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ABSTRACT

Regulation of gene expression requires both tran-
scription factor (TFs) and epigenetic modifications,
and interplays between the two types of factors
have been discovered. However study of relation-
ships between chromatin features and TF–TF co-
occupancy remains limited. Here, we revealed the
relationship by first illustrating distinct profile pat-
terns of chromatin features related to different bind-
ing events, including single TF binding and TF–TF co-
occupancy of 71 TFs from five human cell lines. We
further implemented statistical analyses to demon-
strate the relationship by accurately predicting co-
occupancy genome-widely using chromatin features
including DNase I hypersensitivity, 11 histone mod-
ifications (HMs) and GC content. Remarkably, our
results showed that the combination of chromatin
features enables accurate predictions across the
five cells. For individual chromatin features, DNase
I enables high and consistent predictions. H3K27ac,
H3K4me 2, H3K4me3 and H3K9ac are more reliable
predictors than other HMs. Although the combina-
tion of 11 HMs achieves accurate predictions, their
predictive ability varies considerably when a model
obtained from one cell is applied to others, indicating
relationship between HMs and TF–TF co-occupancy
is cell type dependent. GC content is not a reliable
predictor, but the addition of GC content to any other
features enhances their predictive ability. Together,
our results elucidate a strong relationship between
TF–TF co-occupancy and chromatin features.

INTRODUCTION

Transcriptional regulation exists at both genetic and epige-
netic levels. Binding of transcription factors (TFs) to spe-
cific DNA sequences is a pivotal step in the control of
gene expression. Studies of sequence-associated TF bind-
ing preferences have led to the development of sequence-

specific Position Weighted Matrix (PWM) (1) and position-
specific affinity matrices (2) approaches for identification of
TF binding sites (TFBSs).

Epigenetic regulation refers to the alteration of DNA ac-
cessibility to TFs coordinately with chemical modifications
of chromatin (3). This process may involve in multiple fac-
tors, such as DNA shape, chromatin accessibility, histone
modifications (HMs), nucleosome positions and other chro-
matin variants (4–9). Analyses of experimental data show
that distinct HM patterns appear around TFBSs, and ChIP-
Seq signals of TF bindings and HMs are highly predictive
of each other (10–14). Specifically, previous studies depicted
that chromatin features, such as HMs and DNA shape, are
highly correlated with the quantitative changes of TF bind-
ing affinities (14,15).

TFs tend to work with others for accurately regulating
expression of their target genes by binding to the same regu-
latory regions (16). These TFs can act either collaboratively
or competitively (17–20), and are tightly associated with
modeling of cell-specific cis-regulatory modules (21,22). Ex-
perimental studies of possible TF–TF interactions with ei-
ther systematic assays or ChIP-Seq in various organisms,
such as Escherichia coli, yeast, the Drosophila embryo and
human cell lines (17,23–27), revealed a great number of
co-localization hotspots (28), and co-localization patterns
that are related to regulatory functions (21). For instance,
CCCTC-binding factor (CTCF) is a TF and widely binds
to thousands of loci in genome (29). CTCF performs myr-
iad functions by controlling binding affinities with its part-
ners (30), such as yin yang 1 (YY1). The cooperative role of
CTCF and YY1 was originally seen in trans-activating Tsix
ncRNA during X-chromosome inactivation (31). Genome-
wide analysis depicted their global co-localizations in hu-
man cells (23), and their interactions are, at least in part,
associated with the evolutionary stability of CTCF genomic
occupancy (19). Even for the same TF, if two binding sites
are close to each other, the binding of the TF to one site is
likely to interfere its binding to another one (32).

DNA sequence and chemical modifications of chromatin
can affect not only binding of an individual TF but also
a cluster of TFs (23,33–35). Although a large amount of
works have been done in investigating the associations of
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chromatin features with bindings of individual TFs (10–
15), a few of studies have devoted to explore the re-
lationships between chromatin features and TF–TF co-
occupancy/interactions. This may shed light on a compre-
hensive understanding of the relationships between TF–TF
interactions and chromatin features, as well as their regula-
tory mechanisms.

In this work, we firstly illustrated the distinct profiling
patterns of chromatin features for two types of genome
binding events, including the regions solely bound by an
individual TF and others bound by this TF and its part-
ners simultaneously. We aligned and compared the profiles
of DNase I hypersensitivity (DNase I), HMs and TF bind-
ing events by taking advantage of the wealth of data from
the ENCODE project (23). Statistical tests showed a strong
correlation between binding events and chromatin features
across five human cell lines, including A549, GM12878, H1-
hESC, HepG-2 and K562. To further demonstrate the re-
lationship between binding events and chromatin features,
we then examined predictive ability of chromatin features
for TF–TF co-occupancy through a computational model.
Our results showed that chromatin features are able to ac-
curately predict the TF–TF co-occupancy genome-widely.
By constructing computational models with different chro-
matin features, we found that both DNase I and combined
11 HMs achieve similar predictive powers. In general, the
predictive ability of a single HM is weak; 4 out of 11 HMs,
including H3K27ac, H3K4me 2, H3K4me3 and H3K9ac,
are more reliable predictors than others. Although GC con-
tent itself is not an accurate predictor, addition of GC con-
tent improves the predictive ability of DNase I or HMs. We
consequently applied the models obtained from one cell line
to other cells, and found that the prediction accuracy of the
combined chromatin features, including DNase I, 11 HMs
and GC content, is maintained consistent across cell lines.
Prediction accuracies of the models with individual or the
combined 11 HMs receive considerable variances across cell
lines, indicating the correlation between HMs and TF–TF
co-occupancy is cell type dependent. Models using DNase I
on the other hand obtain more consistent predictions across
all of cell lines. Taken together, our analyses depict a poten-
tial role of chromatin features as determinants in the pre-
diction of TF–TF co-occupancy. This study will contribute
to our understanding of the interplay between genetic and
epigenetic regulations of gene expression.

MATERIALS AND METHODS

Datasets

All of the data used in this study were downloaded from
the ENCODE project (http://genome.ucsc.edu/ENCODE/
downloads.html) (1). The ENCODE project has gener-
ated TF binding data, by using ChIP-Seq technique (2),
in both normal and cancer cell lines. Five human cell lines
were selected in this study, including A549 (epithelial cells),
GM12878 (B-lymphoblastoid cell), H1-hESC (embryonic
stem cells), HepG-2 (hepatocellular carcinoma cells) and
K562 (erythrocytic leukemia cells). TF binding profiles by
ChIP-Seq data were obtained from the HAIB, and UW
TFBS ENCODE groups.

Genome-wide profiles of HMs, including H3K9ac,
H3K27ac, H3K4me3, H3K4me2, H3K4me1, H3K79me2,
H3K9me3, H3K27me3, H3K36me3 and H4K20me1, and
the histone variant, H2A.z, were generated using the ChIP-
Seq technique (2). DNase I profiles of the five cell lines were
generate with DNase-Seq technique (3).

DNA methylation levels were quantitatively profiled with
the RRBS technique and Infinium HumanMethylation450
BeadChip array. The former covers >1 M CpG sites, while
the latter measures the methylation levels for 485 577 CpG
sites. The methylation level of each CpG is determined as
the average of RRBS replicated experiments or Human-
Methylation450 BeadChip data and ∼1.3 M CpGs were in-
cluded.

Genomic locations of 40 193 genes with all information
were extracted from the human genome version hg19, ob-
tained from the RefSeq database (downloaded from UCSC
Genome Browser at http://genome.ucsc.edu/).

We downloaded the RNA-Seq data that were profiled us-
ing Poly A+ protocol from the ENCODE project (1). The
expression levels of all RefSeq genes were calculated accord-
ing to the FPKM (Fragments Per Kilobase of transcript
per Million mapped reads) definition. To reduce the redun-
dancy, the expression levels from multiple replicates were
merged by taking the mean expression level of each gene.

Chromatin state segmentation data was also downloaded
from the USCS Genome Browser. The chromatin states
were defined using the unsupervised machine learning tech-
nique ChromHMM (36), and available for the GM12878,
H1-hESC, HepG-2 and K562 cell lines.

Determination of TF–TF co-occupying regions

Based on the uniform processing pipeline developed for the
ENCODE Integrative Analysis effort (37), the binding sites
or each TF were determined by peak calling using the SPP
peak caller (38) and the consistency and reproducibility be-
tween biological replicates with the measurement of the Ir-
reproducible Discovery Rate (IDR < 2%) (39), from the cor-
responding ChIP-Seq data. The ChIP-Seq peak summits
were selected to represent TFBSs. There are various num-
bers of binding sites for each TF across different cell lines
(Supplementary Table S1).

The BEDTools intersectBED function (40) was used to
determine whether two TFs, such as CTCF and YY1, were
co-localized in the same genomic regions (18–20,41,42).
Here we named, for example, the genome regions co-
occupied by CTCF–YY1 as CTCF–YY1 co-occupancy, if
at least a 30% overlap of CTCF peak by YY1 peak, and vice
versa, was observed in this region. In contrast, we defined
genome regions bound by CTCF but not YY1 as CTCF-
only events, and regions bound by YY1 not CTCF as YY1-
only events. In such way, all binding sites can be classified
into three binding event categories, CTCF-only, CTCF–
YY1/YY1–CTCF and YY1-only (Supplementary Figure
S1A). Of note, using different overlapping criteria, such as
40% overlapped ChIP-Seq peaks, or other tools, such as In-
tervalStats (43), only resulted in the change of numbers of
TFBSs in each binding category, but not the following pre-
diction analysis or association study (data not shown).

http://genome.ucsc.edu/ENCODE/downloads.html
http://genome.ucsc.edu/
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Sequence and chromatin features at TFBSs

We examined the sequence features among binding sites by
testing the binding motifs of each TF. Taken CTCF and
YY1 as an example, for the different binding events, in-
cluding CTCF-only, CTCF–YY1 and YY1-only, we ana-
lyzed DNA sequences surrounding binding sites of CTCF
or YY1. We used the top 1000 binding sites in each type of
binding events to identify the motifs, and discovered the de
novo motifs using MEME tool (44).

For profiles of chromatin features including DNase I and
HMs, we first selected the 6k-bp genome regions centered
at peak summits of ChIP-Seq data for each TF to analyze
the differences related to binding events. We calculated the
profiles of tag density of chromatin features at a resolution
of 100 bp, and quantified tag density in RPKM. The HM
patterns at TFBSs were characterized by 11 types of histone
methylation and acetylation, each of which has been asso-
ciated with transcriptional activation, suppression or both
(7,36,45).

We also selected the 100-bp region centered at each
TFBS, and calculated the normalized RPKM values of
chromatin features in this small region to represent their
densities. Then Student’s t-tests were performed between
the profiles of TF–TF co-occupancy and TF-only binding
sites. Similar analysis was performed to sequence features,
such as GC content.

For DNA methylation, we selected the methylation level
of CpG site(s) mapped into the 100-bp region to compute
methylation level at this TFBS. For 100-bp regions cen-
tered at TFBSs with more than one CpG site, the average
of methylation levels over these mapped CpG sites was se-
lected to represent the methylation level.

Predicting TF binding events

We have examined the HMs, DNase I and GC content in the
100-bp region centered at TFBSs (ChIP-Seq peak summits),
by counting and normalizing the number of reads mapping
to this region to calculate RPKM values. The TF–TF and
TF-only binding sites (e.g. CTCF–YY1 versus CTCF-only)
were selected as ‘positive’ and ‘negative’ datasets, respec-
tively.

We used two non-linear classifiers and two linear meth-
ods to build the chromatin models for studying the corre-
lations between TF–TF co-occupancy and chromatin fea-
tures (Figure 1). The two non-linear classifiers were sup-
port vector machine (SVM) (46) and Random Forest (RF).
The linear methods included Naı̈ve Bayes (NB) and Linear
Discriminant Analysis (LDA). For the SVM classifier, LIB-
SVM software (47) implemented in the R package ‘e1071’
and non-linear radial basis kernel were selected. R packages
‘randomForest’, ‘e1071’, and ‘MASS’ were used for the RF,
NB and LDA, respectively.

In each cell line, we randomly selected two-third of posi-
tive and negative datasets as training and the rest as testing.
The ability of chromatin model to distinguish TF–TF co-
occupancy from TF-only binding events was assessed by ex-
amination of receiver operator characteristic (ROC) curves,
plotting the true-positive rate versus the false-positive rate.
To test the stability of these predictions, the above proce-
dure was repeated 10 times and the means of the area under

ROC curves (AUC) and prediction accuracy (ACC) values
were computed to represent the prediction accuracy.

The learned models can be applied to different cell lines
for the cross-cell type testing purpose. During this process,
the model learned for one pair of TFs was used to other cells
for the same TF–TF pair. The prediction accuracies were
evaluated by the calculations of AUC and ACC values.

RESULTS

Analysis of sequence and chromatin features for individual TF
binding and TF–TF co-occupying events

TFs account for ∼10% of proteins encoded by human genes
(48) and their bindings are depended on both genome se-
quence and chemical alternatives to the sequence (10–14).
Based on the assessed TFs in the ENCODE project (23), a
large number of TF–TF binding partners have been identi-
fied (17,27). In this study, we used CTCF and SP1 as the key
experimental TFs, and analyzed their co-occupancy with
other TFs. We also selected a set of TFs, including ATF3,
GABP, NRSF, POL2, USF1 and YY1, whose ChIP-Seq
data were available in all of the five human cell lines, to fur-
ther demonstrate the relationships between chromatin fea-
tures and binding events. Of note, the analyzing approach
presented in this work can be feasibly applied to other TFs.

A TF may share its binding regions with its partner,
namely TF–TF co-occupancy. For instance, CTCF–YY1
co-occupancy refers to the regions co-occupied by CTCF
and YY1. Consequently, we defined the genomic regions
bound by CTCF but not YY1 as CTCF-only events, and the
regions bound by YY1 but not CTCF as YY1-only events
(Supplementary Figure S1A). For each TF–TF pair, there
are various numbers of co-occupying and solely binding
events (see Supplementary Materials; Supplementary Fig-
ure S1B and Supplementary Table S1). The co-occupying
TFs preferably bind at specific genomic regions (Supple-
mentary Figure S2A). Genome-wide analyses of TFBSs re-
vealed that CTCF intends to bind at gene bodies; while its
partner, YY1, as an example, prefers to regulate its target
genes by binding at proximal promoters. When considering
co-localized CTCF and YY1, their co-occupied regions are
mainly distributed in the gene promoters (Supplementary
Figure S2B). In our analysis, we considered the genome-
wide TFBSs.

By aligning the profiles of DNA sequences, DNase I and
HMs, we were able to examine the chromatin features for
TF solely and TF–TF co-occupying binding events. De novo
binding motifs analyses of each TF–TF pair (see ‘Materials
and Methods’ section) illustrated a similar sequence pref-
erence for TFs involved in both co-occupying and solely
binding regions (see Supplementary Materials; e.g. motifs
of CTCF and YY1 shown in Supplementary Figure S3), in-
dicating that DNA sequence may not be a determinant for
the TF–TF co-occupancy.

Analyses of GC content (see ‘Materials and Methods’
section), which dictates nucleosome depletion at mam-
malian promoters with GC-richness benefiting TF bind-
ing (17), showed that CTCF–YY1 co-occupying regions are
significantly associated with GC content than CTCF-only
binding sites (Student’s t-test P < 1e-15; see Supplementary
Materials; Figure 2 and Supplementary Figure S4), suggest-
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Figure 1. Schematic of the SVM approach used to predict TF–TF and TF-only, or TF–TF and TF-only binding events. YY1 was selected as a representation
of CTCF binding partners for illustration. All binding events, including CTCF-TF co-occupying and CTCF-/TF-only binding regions, were separated
into training and testing datasets. Then SVM classifier was trained using all or a subset of 11 HMs, DNase I and GC content. The trained model was
applied to the test dataset for prediction accuracy valuation with ROC curves, AUC and ACC values. The model was also applied to the same TF–TF pair
in different cell types for cross-cell type tests.

Figure 2. Comparison of chromatin feature profiles (A) between CTCF–YY1 co-occupying (C + Y, blue) and CTCF-only binding regions (C, red) and
(B) between YY1-CTCF (Y + C, blue) and YY1-only (Y, red) binding regions in the K562 cell line. All tests reached P-values < 1.0E-5, unless values are
shown in figures (numbers in purple).
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ing a stronger transcriptional activities of the CTCF–YY1
co-occupied regions (19,49,50). This is consistent with pre-
vious findings that genes with CTCF–YY1 co-occupying
regions are highly expressed than others solely bound by
CTCF (19). It is worth to note that minor differences exist
in GC-content profiles, and the chromatin feature profiles as
follows, between CTCF-TF and TF-CTCF binding events,
because the binding sites of co-occupied CTCF and YY1,
represented by ChIP-Seq peak summits, are not located at
the exactly same genome positions.

Analyses of chromatin features also revealed distinct pro-
filing patterns for different binding events (see Supplemen-
tary Materials; Supplementary Figure S5). The HM pat-
terns at TFBSs were characterized by 11 types of his-
tone methylation and acetylation (see ‘Materials and Meth-
ods’ section), which are associated with transcriptional ac-
tivation, suppression or both (7,36,45). DNase I hyper-
sensitive sites are regions of chromatin sensitive to cleav-
age by DNase I. In these sites, nucleosome structure is
less compacted, increasing the availability of the DNA to
binding of TFs (35,51). Our results show that, HMs, ex-
cept H3K27me3, are more enriched in CTCF–YY1 co-
occupying regions than these in the CTCF-only sites, which
is consistent with the reported association between co-
localizations of CTCF and YY1 and transcription activ-
ity (19). When only considering a smaller 100-bp regions
centered at TFBSs, the differences of chromatin feature en-
richment are more obvious. All comparisons of individual
chromatin features show significantly differences, with a few
exceptions such as H3K27me3 in the HepG-2 cell line (see
Supplementary Materials; Supplementary Figure S4).

We did the same analysis for other TF–TF pairs. Sim-
ilar enrichment patterns were observed when comparing
chromatin feature profiles between TF–TF co-occupancy
and TF-only events (student’s t-test P < 0.05; see Supple-
mentary Materials; Figure 2, Supplementary Figure S4 and
Supplementary Table S2). Taken together, our analyses sug-
gest that chromatin features are strongly related to TF bind-
ing events, and encourage us to construct a computational
model using chromatin features to discriminate TF–TF co-
occupancy from TF-only events.

Chromatin features are predictive of TF–TF co-occupancy

We used an SVM classifier to study the direct relation-
ship between local chromatin features and TF–TF co-
occupancy, by evaluating to what extent the local chromatin
features are informative of a variety of binding events. The
classifier was constructed based on the normalized signals
(log2-transformed RPKMs) of chromatin features within
the 100-bp window centered at TF peak summits (see ‘Ma-
terials and Methods’ section; Figure 1), and tested on its
predictive ability by examination of ROC curves, together
with the means of AUC and ACC values after 10-time rep-
etition. The chromatin features includes DNase I, 11 HMs
and GC content.

Starting with CTCF and YY1 binding events, the chro-
matin feature-based model enabled accurate predictions of
co-occupancy, with AUC = 0.92 and 0.88 for CTCF–YY1
(distinguished from CTCF-only) and YY1–CTCF (distin-
guished from YY1-only) binding events, in the GM12878

cell line (Figure 3). High prediction accuracies were also
achieved in the A549, H1-hESC, HepG-2 and K562 cells
with AUC = 0.92 and 0.76, 0.81 and 0.85, 0.91 and 0.78, and
0.89 and 0.79, respectively (Supplementary Figure S6). The
predictive ability of chromatin features were also demon-
strated using ACC value estimations with an average of
ACCs ∼0.80 for CTCF–YY1 and ∼0.75 for YY1–CTCF
co-occupancy (Figure 3, Supplementary Figure S6 and
Supplementary Table S3).

When using individual or a subset of chromatin fea-
tures as predictors, the prediction accuracies obtained from
DNase I and combined 11 HMs are closed to that using
all features as a whole (Figure 3, Supplementary Figure S6
and Supplementary Table S3). This observation may be ex-
plained by the previously reported results indicating that
both DNase I and HMs can be used to precisely estimate
open chromatin (52,53) and HMs are predictive of chro-
matin accessibility (54).

GC content is another valuable predictor. GC content
patterns are not significantly different, especially in the
YY1–CTCF and YY1-only comparisons, therefore GC
content itself does not enable accurate predictions. How-
ever, addition of GC content to any other features enhances
their prediction capability (Figure 3, Supplementary Figure
S6 and Supplementary Table S3).

We also employed the RF, NB and LDA for the predic-
tion of CTCF–YY1 co-occupancy. High prediction accu-
racies were generally achieved. For instance, the RF Clas-
sifier can achieve high predictions with AUC = 0.90 and
0.76, 0.89 and 0.87, 0.79 and 0.85, 0.91 and 0.78, and 0.89
and 0.79, respectively, in the A549, GM12878, H1-hESC,
HepG-2 and K562 cells, when using all chromatin features
as a predictor. Similar results were observed when using
different chromatin features as predictors (Supplementary
Figure S7). The linear model with NB and LDA gave ac-
curate predictions from individual chromatin features, such
as DNase I, which were similar to the results obtained from
non-linear models. However, the prediction accuracy from
combined chromatin features, especially using 11 histone
marks as a predictor, was low (Supplementary Figures S8
and S9), indicating a non-linear relationship of HMs with
TF–TF co-occupancy. These results were consistent with
the relationship between epigenetic modifications and in-
dividual TF binding (14). Since the SVM classifier led to
better predictions, this method is selected to depict the pre-
dictive ability and consequently correlation in the following
analyses.

The SVM classifiers were trained and tested for other
types of TFs for prediction of CTCF-TF/TF-CTCF co-
occupancy. The results showed that, chromatin features
are informative of binding events, with mean AUC val-
ues 0.90 and 0.72, 0.89 and 0.73, 0.83 and 0.73, 0.88 and
0.75, and 0.90 and 0.74 in the A549, H1-hESC, HepG-2
and K562 cells, for both CTCF–YY1 and TF-CTCF co-
occupancy, respectively (Figure 4 and Supplementary Ta-
ble S3). Consistent with the observations from CTCF–YY1
analysis, both the combined 11 HMs and DNase I en-
able highly accurate predictions. Predictions with individ-
ual HMs also achieve good results (Figure 3, Supplemen-
tary Figures S6 and S10, and Supplementary Table S3).
In general, H3K27ac, H3K4me 2, H3K4me3 and H39Kac
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Figure 3. Chromatin features are predictive of CTCF–YY1 co-occupancy from (A) CTCF-only and (B) YY1-only events with high accuracies in the
GM12878 cell line. Left: ROC curves are shown with colors representing predictions using different chromatin features and AUC values are indicated in
the legend; Middle: predictions evaluated with ACCs; and Right: predictions evaluated with AUC values using individual histone features.

are more reliable predictors; however, the predictive ability
of the combined or individual HMs varies across cell lines
(Figures 3 and 4, and Supplementary Figure S10). This ob-
servation was further validated by cross-cell line tests in the
following section. In spite that GC content alone does not
achieve high prediction accuracy, addition of GC content
to other features improves their prediction power.

We examined the predictive ability of chromatin features
for SP1-TF co-occupancy in four cell types (ChIP-Seq data
of SP1 were not available in the A549 cell), and the co-
localizations of another six TFs, including ATF3, GABP,
NRSF, POL2, USF1 and YY1. The latter test involved 15
binding pairs, as shown in Supplementary Table S8. Enrich-
ment analyses of GC content, DNase I and 11 HMs showed
distinct patterns between binding events, illustrated by the
given examples of SP1-BCL11A and SP1-TAF1 (Supple-
mentary Figure S11).

We consequently constructed and tested the computa-
tional models for each TF–TF pair in each cell type. High
prediction accuracies were generally obtained. For instance,
all chromatin features as a whole were able to accurately
predict the GABP-USF1 co-occupancy with AUC values
>0.86 in the GM12878 and K562 cell lines (Supplemen-
tary Figure S12A). For the prediction of SP1-TF combi-
national binding events, the average accuracies were ∼0.80,
0.77, 0.80 and 0.80 in the GM12878, H1-hESC, HepG-2
and K562 cells, respectively (Supplementary Figures S13A,

B and Supplementary Table S5). For the 15 TF–TF co-
occupancy with ATF3, GABP, NRSF, POL2, USF1 and
YY1, chromatin features enable highly accurate predictions
with AUC values >0.8 in all of five cell types (Supplemen-
tary Figures S14A, B and Supplementary Table S8).

The prediction abilities with a subset of or individual
chromatin features for above TF–TF co-occupancy were
similar to those for CTCF-TF co-occupancy. In general,
DNase I and the combination of 11 HMs are able to achieve
high prediction accuracy and addition of GC content en-
hances their performance (Supplementary Figures S13A,
B and S14A, B). H3K27ac, H3K4me 2, H3K4me3 and
H39Kac perform better than other HMs (Supplementary
Figures S13C, D and S14C, D). This is consistent with our
previous findings about the contribution of single HM to
binding affinity of individual TFs (14). In summary, all of
our observations demonstrate the strong relationship be-
tween chromatin features and TF–TF co-occupancy, and
the former is sufficient to model the latter genome-widely.

Chromatin features enable predictions of TF–TF co-
occupancy across different cell lines

Both chromatin modifications and TF binding profiles ex-
hibit dynamic and cell-specific patterns. Given that chro-
matin features, together with GC content, have the abil-
ity in predicting TF–TF co-occupancy, we tested to what
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Figure 4. Chromatin features are predictive of (A) CTCF-TF and (B) TF-CTCF co-occupancy with high accuracies. Computational models were trained
and applied to the same TF–TF pair in the same cell line, labeled by colors: black, A549; red, GM12878; cyan, H1-hESC; green, HepG-2; and blue, K562.
Models were trained using different sets of chromatin features.

extend the chromatin-feature models could be generalized
from one cell line to others.

We have constructed prediction models for all CTCF-TF
pairs with 11 HMs, DNase I and GC content in the five cell
lines. As shown in the Figure 3, and Supplementary Figures
S6 and S10, or diagonal figures in the Figure 5 and Sup-
plementary Figure S15, these models are able to accurately
identify genome-wide binding events in the cell types they
were trained on.

The models were trained on each cell line and then ap-
plied to the other four cell lines to test their prediction
abilities. The results indicated that the cross-cell line ap-
plications of classifiers do not reduce their performances
in predictions. For example, when we applied the models
trained in the GM12878, H1-hESC, HepG-2 and K562 cell
lines to the A549 cell for CTCF–YY1 predictions, the av-
erage prediction accuracies were 0.86, 0.77, 0.88 and 0.89,
respectively, compared to 0.91 using the model trained by
the A549 cell itself (Figure 5A and Supplementary Figure
S15). The largest changes were observed with accuracies as
0.78, 0.76, 0.78 and 0.81 when models were trained within
other four cells and applied to the H1-hESC cell, compared
to 0.84 using model trained by the H1-hESC cell line, and
vice versa, with accuracies as 0.77, 0.76, 0.81 and 0.79 when
model was trained in the H1-hESC cell line and applied to
the A549, GM12878, HepG-2 and K562 cells, compared to

0.91, 0.91, 0.91 and 0.90 when models were trained and ap-
plied to the same cell line (Supplementary Figure S15).

We did the same analyses to other CTCF-TF, SP1-TF
and ATF3-/GABP-/NRSF-/USF1-TF co-occupancy. Due
to the fact that not all TF binding profiles have been gener-
ated by the ENCODE project, we included various numbers
of TFs in each type of cells (Supplementary Table S1). Con-
sistent with our results from CTCF–YY1 studies, crossing-
cell line applications achieved satisfactory accuracies (Sup-
plementary Figures S12B, S16, S17 and S18). The biggest
changes were seen when models from other four cell lines
were applied to H1-hESC and vice versa. Overall, the re-
sults from our cross-cell type analyses support the generaliz-
ing associations of TF–TF co-localizations with chromatin
features.

The relationships of TF–TF co-occupancy with DNase I are
more conserved

We observed that the same features had different prediction
powers across cell lines (e.g. Figures 3 and 4 for CTCF–
YY1), especially when comparing the H1-hESC cell with
others. This was further illustrated in cross-cell line pre-
dictions (e.g. Figure 5 and Supplementary Figure S16 for
CTCF–YY1). Next, we examined the conservative relation-
ships between TF–TF co-occupancy and individual chro-
matin features.
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Figure 5. Chromatin features enable predictions of CTCF-TF co-occupancy across cell lines. Shown are ROC curves with colors representing the predic-
tions using different chromatin features. Models were trained in the cell line indicated by row and tested on each of the five cell lines indicated by column.
The AUC values are indicated on the plot as legend (see complete figures in Supplementary Figure S15).

We constructed chromatin-feature models for CTCF-TF
predictions using individual or a set of chromatin features,
and then applied the models obtained from one cell type to
others. We found that models with DNase I, GC content
and DNase I plus GC content give more consistent predic-
tions across all of human cells (Figure 6A and Supplemen-
tary Figure S19). The overall accuracy changes (|�AUC|)
were ∼0.02 among five cell lines, when models were built
with DNase I (Figure 6B and Supplementary Figure S20).
In contrast, prediction accuracies with individual or com-
bination of 11 HMs varied across cell lines with accuracy
changes ∼0.15, especially when prediction models were ex-
changed between H1-hESC and one of other four cell lines
(Figure 6B and Supplementary Figure S20).

The above analyses were also conducted in other two sets
of TF–TF pairs, and similar trends were observed (Supple-
mentary Figures S21 and S22). Of note, for some TF–TF
pairs, such as SP1-ATF2, DNase I did not enable highly ac-
curate predictions. In summary, all results suggest that the

correlations between TF–TF occupancy and DNase I/GC
content are more conserved than HMs across cell lines.

DISCUSSION

The accurate regulation of gene expression involves in a
complicated interplay between TF, histone modifying en-
zymes and other factors. The relative importance of epi-
genetic modification and TF bindings in the regulation of
gene expression is still under debate. Statistics analysis has
revealed that these two factors regulate gene transcription
in a highly coordinate manner (34), and are redundant for
predicting gene expression (55). Several studies have de-
scribed direct interactions between histone modifying en-
zymes and TFs (56). Co-occupancy of a binding site by mul-
tiple TFs plays a critical role in fine regulation of gene ex-
pression (57). Certain patterns of histone marks have been
observed around co-binding sites of some TF pairs, such as
FOXA1-FOXA3 (57), YY1-MYC and CTCF-NF-Y (17).
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Figure 6. Cross cell predictions of CTCF-TF co-occupancy. (A) Comparisons of cross cell predictions (y-axis) to predictions using models obtained and
trained in the same cell (x-axis). Test cell lines are shown by column and training cell line are indicated by colors: black, A549; red, GM12878; cyan, H1-
hESC; green, HepG-2; and blue, K562. Different chromatin features were used indicated by rows. (see complete figures in Supplementary Figure S19). (B)
Boxplots of prediction differences indicated by |�AUC|, in the A549 and GM12878 cell lines. |�AUC| was calculated by subtracting cross cell predictions
using models from other cell lines, indicated by colors, from predictions using models trained from the same cell line. Different features were used in each
test (see complete figures in Supplementary Figure S20).

However, there are no approaches available currently for
computationally identifying TF–TF co-occupying sites us-
ing chromatin features and quantitatively modeling the cor-
relation between them. We here introduced chromatin fea-
tures, that are always cell-type specific, to refine the descrip-
tion of TF–TF co-occupancy, and observed a strong cor-
relation of TF–TF co-occupancy with chromatin features.
This relationship was further confirmed by quantitative pre-
dictions of TF–TF co-occupancy using multiple or individ-
ual chromatin features.

Experimental techniques such as ChIP-Seq have been
used to identify TF–TF co-occupancy (23,32,58–60). Un-
fortunately, these experimental methods are always expen-
sive and time-consuming. Meanwhile, computationally pre-
dicting models using sequence-based PWM methods (61–
63) or combing ChIP-Seq data and PWMs (64) have also
been developed to detect the co-occurring TFs (63) and
their binding motifs (64–66). However, prediction of the
putative TFBSs using the predefined PWM suffers from
a high rate of false positive discovery (67). Moreover,
these approaches ignore the influence from cell conditions,
which are crucial for epigenetic modifications, chromatin
accessibility, TF binding and consequently gene regula-
tion (11,14,17,34,42,68). As a result, the prediction ac-
curacy could vary greatly across cell types. For instance,
the cobindR software (69) uses PWMs to identify the
co-occurring TFs and their binding sites. This sequence-
based approach can detect 6,444 CTCF–YY1 co-occupying
sites (PWMs obtained from http://jaspar.genereg.net (70)),
which cover 49, 20, 31, 19 and 26% sites obtained from
the ChIP-Seq data (Supplementary Table S1) in the A549,
GM12878, H1-hESC, HepG-2 and K562 cells, respectively.

As a comparison, our method used cell type-specific chro-
matin features as predictors, which largely improve pre-
dictive accuracy for cell type-specific TF–TF co-occupying
sites (Supplementary Table S3). Of noting, the most impor-
tance is that our study illustrated the correlation between
chromatin features and TF–TF co-occupancy, which is the
main aim of this study and can improve our understanding
of the interactions between epigenetic and genomic regula-
tion.

The co-occupied TFs may have different regulation func-
tions from solely bound TF. For example, co-localizations
of CTCF and YY1 can enhance transcriptional activity of
genes that they are co-occupied (19). Analysis showed that
the binding intensities of CTCF at regions co-occupied by
YY1 are significantly greater than those bound by only
CTCF (Student’s t-test P < 1e-17 in the five cell lines; Sup-
plementary Figure S23), indicating their differentially func-
tional effects. By profiling co-occupancy of CTCF–YY1
and other TF–TF pairs with chromatin features, we demon-
strated the important roles of chromatin modifications in
gene regulation and the strong associations between genetic
and epigenetic regulations.

Our analysis further illustrated the generalization of this
correlation across cell types, which led to the possible appli-
cation of a prediction model trained from one cell line using
combination of chromatin features to other cells for accu-
rate predictions of TF–TF co-occupancy. When applied in-
dividual chromatin features in our models, the associations
of DNase I with TF–TF co-occupancy were very conserved,
and the cross-cell type applications of models with DNase
I did not result in dramatically changes of prediction ac-
curacy. This observation suggested that, although DNase I

http://jaspar.genereg.net
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shows distinct profiling patterns in different cell types (68),
these patterns may coordinately change with TF–TF inter-
actions regardless of cell conditions. In contrast, the associ-
ations of individual or the combined 11 HMs are less con-
served among cell lines. This may be explained by the re-
ported cell-specific correlations between HMs and individ-
ual TF binding affinities (14).

TF–TF co-occupancy may have an effect on transcrip-
tional output. Comparisons of the expression levels for
RefSeq genes showed that the genes overlapped YY1-
only binding events are significantly more highly expressed,
followed by genes overlapped with CTCF–YY1 binding
events, in contrast to genes overlapped CTCF-only binding
events (Wilcoxon rank-sum test, P-values < 10e-8; Supple-
mentary Figure S24A), consistent with the previous find-
ings (19). This observation indicates the different functions
of CTCF–YY1 co-occupying regions compared to others.

We further tested whether transcriptional output has re-
lationship with both TF–TF co-occupancy and chromatin
features, such as DNase I. Comparisons showed that, al-
though either CTCF–YY1 co-occupancy or DNase I is as-
sociated with transcriptional activity (17,19,68), the com-
bination of CTCF–YY1 and DNase I did not necessarily
lead to higher transcriptional outputs (Supplementary Fig-
ure S24B). Indeed, even if CTCF–YY1 and DNase I oc-
curred in the same genomic regions, such as gene promoters,
the transcriptional output varied from gene to gene (Sup-
plementay Figures S24C, D). This may be explained by the
complicated correlation between DNase I and gene expres-
sion. For instance, Wang et al. showed that, even for the
similarly expressed genes, the distribution of DNase I may
differ among different chromosomes (71).

DNA methylation is another type of epigenetic modifi-
cation involved in the regulation of gene expression, cell
growth and disease development (6,72). Early studies re-
ported that DNA methylation is related with TF bind-
ing (73), but it alone is not sufficient to prevent protein
binding (74–76), or had a weak correlation with individual
TF binding affinity (14). We examined the relationship be-
tween DNA methylation (see ‘Materials and Methods’ sec-
tion) and TF–TF co-occupancy. We selected the methyla-
tion level of CpG site(s) mapped into the 100-bp bin cen-
tered at each TFBS to compute methylation level at that
binding site. Most of TFBSs do not have methylated CpG
site(s). In the GM12878 cell lines, 5583 out of 40 247 CTCF
binding sites have ≥1 CpGs, including 2,415 CTCF–YY1
and 3148 CTCF-only sites. We constructed SVM classifier
with DNA methylation and/or other chromatin features.
The results showed that DNA methylation has very fair
predication ability, with accuracies ∼0.57 in the five human
cell lines. Moreover, the combinations of DNA methylation
with any other chromatin features led to nearly same pre-
dictive performances (Supplementary Figure S25).

TFs prefer working together to regulate gene expression
by targeting the same genomic regions, namely TF hotspots
(21,22,28,77). These regions are usually cell type specific,
represented by active histone marks and reflect certain chro-
matin states (77,78). We therefore examined the correlation
between chromatin states and TF–TF co-occupancy. Since
the CTCF ChIP-Seq has been used by the ChromHMM for
the determination of chromatin state segmentation, we se-

lected the SP1-TF pairs as the testing examples. TFBSs were
mapped into the 15 chromatin states with different distribu-
tions and the association of SP1-TF co-occupancy with all
15 chromatin states were assessed (Supplementary Figure
S26). In general, the models using the chromatin state seg-
mentation gave predictive outcomes with accuracies lower
than the ones using the combination of all chromatin fea-
tures or the 11 HMs (Supplementary Figures S27A, B).
This suggested that TF–TF co-occupancy is not only re-
flected by chromatin states or those HMs used for chro-
matin state determination, but other chromatin features,
such as DNase I and GC components. As well, the adding
of chromatin state segmentation to any other chromatin fea-
tures did not significantly change the predictive outcomes
(Supplementary Figure S27A, C). This may be because that,
during the prediction of chromatin state segmentation with
the ChromHMM model, 8 of the 11 HMs from our study
have been used as the inputs, and therefore the informa-
tion from the chromatin state segmentation is partially over-
lapped with the one from the 11 HMs.

In summary, we have presented a statistical and compu-
tational approach to investigate the complicated interplays
between genetic and epigenetic regulations of gene expres-
sion. Although our analysis cannot demonstrate the relative
importance or causative role of TFs or chromatin features
in transcriptional regulation, we have elucidated a strong re-
lationship between TF–TF co-occupancy and various chro-
matin features through a large-scale statistical and compu-
tational experiments, which will help us in understanding
the mechanisms of combinational regulatory landscape.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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