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ABSTRACT: We analyze in depth two widely used definitions
(from the theory of conditional probability amplitudes and from the
adiabatic connection formalism) of the exchange-correlation energy
density and of the response potential of Kohn−Sham density
functional theory. We introduce a local form of the coupling-
constant-dependent Hohenberg−Kohn functional, showing that the
difference between the two definitions is due to a corresponding
local first-order term in the coupling constant, which disappears
globally (when integrated over all space), but not locally. We also
design an analytic representation for the response potential in the
strong-coupling limit of density functional theory for a model single
stretched bond.

■ INTRODUCTION

In Kohn−Sham (KS) Density Functional Theory (DFT), the
ground-state energy of a given chemical system is computed via
an exact mapping onto a system of noninteracting electrons, the
KS system, having the same one-electron density n(r). The
particles in the KS system feel the one-body KS potential, which
forces them to have the prescribed density n(r). The KS
potential is built from parts that are exactly known (the external
potential due to the nuclei and theHartree potential, which gives
a mean-field approximation for the effects of the electron−
electron interaction), plus a part that needs to be approximated,
the so-called exchange-correlation (XC) potential vxc(r), given
by the functional derivative with respect to n(r) of the unknown
XC energy Exc[n].
Exact properties1−20 of the XC potential have played, and

continue to play, a central role in building new approximations.
In particular, it has become clear over the years that LDA and
GGA approximations miss certain nonintuitive features of the
XC potential, such as “peaks” and “steps”, which are crucial to
predict static electric polarizabilities and band gaps, and to
describe bond breaking and strongly correlated systems.1,2,4,6−20

Using the theory of conditional probability amplitudes,21,22

Levy, Perdew, and Sahni23 have introduced in theDFT context a

Schrödinger-type equation for rn( ) , which was later used by
Baerends and co-workers2,4,6−8,24 to derive an insightful and
exact decomposition of the XC potential into so-called kinetic,

response, and XC-hole terms. They also showed that LDA and
GGA approximations typically reproduce quite well only the XC
hole part of the XC potential, and that features such as “peaks”
and “steps” are due, respectively, to the kinetic and response
parts. A slightly different, but related, decomposition of the XC
potential arises when we write Exc[n] in terms of an integration
along the adiabatic connection at fixed density:25−27 in this case
we have a coupling-constant averaged (CCA) XC-hole potential
and a CCA response part,28 due to the functional derivative of
the pair-correlation function with respect to the density. Also in
this case, LDA and GGA approximate functionals capture rather
well the CCA XC-hole part, while missing completely the
features of the response part.28

The purpose of this work is 2-fold: on the one hand, we
further investigate the relationship between the two different
decompositions, using a local form of the Hohenberg−Kohn
functional along the adiabatic connection. On the other hand,
we construct a simple analytic representation for the response
potential in the strong-coupling limit of DFT for the case of a
model stretched heteronuclear bond.
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■ DECOMPOSITIONS OF THE XC POTENTIAL
We start by reviewing the two different definitions of response
potential. The first one arises by using the theory of conditional
probability amplitudes first developed by Hunter.21,22 Following
the work in refs 2 and 23, we partition the Hamiltonian for N
electrons bound by the external (nuclear) potential v(r) in three
parts: the Hamiltonian forN− 1 electrons (with i = 2, ···,N), the
one-body terms acting on electron 1, and the remaining
interaction between electron 1 (taken as the reference) and all
the others
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In the same spirit, we factorize the N-particle wave function
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into the so-called marginal and conditional (probability)
amplitudes, represented respectively by the square root of the
density as a function of coordinates of electron 1 divided by the
number of electrons N and a function of the other N − 1
electronic positions,Φ(σ,x2,···, xN;r), which depends on electron
1 in a parametric way. We consider here the case that the wave
function Ψ is real. Physically speaking, Φ(σ,x2,···, xN;r) is a sort
of (N − 1)-particle wave function that describes how the
electronic cloud ofN − 1 electrons readjusts as a function of the
position of electron 1. Indeed, its modulus square integrates to
one for any value of the position vector of the reference electron
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By applying eq 1 to eq 2, and by multiplying to the left both
members by Φ*(σ,x2,···, xN;r) and integrating over the spin
variable of the reference electron and on the spatial and spin
variables of electrons 2,···, N, we obtain a Schrödinger-like

equation for rn( ) ,
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where I = E0
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N is the ionization potential. The resulting
effective potential veff(r) is equal to
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where the subscript “cond” stands obviously for conditional and
we have used the definition of the pair density, P2(r,r′),
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This potential is usually split into vcond(r) = vH(r) + vxc,hole(r),
where vH(r) is the Hartree potential. We also define the
exchange-correlation pair-distribution function, gxc(r,r′),
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The term that comes from the kinetic energy operator acting on
the conditional amplitude can be written, when we take into
account eq 3, as
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and it is called kinetic potential. Finally, the term coming from
the N − 1 Hamiltonian is equal to
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where the shift E0
N−1 makes this potential vanish when |r| → ∞

(with the possible exception in certain directions, if there are
nodal planes that extend to infinity29−31). It is evident that these
three potentials are always positive, as in eqs 6 and 10 the
integrands are squared quantities, and the right-hand-side of eq
11 must be positive by virtue of the variational principle.
Baerends and co-workers2,4,6−8,24 have then repeated the

same procedure for the KS Hamiltonian Ĥs
N with KS potential

vs(r),

∑ ∑̂ = −
∇

+
=

rH v
2

( )
r

s
N

i

N

i

N

s i

2

1

i

(12)

which has the same one-electron density of the physical
interacting system, obtaining
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where ψi(r) are the H occupied KS orbitals, and
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where ϵH is the energy of the KS highest occupied molecular
orbital (HOMO). The effective KS potential for the square root
of the density is nothing but the sum of the foreshown potentials
plus the KS potential itself (the conditional potential being
absent as there is no Coulomb repulsion between the particles),

= + + −r r r rv v v v( ) ( ) ( ) ( )s s s Neff ,kin , 1 (15)

Since the one-electron density is the same for the physical and
the KS system, then the right-hand sides of eqs 5 and 15 are also
the same, providing an expression for vxc

= + + ‐r r r rv v v v( ) ( ) ( ) ( )cxc ,kin resp xc hole (16)

with the correlation kinetic potential vc,kin(r) given by

= −r r rv v v( ) ( ) ( )c s,kin kin ,kin (17)

and the response potential vresp(r) equal to

= −− −r r rv v v( ) ( ) ( )N s Nresp 1 , 1 (18)
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Response Potential with Kinetic and Interaction
Components. The reason why eq 18 is called the response
potential is that from the definition of the XC energy,

ρ[ ] = ⟨Ψ| ̂|Ψ⟩ − [ ] + ⟨Ψ| ̂ |Ψ⟩ − [ ]
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where Ψ is the exact many-body wave function of the system
under study, Ts[n] is the KS kinetic energy, and U[n] is the
Hartree energy, we also have the exact equation
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By comparing eqs 16 and 21 we see that

= +r r rv v v( ) ( ) ( )cresp ,kin
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(24)

It has been shown that “peaks” in the KS potential come from
vc,kin(r),

2,10,17,32,33 while “steps” come from vresp(r).
8,9,15,34 Also,

notice that | | → ∞ ∼ − | |rv ( )
rxc,hole
1 , implying that all the other

terms are shorter ranged.
Response Potential from the Coupling-Constant

Integration. Another exact equation for Exc[n] can be obtained
by considering the λ-dependent Hohenberg−Kohn (HK)
functional in the Levy constrained-search formulation,35 where
the interaction is scaled by a real and positive coupling
parameter λ, namely

λ[ ] = ⟨Ψ| ̂ + ̂ |Ψ⟩λ
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F n T Vmin
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ee (25)

where F1[n] is the universal HK functional of the physical system
and F0[n] is equal to the KS kinetic energy Ts[n]. By simply
plugging the wave function Ψλ[n] that minimizes eq 25 in eqs 7
and 8, we define the pair-density P2

λ(r,r′) and the corresponding
gxc
λ (r,r′). The CCA pair-correlation function g̅xc(r,r′) is then
defined as
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The XC energy can be written in terms of the CCA g̅xc(r,r′),
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as the integration over λ allows recovering the kinetic
contribution to Exc[n].

25−27 Taking the functional derivative of
eq 27 we obtain two terms28

δ
δ

=
[ ]

= ̅ + ̅r
v

E n
n

v vr r r( )
( )

( ) ( )xc
xc

xc,hole resp
(28)

where

∫̅ = ′ ̅ ′
| − ′|

′r
r r

r r
rv n

g
r( ) ( )

( , )
dxc,hole

xc
(29)

and

∬ δ
δ̅ = ′ ″

| ′ − ″|
̅ ′ ″

′ ″r r
r r

r r
r rv

n n g

n
r

r
( )

1
2

( ) ( ) ( , )

( )
d dresp

xc

(30)

Again, also in this case v̅xc,hole(r) has the full asymptotic behavior
− | |r

1 at large |r| and the response part v̅resp(r) is shorter ranged. A
decomposition in which the response part also contains

̅v (r)1
2 xc,hole , has been proposed in ref 36. Comparing eqs 21

and 28, we have

̅ + ̅
= + + +

r r

r r r r

v v

v v v v

( ) ( )

( ) ( ) ( ) ( )c c

xc,hole resp

,kin xc,hole ,kin
resp

xc,hole
resp

(31)

One would naively expect that the response part in the left-hand
side equals the sum of the response parts in the right-hand sides.
However, this is not true, and in general we have

+ ≠ ̅r r rv v v( ) ( ) ( )c ,kin
resp

xc,hole
resp
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+ ≠ ̅r r rv v v( ) ( ) ( )c ,kin xc,hole xc,hole (33)

It is one of the purposes of this work to further investigate and
analyze the difference between these two response potentials.
Notice that, if we split the potential into its exchange (X) and
correlation (C) components, for the X part the two definitions
become equivalent, as there is no kinetic and no λ dependence in
exchange, v̅x,hole = vx,hole.

■ ANALYSIS OF ENERGY DENSITIES AND RESPONSE
POTENTIALS WITHIN THE TWO DEFINITIONS

The two ways to write the XC energy reviewed in the previous
section, from the conditional amplitude formalism and from the
adiabatic connection, stem from the two different energy
densities (sometimes called gauges)

ϵ = ++ r r rv v( ) ( )
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ϵ = ̅r rv( )
1
2

( )xc xc,hole (35)

which both yield the same Exc[n] when multiplied by the density
and integrated over all space. The second definition, ϵxc(r), is the
one most commonly used in DFT, also called the XC-hole
potential gauge. By rewriting it as

ϵ = + ̅ −r r r rv v v( )
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1
2

( )c cxc xc,hole ,hole ,hole
i
k
jjj

y
{
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we see that the difference between the two definitions stem from
how they describe the correlation kinetic energy density, as both
vc,kin(r) and ̅ −r rv v( ) ( )c c

1
2 ,hole

1
2 ,hole integrate to Tc[n] when

multiplied by n(r). These two kinetic energy densities are in
general rather different, as shown, for example, in Figure 1 for
the H− anion, or in Figure 14 of ref 37 for the Hooke’s atom
series. An exception is the uniform electron gas case (including
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the finite ones38,39), in which the kinetic energy density is a
constant and thus the same in both definitions. The local-density
approximation (LDA) can then be interpreted, in each point of
space, as an approximation for either of the two gauges. The
gauge of semilocal functional is a more subtle issue, as many of
them rely on integration by parts.
Both energy density definitions of eqs 34 and 35 go like− | |r

1
2

at large |r|. The total functional derivative is obviously the same,

as in eq 31), and has the well-known large-|r| behavior− | |r
1 , thus

two times the one of the energy density. Semilocal approximate
functionals typically miss both asymptotic behaviors. It is
possible to fix the energy density long-range behavior in a
semilocal functional for a specific density decay (e.g., ref 47 for
exponentially decaying density), but then the factor 2 in the
functional derivative will be missing. It is also possible to fix,
instead, the behavior of the XC potential, but in this case the
asymptotics of the energy density will be spoiled.36,48 Func-
tionals such as the exact exchange case or range-separated
hybrids do not suffer from this issue although these latters are
often used in the generalized KS formalism49 giving away the
multiplicative character of the potential. The strictly correlated
electrons (SCE) functional, corresponding to the λ→∞ limit of
the adiabatic connection, is one of the very few currently
available functionals that are able to capture both asymptotic
behaviors50 in a pure KS framework. However, existing
approximations inspired to the SCE mathematical structure,
which use integrals of the density as basic ingredient,51−53 are,
again, only able to capture the exact energy density asymptotics
but not the one of the XC potential, missing the factor 2.
Here we want to further analyze the difference between the

two possible definitions of the energy densities and of the
response part of the XC potential. Let us first introduce the new
quantity [ ]λ rn ( )
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which defines something close to an energy density for the λ-
dependentHK functional in the Levy constrained formulation of
eq 25, in the sense that it holds

∫ [ ] = [ ] − [ ]λ λr r rn n F n T n( ) ( ) d W (38)

where TW is the Von Weizsac̈ker kinetic energy functional,
clearly independent of λ. The conditional amplitude Φλ is
obtained by plugging the wave functionΨλ that minimizes eq 25
into eq 2. However, Φλ will not be in general the minimizer of
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where the Dirac brakets ⟨···|··· ⟩2···N stand for∫ σ ···x xd d N2 . We
set

λ λ λ
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as we assumed Φλ to be real. We then simply write
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Evaluating the left-hand side, we immediately get

− = +r r r rv v( ) ( ) ( )
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( )c1 0 ,kin cond (41)

But we also have
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so that combining eqs 39, 41, and 42 and subtracting theHartree
potential from both sides we find the relation

∫ λ
λ̅ = + − ⟨Φ | ̂ |

∂Φ
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⟩λ λ
λ

‐ ‐v v v h
1
2

1
2

2 dxc c Nhole ,kin xc hole
0
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We then see that the difference between the two energy densities
of eqs 34 and 35 is given by the term

∫ λ
λ

ϵ − ϵ = ⟨Φ | ̂ |
∂Φ
∂

⟩λ λ
λ

+ h2 d Nkin hole xc
0

1

2 ... (44)

Whenmultiplied by the density and integrated over all space, the
right-hand side of eq 44 integrates to zero by virtue of the
Hellmann−Feynman theorem, as Ψλ is the minimizer of eq 25.
The two energy densities are then different because the first-
order term in λ does not disappear locally, but only globally. We
see that they are also equal, as should be, for exchange-only, as in
that case the conditional amplitudeΦ does not depend on λ. By
combining eqs 43 and 31, we can also find a relation between the
two response potentials

∫ λ
λ̅ = − + ⟨Φ | ̂ |

∂Φ
∂

⟩λ λ
λv v v h4 dc Nresp resp ,kin

0

1

2 ... (45)

Figure 1. Two possible kinetic correlation energy densities, from the
conditional amplitude formalism and from the coupling-constant
average of the interaction part. Notice that in this case, asN = 2 we have
vc,kin = vkin. The potential vkin has been computed from the accurate wave
function of ref 40, while v̅c,hole and vc,hole(r) are obtained from refs
41−46.
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Note that eqs 44 and 45 are completely general results: they hold
for any number of electrons and rely only on the few
assumptions mentioned, that is, that the Levy-Lieb λ-dependent
functional is differentiable at any λ and that the wave functionΨλ

is real.
To explore their meaning, we start from the known relations

between the global quantities Vee
λ [n] = ⟨Ψλ[n]|V̂ee|Ψλ[n]⟩ and

Tλ[n] = ⟨Ψλ[n]|T̂|Ψλ[n]⟩, that is,
54

λ
∂
∂

[ ] ≤λV n 0ee (46)

λ
λ

λ
∂
∂

[ ] = − ∂
∂

[ ]λ λT n V nee (47)

Defining

∫ ∑ σ σ=
| − |

|Φ ··· |

···

λ λ
=

r
r r

x x rv x

x

( )
1

( , , , ; ) d d

d

i

N

i
N

N

,cond
2

2
2

2

(48)

in agreement with eq 6, and considering that

∫λ λ
∂
∂

[ ] = ∂
∂

[ ]λ
λr r rV n n v n

1
2

( ) ( ) dee ,cond (49)

the natural doppelganger of eq 46 at the local level would

concern [ ]
λ λ
∂
∂ rv n ( ),cond . However, precisely because Φλ is not

stationary with respect to the expectation value of ĥλ,

⟨Φ | ̂ |Φ ⟩ ⩽̷⟨Φ | ̂ |Φ ⟩ ∀λ λ λ λ λ λ′ ′r r rh h( ) ( ) (50)

we cannot perform the usual steps (as in ref 54) and in general
there will be regions in the domain of the density where

λ
∂
∂

[ ] ≥ ′ < < ″λ r r r rv n ( ) 0 for,cond (51)

Such regions have been observed for example, for the case of the
Hooke’s atom at pronounced correlation (very low frequency,
ω, of the binding harmonic potential) in ref 50. They are
expected to occur mostly where the density is negligeable (such
as in the tail) as a combination of eqs 49 and 46 requires them to
contribute to a lesser extent than those regions where

[ ] ≤
λ λ
∂
∂ rv n ( ) 0,cond . Lack of a “local variational principle”, as

expressed in eq 50, has further consequences: using that

⟨Φ | ̂ | ⟩λ λ λ
∂Φ
∂

λh N2 ... does not vanish in general as already discussed

and splitting this term into its contributions

λ λ
λ

λ
⟨Φ | ̂ |

∂Φ
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+ ∂
∂λ λ
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jjj
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(52)

with

∫ σ σ≔ |∇Φ ··· | ···λ λr x x rv x x( )
1
2

( , , , ; ) d d dr N N,kin 2
2

2

(53)

leads to the conclusion that also the local doppelganger of eq 47
is not satisfied, that is,

λ
λ

λ
∂
∂

≠ − ∂
∂λ λr rv v( )

2
( ),kin ,cond (54)

The sign of
λ λ
∂
∂ rv ( ),kin will be positive at least in the regions

where the density is significant, to satisfy eq 47 or, equivalently,

∫ = ≥r r rv n T( ) ( )d 0c c,kin , but we cannot exclude that in some

regions of lower density
λ λ
∂
∂ rv ( ),kin could be negative. Never-

theless, we expect the terms
λ λ
∂
∂ rv ( ),kin and λ

λ λ
∂
∂ rv ( )

2 ,cond , that are

responsible of the difference between CCA and nonaveraged
quantities (i.e., ϵxc, v̅resp and ϵkin+hole, vresp) according to eqs 44
and 45, to work mainly in opposite directions. Combining eqs
36, 43, 44, and 45, we can rearrange the differencesΔϵ≔ ϵkin+hole
− ϵxc and Δresp ≔ vresp − v̅resp as follows

Δ = − ̅ −ϵ v v v
1
2

( )c c c,kin ,hole ,hole (55)

Δ = ̅ − −v v v( )c c cresp ,hole ,hole ,kin (56)

which clearly shows that Δϵ and Δresp, although constrained by
eq 31, do not trivially “compensate” each other, because of the
factor 1

2
in front of (v̅c,hole − vc,hole) present in the former and not

in the latter difference. It might well be, then, that in regions
where |Δϵ| is relatively small |Δresp| is instead much larger. This
different redistribution between coupling-constant averaged and
non-averaged terms into which the XC potential can be
decomposed is quite subtle and inherently absent from an
LDA model as well as from the SCE reference state (see refs 46
and 55 and discussion in the next section). In Figure 2, examples
of vresp and v̅resp (left panel) and a comparison between Δϵ and
Δresp (right panel) is given for the hydrogen anion. Inspection of
Figure 2 shows that the two response potentials have maxima
located at different positions46 and that, whereby the two energy
densities have relatively close values (compare also Figure 1),

Figure 2. Comparison between vresp and v̅resp (left panel) and between Δϵ and Δresp (right panel) for the hydrogen anion. The potential vresp has been
computed from the correlated wave functions of ref 40, while v̅resp is obtained from refs 41−46.
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the values taken by the two different response potentials are
more far apart (e.g., while |Δϵ|(r = 1) ≃ 0.01, |Δresp|(r = 1) ≃
0.04). For the He atom, the quantities Δϵ and Δresp differ even
more, indeed we find |Δϵ|(r = 0.5) ≃ 0.002 while |Δresp|(r = 0.5)
≃ 0.030 (not reported in the figure). These showcases stress the
point that design of an approximate energy density functional in
either chosen gauge should come along with that of an
approximate response potential consistent with that gauge.
Another paradigmatic case is the one of a two-electron system

dissociating into two one-electron fragments, which is often used
to test and understand the problems of approximate DFT in
describing bond breaking.2,9,10,16,18 In this case, we have

̂ ∼ −λ
∇

h
2
r2
2

, and then

∫ λ
λ

⟨Φ | ̂ |
∂Φ
∂

⟩ ∼λ λ
λh vd

1
2N c

0

1

2 ... ,kin (57)

which plugged into eqs 43 and 45 gives

∼ ̅v x v x( ) ( )xc xc,hole ,hole (58)

̅ ∼ +v x v x v x( ) ( ) ( )cresp ,kin resp (59)

as we had already conjectured in eq 83 of ref 46. Understanding
the different roles played by the correlation response potential
according to how the kinetic correlation is encoded in the
different gauges is important to be able to model it. For example,
in the case studied in ref 46, it has been observed that while the
two inflection points of the step structure of vresp signal where the
exponential decay of the total density switches from that of the
less electronegative fragment to that of the more electronegative
one and viceversa, v̅resp has its global maximum located at the
distance for which each fragment integrates to an integer
number of electrons, a feature which clarifies how the KS
potential is able to dissociate a bond into physical fragments
(with integer number of electrons).

■ ANALYTICAL 1D MODEL FOR VHXC
SCE AND VRESP

SCE IN
THE DISSOCIATION LIMIT

We now consider the strictly correlated electron (SCE) XC
functional, which is given by

λ ρ[ ] = [ ] − [ ]
λ

λ
→∞

−W n F n UlimSCE
1

(60)

and provides an extreme approximation for the XC energy,
which becomes asymptotically exact when the system is driven
to low density.56,57We focus on a prototypical model, often used
to understand, test and improve approximations in
DFT,9,10,16,18,46 consisting of a one-dimensional (1D) system
of N = 2 electrons dissociating into two one-electron fragments,
mimicking the breaking of a single bond. The response potential
vresp
SCE for the SCE functional was analyzed in ref 46, where it was
found that, although vresp

SCE does not saturate as the exact response
potential, it behaves very differently from semilocal functionals,
with qualitative features much closer to the exact ones. Here we
go one step further with respect to ref 46 and build a simple
analytic model for vresp

SCE which works extremely well. This could
be of interest, for example, in transport calculations for model
systems,58 but also as a starting point for new approximations.
We thus consider the following model for a heteronuclear

diatomic molecule

= − + +

= +− | − | − | + |

n x n x
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n x
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2
e
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i
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{
zzz

i
k
jjj

y
{
zzz

(61)

where a and b mimic the different ionization potentials of the
“atoms” (pseudopotentials or frozen cores) and the density is
normalized to 2. We have chosen a > b, therefore the more
electronegative atom will be found to the right side of the origin

(at a distance+ R
2
from it) and the less electronegative to the left.

The SCE functional of eq 60 for a two-electron system is given
by59−61

∫[ ] =
| − [ ] |

− [ ]r
r r

rW n
n

n
U n

f
1
2

( )
( , )

dSCE
(62)

where the comotion function f(r, [n]) determines the position of
the second electron as a function of the position r of the first one
and it is a nonlocal functional of the density. Despite this
extreme nonlocality, its functional derivative

δ
δ

=
[ ]

+r
r

rv
W n

n
v( )

( )
( )H xc

SCE SCE
H

(63)

can be computed from the exact force equation60,62

∇ = − −
| − |

r
r r

r r
v

f
f

( )
( )

( )H xc
SCE

3 (64)

And for the response potential, we have46

= −
| − |

r
r r

v vr
f

( ) ( )
1

( )Hresp
SCE

xc
SCE

(65)

Notice that in the SCE limit there is no difference between v̅resp
and vresp, as SCE has the same scaling of exchange63 or,
equivalently, there is no kinetic correlation component to
leading order in the λ → ∞ limit. By defining

∫ =
−∞

a n x x: ( ) d 1R

aR

(66)

the exact 1D comotion function is given by59,64

=
[ + ] <

[ − ] >

−

−
f x

N N x x a

N N x x a
( )

( ) 1

( ) 1

e e R

e e R

1

1

l
m
ooo
n
ooo (67)

In ref 46, it has been shown that the shape of the comotion
function for the density of eq 61 becomes asymptotically the
same at any internuclear distance (“saturation” phenomenon),
behaving, in particular, as a constant in the asymptotic regions x

≪ 1 and x ≫ 1 and as a linear curve with coefficients, =<m b
a

and =>m a
b
close to aR. If we now approximate the small regions

where the comotion function switches from the constant to the
linear behavior and those where it diverges (it is sufficient to
know each one of such regions only for one branch, as the
comotion is symmetric with respect to the axis y = x) with sharp
angles, we can determine the asymptotic (R → ∞) comotion
function
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where xT
< (xT

>) is the distance at which the comotion function
switches from constant (linear) to linear (constant), while c<

(c>) is the constant shifting of the zero of the linear region to the
negative (positive) x-axis. Note that, in devising the structure of
68, we can regardless choose whether fmod(aR) =∞ or fmod(aR) =
−∞. The same is true for the inequalities, where we have either
fmod(xT

<) = aR or fmod(xT
<) = m<y + c<. Such single point choices

do not affect the SCE Hartree XC potential, as it is obtained
from an integral expression containing fmod, or the SCE response
potential, as long as fmod(aR) diverges.
Assuming that eq 68 is a good model for the comotion

function, we need very few considerations to determine all the
quantities needed to calculate the SCE potential and its response
part from it. In particular, considering the two identical right

triangles ABC plotted in Figure 3, where the point A is A =
{aR,aR}, we can determine their catheti AB and AC from

=

+ =

− a
b

R

AB(AC)

AB AC 2

1l
m
oooo

n
oooo (69)

where the first equation follows directly from eq 78 of ref 46,
while the second is an extension of the discussion contained in
section 5.2 of the same work, but it takes a bit more detail to
support it. When the reference electron is situated slightly off
− R

2
, say − + ϵR

2
the second electron will be displaced by an

amount ϵb
a

by the property of the right triangles.

Let us now consider the displacement from − R
2

to aR,
corresponding to the DE segment in Figure 3. The comotion

then increases by an amount +( )ab
a

R
R2

(the DC segment in the

figure). On the other hand, because of its symmetry, the
displacement of the comotion on one branch corresponds to the
displacement of the variable of the reference electron on the
other branch. Furthermore, what happens from − R

2
“onward”

must be mirrored by what happens from − R
2

“backward”
bringing us to the conclusion that the segment
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Once AB and AC are known, evaluating all the quantities
specifying the asymptotic comotion in eq 68 is just a matter of
basic trigonometry, providing

= − −

= +

= −

= −

= −

= −

<

>

< <

> >

< < <

> > >

x a

x a

x x
a
b

a

x x
b
a

a

c m x

c m x

(AB )

AC

T R

T R

T R

T R

0

0

0

0 (70)

where x0
< (x0

>) is the zero of the functionm<x + c< (m>x + c>), see
Figure 3.
The modeled Hartree XC SCE potential, vHxc,mod

SCE , obtained
from

∫= − −
−∞

−v x f y y y( ) ( ( ) ) d
x

Hxc,mod
SCE

mod
2

(71)

(see eq 64), compares nicely with the numerically exact one as
shown in the left column of Figure 4. In addition to the profile of
the modeled potential, we report in Table 1, the values obtained
for the maximum, which is the most delicate point.
The analytical expression for the dependence of themaximum

of the Hartree XC SCE we obtain is

= +
v a

a b
abR

( )
( )

2RHxc
SCE

2

(72)

Equation 72 shows that when the two fragment densities are
equal, the maximum value decreases like

R
2 , thus missing the

exact behavior in which this value should saturate and becomeR-
independent at large R. Note that when a > b, the maximum
value decreases like ς

R
2 , where ς is a factor greater than one. In

this sense, the repulsion is at a minimum when the two densities
are identical.
In the right column of Figure 4, we report the comparison

between the modeled and the numerical SCE response
potentials, obtained using the exact relation46

= − +v x v f x v a( ) ( ( )) ( )Rresp
SCE SCE SCE

(73)

It is quite interesting to notice that the SCE response potential
resulting from our model comotion eq 68 shows a pointwise
jump in x = aR. It is evident that, in order to correctly describe
how this potential behaves around its maximum, we need to
include also the knowledge of how the comotion function
diverges, while this information is not needed in the case of the
maximum of the SCE Hartree XC potential. Nonetheless, our

Figure 3. Asymptotic comotion function of eq 68.
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modeled SCE response potential correctly integrates to exactly
one as it should, fulfilling a recently derived sum-rule.55

Moreover, excluding for a moment the point fmod(ar) = ∞
from our model comotion function, we can evaluate the
analytical behavior of the step structure of the modeled SCE
response potential, vresp,mod

SCE , that is, the difference from its left
and right limits toward aR, getting

−

= + − +

= −

→ →+ −
v x v x

a b
aR

a b
bR

a b
abR

lim ( ) lim ( )

2 2

2

x a x a
resp,mod
SCE

resp,mod
SCE

2 2

R R

(74)

which differs from the exact step height in the model −( )a b
8 8

2 2

by the factor Ra b
2 2

.

■ CONCLUSIONS AND PERSPECTIVES

We have identified a fundamental difference between two
definitions of the XC energy densities and two different
decompositions of the XC potential in the fact that, differently
than what happens with the global (integrated over all space)
expectation values, the conditional amplitude is not stationary
for the local Hamiltonian ĥλ, preserving first-order terms in the
coupling constant, eqs 37−45. This allows us to connect the two
different response potentials in the case of a stretched bond (eq

Figure 4.Comparison between the numerical (thick) and themodeled (dashed) vHxc
SCE (right) and the numerical (thick) and themodeled (dashed) vresp

SCE

at different internuclear distances. Notice that, because within the model the local behavior of the comotion around the divergence is not treated, the
response potential vresp

SCE(x) shows a pointwise jump in x = aR.

Table 1. Values of the Maximum of vHxc
SCE for the density in eq

61 and the Parameters a = 2, b = 1 at Different Internuclear
Distance, R

vHxc
SCE(aR)

R numerical modeled

3 0.684 0.75
8 0.278 0.281
11 0.203 0.205
14 0.160 0.161
17 0.132 0.132
20 0.113 0.113
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59). Future works will include the derivation for the case in
which the wave function is complex, an analysis of approximate
functionals,28 and the investigation of the relation with response
properties of DFT to understand the chemistry.65

In addition, we have proposed a working model for the XC
and response potential in the strong-coupling limit of DFT for a
two-electron stretched dimer, which is very accurate in the
dissociation limit. Although restrictied to the 1D case, it could
prove useful, for example, to model quantum transport
calculations58 and systems out of equilibrium in hybrid
approaches,66 but also as a starting point to build new
approximations that would also include the missing kinetic
correlation component.
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(57) Cotar, C.; Friesecke, G.; Klüppelberg, C. Smoothing of transport
plans with fixed marginals and rigorous semiclassical limit of the
Hohenberg−Kohn functional. Arch. Ration. Mech. Anal. 2018, 228,
891−922.
(58) Kurth, S.; Stefanucci, G. Dynamical Correction to Linear Kohn-
Sham Conductances from Static Density Functional Theory. Phys. Rev.
Lett. 2013, 111, No. 030601.
(59) Seidl, M. Strong-interaction limit of density-functional theory.
Phys. Rev. A: At., Mol., Opt. Phys. 1999, 60, 4387−4395.
(60) Seidl, M.; Gori-Giorgi, P.; Savin, A. Strictly correlated electrons
in density-functional theory: A general formulation with applications to
spherical densities. Phys. Rev. A: At., Mol., Opt. Phys. 2007, 75,
No. 042511.
(61) Buttazzo, G.; De Pascale, L.; Gori-Giorgi, P. Optimal-transport
formulation of electronic density-functional theory. Phys. Rev. A: At.,
Mol., Opt. Phys. 2012, 85, No. 062502.
(62) Malet, F.; Gori-Giorgi, P. Strong correlation in Kohn-Sham
density functional theory. Phys. Rev. Lett. 2012, 109, 246402.
(63) Vuckovic, S.; Levy, M.; Gori-Giorgi, P. Augmented potential,
energy densities, and virial relations in the weak-and strong-interaction
limits of DFT. J. Chem. Phys. 2017, 147, 214107.
(64) Colombo, M.; De Pascale, L.; Di Marino, S. Multimarginal
Optimal Transport Maps for One-dimensional Repulsive Costs.Canad.
J. Math 2015, 67, 350−368.
(65) Geerlings, P.; Boisdenghien, Z.; Proft, F. D.; Fias, S. The E =
E[N,v] functional and the linear response function: a conceptual DFT
viewpoint. Theor. Chem. Acc. 2016, 135, 213.
(66)Hopjan,M.; Karlsson, D.; Ydman, S.; Verdozzi, C.; Almbladh, C.-
O. Merging Features from Green’s Functions and Time Dependent
Density Functional Theory: A Route to the Description of Correlated
Materials out of Equilibrium? Phys. Rev. Lett. 2016, 116, 236402.

The Journal of Physical Chemistry A pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpca.9b10538
J. Phys. Chem. A 2020, 124, 2473−2482

2482

https://dx.doi.org/10.1103/PhysRevLett.109.266404
https://dx.doi.org/10.1103/PhysRevLett.109.266404
https://dx.doi.org/10.1103/PhysRevLett.109.266404
https://dx.doi.org/10.1103/PhysRevA.54.1957
https://dx.doi.org/10.1103/PhysRevA.54.1957
https://dx.doi.org/10.1073/pnas.76.12.6062
https://dx.doi.org/10.1073/pnas.76.12.6062
https://dx.doi.org/10.1073/pnas.76.12.6062
https://chemrxiv.org/articles/Asymptotic_Behavior_of_the_Exchange-Correlation_Energy_Density_and_the_Kohn-Sham_Potential_in_Density_Functional_Theory_Exact_Results_and_Strategy_for_Approximations/9917189/1
https://chemrxiv.org/articles/Asymptotic_Behavior_of_the_Exchange-Correlation_Energy_Density_and_the_Kohn-Sham_Potential_in_Density_Functional_Theory_Exact_Results_and_Strategy_for_Approximations/9917189/1
https://chemrxiv.org/articles/Asymptotic_Behavior_of_the_Exchange-Correlation_Energy_Density_and_the_Kohn-Sham_Potential_in_Density_Functional_Theory_Exact_Results_and_Strategy_for_Approximations/9917189/1
https://chemrxiv.org/articles/Asymptotic_Behavior_of_the_Exchange-Correlation_Energy_Density_and_the_Kohn-Sham_Potential_in_Density_Functional_Theory_Exact_Results_and_Strategy_for_Approximations/9917189/1
https://chemrxiv.org/articles/Asymptotic_Behavior_of_the_Exchange-Correlation_Energy_Density_and_the_Kohn-Sham_Potential_in_Density_Functional_Theory_Exact_Results_and_Strategy_for_Approximations/9917189/1
https://dx.doi.org/10.1007/s00214-018-2354-5
https://dx.doi.org/10.1007/s00214-018-2354-5
https://dx.doi.org/10.1007/s00214-018-2354-5
https://dx.doi.org/10.1007/s00214-011-1069-7
https://dx.doi.org/10.1063/1.4978409
https://dx.doi.org/10.1063/1.4978409
https://dx.doi.org/10.1103/PhysRevA.29.980
https://dx.doi.org/10.1103/PhysRevA.29.980
https://dx.doi.org/10.1063/1.3082285
https://dx.doi.org/10.1063/1.3082285
https://dx.doi.org/10.1063/1.3082285
https://dx.doi.org/10.1063/1.3380834
https://dx.doi.org/10.1063/1.3380834
https://dx.doi.org/10.1080/00268976.2015.1096424
https://dx.doi.org/10.1080/00268976.2015.1096424
https://dx.doi.org/10.1021/acs.jctc.6b00177
https://dx.doi.org/10.1021/acs.jctc.6b00177
https://dx.doi.org/10.1063/1.4871018
https://dx.doi.org/10.1063/1.4871018
https://dx.doi.org/10.1021/acs.jctc.8b00386
https://dx.doi.org/10.1021/acs.jctc.8b00386
https://dx.doi.org/10.1021/acs.jctc.8b00386
https://dx.doi.org/10.1103/PhysRevA.38.3098
https://dx.doi.org/10.1103/PhysRevA.38.3098
https://dx.doi.org/10.1103/PhysRevLett.111.036402
https://dx.doi.org/10.1103/PhysRevLett.111.036402
https://dx.doi.org/10.1103/PhysRevB.53.3764
https://dx.doi.org/10.1103/PhysRevB.53.3764
https://dx.doi.org/10.1021/ct3003892
https://dx.doi.org/10.1021/ct3003892
https://dx.doi.org/10.1103/PhysRevA.90.052512
https://dx.doi.org/10.1103/PhysRevA.90.052512
https://dx.doi.org/10.1063/1.4962738
https://dx.doi.org/10.1063/1.4962738
https://dx.doi.org/10.1021/acs.jpclett.7b01113
https://dx.doi.org/10.1021/acs.jpclett.7b01113
https://dx.doi.org/10.1103/PhysRevA.32.2010
https://dx.doi.org/10.1103/PhysRevA.32.2010
https://dx.doi.org/10.1103/PhysRevA.32.2010
https://dx.doi.org/10.1140/epjb/e2018-90301-8
https://dx.doi.org/10.1140/epjb/e2018-90301-8
https://dx.doi.org/10.1016/j.crma.2018.03.002
https://dx.doi.org/10.1016/j.crma.2018.03.002
https://dx.doi.org/10.1007/s00205-017-1208-y
https://dx.doi.org/10.1007/s00205-017-1208-y
https://dx.doi.org/10.1007/s00205-017-1208-y
https://dx.doi.org/10.1103/PhysRevLett.111.030601
https://dx.doi.org/10.1103/PhysRevLett.111.030601
https://dx.doi.org/10.1103/PhysRevA.60.4387
https://dx.doi.org/10.1103/PhysRevA.75.042511
https://dx.doi.org/10.1103/PhysRevA.75.042511
https://dx.doi.org/10.1103/PhysRevA.75.042511
https://dx.doi.org/10.1103/PhysRevA.85.062502
https://dx.doi.org/10.1103/PhysRevA.85.062502
https://dx.doi.org/10.1103/PhysRevLett.109.246402
https://dx.doi.org/10.1103/PhysRevLett.109.246402
https://dx.doi.org/10.1063/1.4997311
https://dx.doi.org/10.1063/1.4997311
https://dx.doi.org/10.1063/1.4997311
https://dx.doi.org/10.4153/CJM-2014-011-x
https://dx.doi.org/10.4153/CJM-2014-011-x
https://dx.doi.org/10.1007/s00214-016-1967-9
https://dx.doi.org/10.1007/s00214-016-1967-9
https://dx.doi.org/10.1007/s00214-016-1967-9
https://dx.doi.org/10.1103/PhysRevLett.116.236402
https://dx.doi.org/10.1103/PhysRevLett.116.236402
https://dx.doi.org/10.1103/PhysRevLett.116.236402
pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.9b10538?ref=pdf

