

In the current study, histologic grade III

ER+HER2� tumors were enriched in mutation signa-

ture S3 (homologous recombination deficiency, HRD)

and harbored higher DNA damage response (DDR)

score (Table S2) than low-grade cases, indicating geno-

mic instability within this subgroup, and the conse-

quences of this finding could influence clinical practice.

The poly (ADP-ribose) polymerase (PARP) family

members, notably PARP1, are key players in the

repair of DNA single-strand breaks [51]. It was well
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known that PARP inhibitors provided a significant

benefit over standard therapy among patients within

HER2-negative metastatic breast cancer like

endocrine-resistant ER+ cases and a germline BRCA

mutation in randomized phase III trials (OlympiAD

and EMBRACA) [52,53].

Our DNA methylation analyses integrated with

mRNA data were somewhat inconsistent with the ear-

lier study after considering molecular subtypes, where

we found more hypomethylated CpGs in histologic

grade III ER+HER2� cases. Moreover, additionally

upregulated genes such as MMD2, RIPK2, and EIF3E

due to hypomethylated CpGs within grade III

ER+HER2� tumors also might interfere with endo-

crine therapy [54–56]. Recently, a study identified a

hypomethylated ER-positive breast cancer subtype

presenting the best survival probability compared with

the hypermethylated ER+ and hypomethylated ER-

negative subtypes, where certain upregulated genes like

SFRP1 and WIF have great potential to suppress the

progression of ER+ breast cancer. Indeed, DNA

methylation loss occurs frequently in cancer genomes

[39,57,58]. A prior study indicated that a local CpG

sequence context, termed solo-WCGWs, was associ-

ated with preferential hypomethylation in partially

methylated domains (PMD), where PMD hypomethy-

lation depth correlated with somatic mutation density

and cell cycle gene expression [59]. The hypomethy-

lated loci identified within grade III ER+HER2�

tumors contributed to upregulated expression of cell

cycle genes like MKI67 (cg18629132), CCND1

(cg00347938), and CCNE2 (cg05060175), and those

markers reflected the mitotic history of high-

differential tumors.

PAM50 intrinsic subtyping reveals tumor hetero-

geneity that may affect strategies of treatment regi-

mens, thus identifying the discrepancy between IHC

and intrinsic subtypes enables physicians to precisely

tailor therapies [60–63]. Our two-gene (GATA3 and

AGR3) IHC-based panel could classify the histologic

grade III ER+HER2� breast tumors into luminal-like

and non-luminal-like subtypes, for whom the benefit

from endocrine therapy is limited. Expectedly, we

found that the non-luminal-like subtype within high-

grade ER+HER2� tumors had worse DFS. Besides

our classifier, a nonluminal disease score [64] based on

percentage of ER, PR, and MKI67 tumor cells was

easy, fast, and with the potential to be widely imple-

mented to identify nonluminal disease within ER+/

HER2� breast cancer when gene expression data are

not available. A recent study [65] presented GATA3

and MDM2 were synthetically lethal in ER+ breast

cancer, where MDM2 was a novel therapeutic target

in GATA3-deficient subsets. Those results support the

usefulness of our two-gene panel, in identifying a sub-

group of ER+HER2� breast cancer with bad prognosis

as candidates for novel individualized therapy.

To our knowledge, this is the first comprehensive

report of molecular characteristics of histologic grade

III ER+HER2�. The multicenter patient-based nature

of this study offers a sufficient number of this rare

phenotype with multi-omics data and a long period of

follow-up to allow us to describe its clinical-

pathologic, genomic, epigenetic, transcriptomic, and

intrinsic features.

4.1. Limitations

Several limitations of the present study need to be con-

sidered. First, the WCCCG cohort, a retrospective

study, has inherent limitations when results are com-

pared with randomized controlled trials. Second, nei-

ther FUSSC nor WCCCG cohort had gene expression

data, and we failed to further validate the two-gene

IHC-based panel via PAM50 intrinsic subtypes. Addi-

tionally, we did not have any cohort with neo-

adjuvant endocrine therapy to test predictive effect of

histologic grade, where pathologic complete response

rate is regarded as a surrogate endpoint for the evalua-

tion of the efficacy of novel therapies or biomarkers.

5. Conclusions

This research provides timely evidence that inferior

prognosis was more likely to occur in patients with

high histologic grade ER+HER2� tumors than coun-

terparts with low/intermediate grade tumors, especially

for nonluminal cases who could be identified using our

two-gene classifier in clinical practice. The findings

from current study also highlight the importance of

tailored therapy for histologic grade III ER+HER2�

breast cancers, and clinical trials are warranted to ver-

ify the potential targeted drugs that we mentioned.
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