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Abstract: Deep learning methods provide significant assistance in analyzing coronavirus disease
(COVID-19) in chest computed tomography (CT) images, including identification, severity assessment,
and segmentation. Although the earlier developed methods address the lack of data and specific
annotations, the current goal is to build a robust algorithm for clinical use, having a larger pool of
available data. With the larger datasets, the domain shift problem arises, affecting the performance of
methods on the unseen data. One of the critical sources of domain shift in CT images is the difference
in reconstruction kernels used to generate images from the raw data (sinograms). In this paper, we
show a decrease in the COVID-19 segmentation quality of the model trained on the smooth and tested
on the sharp reconstruction kernels. Furthermore, we compare several domain adaptation approaches
to tackle the problem, such as task-specific augmentation and unsupervised adversarial learning.
Finally, we propose the unsupervised adaptation method, called F-Consistency, that outperforms
the previous approaches. Our method exploits a set of unlabeled CT image pairs which differ
only in reconstruction kernels within every pair. It enforces the similarity of the network’s hidden
representations (feature maps) by minimizing the mean squared error (MSE) between paired feature
maps. We show our method achieving a 0.64 Dice Score on the test dataset with unseen sharp kernels,
compared to the 0.56 Dice Score of the baseline model. Moreover, F-Consistency scores 0.80 Dice
Score between predictions on the paired images, which almost doubles the baseline score of 0.46 and
surpasses the other methods. We also show F-Consistency to better generalize on the unseen kernels
and without the presence of the COVID-19 lesions than the other methods trained on unlabeled data.

Keywords: chest computed tomography; convolutional neural network; COVID-19 segmentation;
domain adaptation

1. Introduction

After the coronavirus disease (COVID-19) outbreak, a broad spectrum of automated
algorithms have been developed to assist in the clinical analysis of the virus [1]. Among oth-
ers, we consider analyzing chest computer tomography (CT) images. Firstly, CT imaging de
facto has become one of the reliable clinical pretests for COVID-19 diagnosis [2]. Secondly,
well-developed deep learning techniques for volumetric CT processing allow precise and
efficient analysis of the different COVID-19 markers. The latter includes identification [3],
prognosis [4], severity assessment [5], and detection or segmentation of the consolidation
or ground-glass opacity.

One of the easiest to interpret and clinically useful markers is segmentation [6]. Seg-
mentation provides us with classification, severity estimation [7], or differentiating from
other pathologies in a straightforward manner by evaluating the output mask. However,
training a segmentation model takes huge efforts in terms of voxel-wise annotations. The
earlier developed models have faced the lack of publicly available data annotated with

J. Imaging 2022, 8, 234. https://doi.org/10.3390/jimaging8090234 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8090234
https://doi.org/10.3390/jimaging8090234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-2776-5316
https://orcid.org/0000-0002-2901-5789
https://doi.org/10.3390/jimaging8090234
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8090234?type=check_update&version=1


J. Imaging 2022, 8, 234 2 of 18

segmentation masks. To achieve the high segmentation quality, more sophisticated methods
have been designed, e.g., solving a multitask problem and merging datasets with different
annotations [8]. Now, a larger pool of COVID-19 segmentation datasets is available, e.g., [9];
therefore, the current goal is to build a robust algorithm for clinical use.

In merging a larger pool of data, the problem of domain shift arises. Domain shift
is one of the most salient problems in medical computer vision [10]. A model trained
on the data from one distribution might yield poor results on the data from a different
distribution. In CT imaging, one of the main sources of the domain shift is the difference
in reconstruction kernels. Here, the reconstruction kernel is a parameter of the Filtered
Back Projection (FBP) reconstruction algorithm [11]. One could perceptually compare the
same image reconstructed with two different kernels in Figure 3, e.g., B1 and B2. For the
kernel-caused domain shift, several works have shown the deterioration of the quality of
the model in lung cancer segmentation [12] and in emphysema segmentation [13].

In this paper, we show that the domain shift induced by the difference in reconstruction
kernels decreases the quality of the COVID-19 segmentation algorithms. To do so, we
construct two domains from the publicly available data: the source domain with the smooth
reconstruction kernels and target domain with the sharp reconstruction kernels. We train
the segmentation model on the source domain and test it on the target domain. We then
validate the most relevant domain adaptation methods with the observed decrease in
test scores. In our comparison, we include an augmentation approach [14], unsupervised
adversarial learning [15], and also our proposed method that couples with the considered
domain shift problem more efficiently.

All methods except the augmentation one require additional unlabeled data from the
target domain. In this task, a large pool of unlabeled chest CT image pairs which differ only
in reconstruction kernels within every pair is publicly available, e.g., [16]. The intuition here
is that the adaptation methods should outperform the augmentation one when a broader
range of real-world data is available. Specifically, in such conditions, we propose enforcing
the cross-domain feature maps consistency between paired images; we call our method
F-Consistency (Figure 1). F-Consistency minimizes the mean squared error (MSE) between
the network’s hidden representations (feature maps) of paired images. We expect that
explicitly enforcing consistency on the paired images should outperform the adversarial
learning that emulates similar behavior minimizing the adversarial loss.

Adversarial loss: 
negative classification CE
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Figure 1. Schematic representation of the proposed method, F-Consistency (5), and its competitors,
P-Consistency (4) and DANN (6). All methods build upon the same U-Net architecture, which we
train to segment the COVID-19 binary mask (1) from the axial slices of chest CT images (2). These
adaptation methods use unlabeled paired data (3) to improve the model performance on the target
domain. We show the flow and different usage of the paired data in different methods with green.



J. Imaging 2022, 8, 234 3 of 18

We also note that our method could be scaled on the other tasks, such as classification,
detection, or multitasking, without any restrictions. Below, we discuss the most relevant
works to our method, then summarize our contributions.

1.1. Related Work

We begin with discussing the task-specific augmentation approaches since they are
a straightforward solution to the domain shift problem. Contrary to the classical aug-
mentation techniques for CT images like windowing [17] or filtering [18], the authors
of [14] the proposed method called FBPAug. Notably, the latter augmentation technique
directly approximates our domain shift. The authors also showed that FBPAug outperforms
other augmentations. Thus, we consider FBPAug as one of the solutions and compare it
with the other methods.

With the unlabeled target data, we can apply unsupervised domain adaptation meth-
ods to improve the model’s performance on the target domain. The adversarial approaches
are shown to outperform other methods [15]. Considering the paired nature of our data,
we divide the adversarial methods into two groups: (i) image-to-image translation and
(ii) feature-level adaptation.

The first group of methods aims to translate an image from source to target domain.
In [19], the authors used CycleGAN for unpaired image-to-image translation. Further,
this method was implemented both for the MRI [20] and CT [21] image translations. The
paired image-to-image translation is closer to our setup. Such a method requires image
pairs that have a different style but the same semantic content. CT images that differ only
in the reconstruction kernel correspond to this setup. Here, the authors of [13] and [12]
proposed a convolutional neural network (CNN) to translate the images reconstructed
with one kernel to another kernel. However, we need to train a separate model for every
pair of kernels. Our setup includes seven known kernels that already yield training of 42
translation models. The number of models grows in quadratic progression depending on
the number of kernels. Therefore, the image translation methods lack the generalization
ability in our setup and we do not consider them.

The feature-level adaptation methods are independent of the number of domains.
Mostly, these methods are based on adversarial learning as in [15]. The latter approach also
finds several successful applications in medical imaging, e.g., [22,23]. As these methods are
conceptually close to each other, we stick with implementing a domain adversarial neural
network (DANN) from [15].

The idea of F-Consistency is conceptually close to self-supervised learning, where the
unlabeled data is used to train a model using pseudo-labels. In [24], the authors described
different pretext tasks in medical imaging. Similar to our approach, the authors [25] enforce
the model consistency for the initial and augmented images at the prediction and feature
levels. Furthermore, the authors [26] extended the self-supervised methodology to solve a
domain adaptation problem. However, the goal of the self-supervised methods is to use
a large collection of images without annotations to improve the model’s performance on
the source domain. Contrary to self-supervised learning, our goal is to achieve the highest
possible performance on the target domain.

Finally, we note that there is no standardized benchmark for the COVID-19 segmenta-
tion task [27]. However, we also note that most of the COVID-19 segmentation approaches
use the same U-Net-based model; thus, our method could be generalized to all these se-
tups. Moreover, our domain adaptation method could be translated from segmentation to
classification or detection tasks.

1.2. Contributions

Our work highlights a domain shift problem in the COVID-19 segmentation task and
suggests an efficient solution to this problem. These are our three main contributions:

• Firstly, we demonstrate that the difference in CT reconstruction kernels affects the
segmentation quality of COVID-19 lesions. The model without adaptation achieves
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only a 0.56 Dice Score on the unseen domain, while the best adaptation methods scores
0.64. In terms of similarity between predictions on the paired images, the baseline Dice
Score is 0.46, which is almost two times lower than the 0.80 achieved by our method.

• Secondly, we adopt a series of adaptation approaches to solve the highlighted problem
and extensively compare their performance under the different conditions.

• Thirdly, we propose the flexible adaptation approach that outperforms the other
considered methods when provided with enough unlabeled data. We also show
that our method better generalizes to unseen CT reconstruction kernels and it is less
sensitive to the absence of the semantic content (COVID-19 lesions) in the unlabeled
data than the other methods trained on unlabeled data.

2. Method

In this paper, we consider solving a binary segmentation task, where the positive class
is the voxels of volumetric chest CT image with consolidation or ground-glass opacity.
All methods are built upon the convolutional neural network, which we detail in Section 2.1.

We train these methods using the annotated dataset Ss = {(xi, yi)}Ns
i=1, where x is a

volumetric CT image, y is a corresponding binary mask, and Ns is the total size of training
dataset. The dataset Ss consists of images reconstructed with smooth kernels; we call it
source dataset. We test all methods using the annotated dataset St = {(xi, yi)}Nt

i=1. The
dataset St consists of the Nt images reconstructed with the sharp kernels; we call it target
dataset. Although St contains annotations, we use them only to calculate the final score.

In Section 2.2, we describe the only adaptation method, FBPAug, that uses no data ex-
cept the source dataset. The other methods use additional paired dataset S2 = {(xi, x̃i)}N2

i=1,
which has no annotations. However, every image x ∈ S2 has a paired image x̃ reconstructed
from the same sinogram but with a different kernel. Here, we assume that x belongs to the
source domain and x̃ belongs to the target domain. Now, the problem can be formulated as
unsupervised domain adaptation, and we detail the corresponding adversarial training
approach in Section 2.3. We also propose enforcing the similarity between the feature
maps of paired images (Section 2.4). In Section 2.5, we detail enforcing the similarity
between predictions.

2.1. COVID-19 Segmentation

In all COVID-19 segmentation experiments, we use the same 2D U-Net architecture [28]
trained on the axial slices. We do not use a 3D model for two reasons. Firstly, as we show
in Section 3.1, the images have a large difference in the inter-slice distances (from 0.6 to
8.0 mm), which can affect the performance of the 3D model. Secondly, the authors of [8]
have shown 2D and 3D models yielding similar results in the same setup with various
inter-slice distances. Moreover, we note that all considered methods are independent of the
architecture choice. We also introduce the standard architectural modifications, replacing
every convolution layer with the Residual Block [29]. To train the segmentation model, we
use binary cross-entropy (BCE) loss.

2.2. Filtered Backprojection Augmentation

The first adaptation method that we consider is a task-specific augmentation called
FBPAug [14]. FBPAug emulates the CT reconstruction process with different kernels; thus,
it might be a straightforward solution to the considered domain shift problem.

However, FBPAug gives us only an approximate solution, which is also restricted by
the choice of kernel parameterization. We describe FBPAug as a three-step procedure for a
given image x ∈ Ss. Firstly, it applies a discrete Radon transform to the image. Secondly, it
convolves the transformed image with the reconstruction kernel. The kernel is randomly
sampled from the predefined parametric family of kernels on every iteration. Thirdly,
it applies the back-projection operation to the result and outputs the augmented image
FBP(x). A complete description of the method can be found in [14].
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We outline three weak spots in the FBPAug pipeline that motivate us to use the other
domain adaptation approaches. As described above, FBPAug applies two discrete approxi-
mations, a discrete Radon transform and back-projection, leading to the information loss.
Furthermore, the original convolution kernels used by CT manufacturers are unavailable,
and the parametric family of kernels proposed in [14] is also an approximation. Finally,
modern CT systems typically employ model-based iterative reconstruction methods instead
of just raw FBP thus, FBPAug covers the reconstruction process only partially.

In the context of described weaknesses, we expect FBPAug to perform worse than the
other adaptation methods when a wide range of unlabeled data is available for the latter.
Nonetheless, FBPAug improves the consistency scores in [14], and we consider it one of the
main adaptation approaches.

2.3. Domain Adversarial Neural Network

Further, we detail the methods that work with the unlabeled pool of data S2. As
mentioned at the beginning of the section, the problem can be reformulated as unsuper-
vised domain adaptation. The most successful approaches to this problem are based on
adversarial training. Therefore, we adopt the approach of [15] and build a domain adversarial
neural network (DANN).

DANN includes an additional domain classifier or discriminator which aims to classify
images between the source and target domains using their feature maps. We train the model
to minimize the loss on the primary task (segmentation) and simultaneously maximize the
discriminator’s loss. Thus, the segmentation part of the model learns domain features that
are indistinguishable from the discriminator. The latter should improve the performance of
the model on the domain.

The original DANN architecture consists of three parts: (i) feature extractor H f , the part
of segmentation model that maps input images x into the feature space; (ii) segmentation
head Hp, the complement part of segmentation model that predicts binary mask ŷ =

Hp

(
H f (x)

)
; and (iii) discriminator Hd, the separate neural network that predicts domain

label d̂ = Hd

(
H f (x)

)
. In Figure 1, H f and Hp correspond to the encoder and decoder

parts of the model, respectively. Hd is denoted with the dashed green arrow that passes the
aggregated features to the adversarial loss.

Following [15], our optimization target is

E(θ f , θp, θd) =
Ns

∑
i=1

Ls(Hp(H f (xi; θ f ); θp), yi)

− λ
N2

∑
j=1

Ld(Hd(H f (xj; θ f ); θd), dj) =

=
Ns

∑
i=1

Ls(ŷi, yi) − λ
N2

∑
j=1

Ld(d̂j, dj)

(1)

(θ̂ f , θ̂p) = arg min
θ f ,θp

E(θ f , θp, θd), (2)

θ̂d = arg max
θd

E(θ f , θp, θd), (3)

where Ls is the segmentation loss (BCE), Ld is the domain classification loss (BCE). θ f , θp, θd

are the parameters of H f , Hp, Hd, respectively, and θ̂ f , θ̂p, θ̂d are the solutions we seek.
Parameter λ regulates the trade-off between the Ls and Ld objectives.

However, there is no consensus in the literature on how to connect the discriminator
to a segmentation network [30]. We follow the findings [30] that the earlier U-Net layers
contain more domain-specific information than the later ones and use features from the
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encoder layers as input to the discriminator. Our preliminary experiments also confirm
that using encoder features is a better strategy. We detail this approach in Figure 1(6).

We also modify the architectural design of DANN for the segmentation task. The goal
of the discriminator is to classify a kernel that is used to reconstruct the image. To aggregate
features before the discriminator, we use 1× 1 convolutions and interpolation to equalize
the number of channels and spatial size; then, we concatenate the result. The discriminator
consists of a sequence of fully-convolution layers followed by several fully-connected
layers. We also use Leaky ReLU [31] and average pooling to avoid sparse gradients.

2.4. Cross-Domain Feature Maps Consistency

Similar to the adversarial approach, we propose to remove style-specific kernel in-
formation from the feature maps. However, we additionally exploit the paired nature
of the unlabeled dataset S2. Instead of the adversarial loss, we minimize the distance
between feature maps of paired images. We use the same notations H f , Hp, θ f , θp, and
ŷ = Hp(H f (x; θ f ); θp) as in Section 2.3. Further, we denote the feature vector for every
image x as f , f = H f (x; θ f ). For the paired image x̃, we use the similar notation f̃ .

During the training, we minimize the sum of segmentation loss and distance between
paired features ( f and f̃ ). Thus, the optimization problem is

E(θ f , θp) =
Ns

∑
i=1

Ls(Hp(H f (xi; θ f ); θp), yi)

+ α
N2

∑
j=1

Lc(H f (xj; θ f ), H f (x̃j; θ f ))

=
Ns

∑
i=1

Ls(ŷi, yi) + α
N2

∑
j=1

Lc( f j, f̃ j),

(4)

(θ̂ f , θ̂p) = arg min
θ f ,θp

E(θ f , θp), (5)

where Ls is the segmentation loss (BCE) and Lc is the consistency loss. For the consistency
loss, we use mean squared error (MSE) between paired feature maps. Parameter α regulates
the trade-off between two objectives. We call this method F-Consistency since it enforces the
consistency between paired feature maps.

Along with DANN, we present our method schematically in Figure 1(5). Note that we
do not need any additional model, e.g., discriminator Hd, in the case of F-Consistency. The
features are aggregated from the same encoder layers as in DANN.

2.5. Cross-Domain Predictions Consistency

A special case of F-Consistency is enforcing the consistency of paired predictions as
the predictions are de facto the feature maps of the last network layer. This approach is
proposed in [32] also in the context of medical image segmentation. Further, we denote
this method P-Consistency. Visually, it could be compared with DANN and F-Consistency
in Figure 1(4). The optimization problem is the same as in Equation (4), except Lc is Dice
Loss [33] and f and f̃ are the last layer features, i.e., predictions.

3. Data

In our experiments, we use a combination of different datasets with chest CT images.
The data could be divided into two subsets according to the experimental purposes. The
first collection of datasets consists of images with annotated COVID-19 lesions, i.e., with
binary masks of ground-glass opacity and consolidation. It serves to train the COVID-
19 segmentation algorithms. We detail every dataset of the segmentation collection in
Section 3.1.
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The second collection consists of chest CT images which are reconstructed with dif-
ferent kernels but have no COVID-19 annotations. We filter the data into pairs of images
reconstructed with the smooth and sharp kernels. This data is further used to adapt the
models in an unsupervised manner. We detail the second collection in Section 3.2.

Most of the datasets are publicly available, making our experiments reproducible.

3.1. Segmentation Data

We use three publicly available datasets to train and test the segmentation algorithms:
Mosmed-1110 [34], MIDRC [9], and Medseg-9. We ensure that selected datasets contain
original 3D chest CT imaging studies without third-party preprocessing artifacts. The
images from the Mosmed-1110 and MIDRC datasets are reconstructed using smooth
kernels, whereas Medseg-9 images have sharp reconstruction kernels. That allows us firstly
to identify and then address the domain adaptation setup. We split the segmentation
data into the source (COVID-train) and target (COVID-test) domains and describe them in
Sections 3.1.1 and 3.1.2, respectively. A summary of the segmentation datasets is presented
in Table 1.

Table 1. Summary of the segmentation datasets. Effective size means the number of annotated images
after appropriate filtering.

Dataset Source Effective
Size Kernels Annotations Split

COVID-train

Mosmed-1110
[34]

50 unknown
smooth

COVID-19
mask 5-fold

cross-val
MIDRC

[9] 112
B/L/BONE/
STANDARD

(smooth)

COVID-19
mask

COVID-test Medseg-9 9 unknown
sharp

COVID-19
mask, lungs

mask

hold-out
test

3.1.1. COVID-Train
Mosmed-1110

This dataset consists of 1110 chest CT scans collected in Moscow clinics during the first
months of 2020 [34]. Scanning was performed on Canon (Toshiba) Aquilion 64 units using
the standard scanner’s protocol: inter-slice distance of 0.8 mm and smooth reconstruction
kernels in particular. However, the public version of Mosmed-1110 contains every 10th slice
of the original series, which makes the resulting slice distance equal to 8.0 mm. Additionally,
the 50 series have annotated binary masks depicting COVID-19 lesions (ground-glass
opacity and consolidation). We use only these 50 images in our experiments.

MIDRC

MIDRC-RICORD-1a is the publicly available dataset that contains 120 chest CT
studies [9]. The total number of volumetric series is 154. According to the DICOM entries,
all images have smooth reconstruction kernels. The dataset contains at least 12 paired
images (without considering the studies that contain more than two series). However, we
do not use these pairs to enforce consistency since both images have smooth kernels. Also,
we use only the images that have non-empty annotations. The images that have empty
binary masks of COVID-19 are discarded from both of the datasets. The resulting training
dataset consists of 112 volumetric images with smooth kernels.
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3.1.2. COVID-Test
Medseg-9

MedSeg website (https://medicalsegmentation.com/covid19/ (accessed on 24 Au-
gust 2022)) shares a publicly available dataset with 9 annotated chest CT images from
Radiopaedia.org (https://radiopaedia.org/articles/covid-19-3 (accessed on 24 August
2022)), reconstructed with sharp kernels. Contrary to the COVID-train dataset, Medseg-9
contains annotated lung masks. However, we find the masks predicted by our algorithm
(see Section 4.1) more precise and use the predicted ones.

3.2. Paired Images Data

To train and evaluate the consistency of the segmentation algorithms, we use two
sources of paired data. The first source is a publicly available dataset Cancer-500 [16]. But
the Cancer-500 dataset does not contain COVID-19 cases. Thus, to properly evaluate the
consistency of COVID-19 Cancer-500segmentation algorithms, we use the second source of
private data that contains COVID-19 cases.

From Cancer-500, we build the Paired-public dataset (Section 3.2.1) and use it only to
train the segmentation algorithms in an unsupervised manner. Then, we build the Paired-
private dataset from our private data (Section 3.2.2). Besides training, we use this dataset
to evaluate the consistency scores since it contains the segmentation target (COVID-19
lesions). The summary of the paired datasets is presented in Table 2.

Table 2. Summary of the datasets with paired images.

Dataset Kernel Pair
(Smooth/Sharp) Training Testing Pairs

Paired-public [16] FC07/FC55 22 0
FC07/FC51 98 0

Paired-private

FC07/FC55 60 20
FC07/FC51 30 11

SOFT/LUNG 30 10
STANDARD/LUNG 30 10

Both datasets do not contain any COVID-19 or lung annotations. Note that we do
not need COVID-19 annotations since we use these datasets in unsupervised training.
However, we need lung masks to preprocess images. Thus, we use the same standalone
lungs segmentation model as for the other datasets.

3.2.1. Paired-Public

We build the Paired-public dataset using a publicly available dataset, Cancer-500 [16].
The data was collected from 536 randomly selected patients of Moscow clinics in 2018. All
original images were obtained using a Toshiba scanner and reconstructed with FC07, FC51,
or FC55 kernels. Here, FC07 is a smooth reconstruction kernel, whereas FC51 and FC55
are sharp kernels. From 536 studies, we extracted 120 pairs comparing their acquisition
time and slice locations of the corresponding DICOM series. The latter two-step procedure
leaves us with the image pairs that have voxel-to-voxel anatomical correspondence. We
also filter contrast-enhanced cases. As a result, the Paired-public dataset consists of 98
FC07/FC51 and 22 FC07/FC55 pairs (Table 2). We use this dataset to train the domain
adaptation algorithms on paired images.

However, the Paired-public dataset does not contain COVID-19 cases (it was collected
before the pandemic). The latter observation limits using this dataset to evaluate the
consistency. Otherwise, we evaluate the quality of COVID-19 segmentation algorithms
using images with no COVID-19 lesions. Thus, we either evaluate the consistency of noisy
or false positive predictions. For the same reason, one should also be careful using this data

https://medicalsegmentation.com/covid19/
https://radiopaedia.org/articles/covid-19-3
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to enforce consistency in the last network layers, e.g., in P-Consistency (Section 2.5). The
data without COVID-19 lesions can force the network to output trivial predictions.

Therefore, we introduce a private dataset for the extended consistency evaluation.

3.2.2. Paired-Private

From the private collection of the chest CT images, we filter out 181 pairs to create
the Paired-private dataset. These images were initially collected from Moscow outpatient
clinics during the year 2020. Scanning was performed on the Toshiba and GE medical systems
units using diverse settings. We select the four most frequent kernel pairs with a total of six
unique reconstruction kernels: FC07, FC51, FC55 from Toshiba, and STANDARD, LUNG,
SOFT from GE medical systems scanners. We detail the distribution of kernel pairs in Table 2.

Due to the purpose of collecting the data, these images contain COVID-19 lesions.
Therefore, we use the Paired-private dataset both for training and evaluation. The wider
variety of kernels also allows us to test the generalization of algorithms to unseen kernels.
More specifically, we consider kernels LUNG, SOFT, and STANDARD in the Paired-private
dataset to be unseen for the model trained on Paired-public data or only FC07, FC51, and
FC55 kernels (excluding the rest) of the Paired-private dataset.

4. Experiments

The main focus of the experiments below is to compare our method to the other
unsupervised domain adaptation techniques. To achieve an objective comparison, a fair
and unified experimental environment should be created. Therefore, we firstly describe
the common preliminary steps that build up every method. This description includes
preprocessing and training details in Section 4.1.

Further, we detail every of the considered domain adaptation methods: Filtered Back-
projection Augmentation (FBPAug) in Section 4.2, Domain Adversarial Neural Network
(DANN) in Section 4.3, cross-domain feature-maps consistency (F-Consistency) which is
our method in Section 4.4, and cross-domain predictions consistency (P-Consistency) in
Section 4.5.

In all experiments, we use the same data split and evaluation metrics. Firstly, we
split the COVID-train dataset (source domain with smooth kernels) into 5 folds. Then, we
perform a standard cross-validation procedure, training on the data from four folds and
calculating the score on the remaining fold. Here, we calculate the Dice Score between the
predicted and ground truth COVID-19 masks for every 3D image and average these scores
for the whole fold. Also, for every validation, we calculate the average Dice Score on the
COVID-test dataset, which is the target domain with sharp kernels. We report the mean
and standard deviation of these five scores on cross-validation and target domain data.

Besides the Dice Score on the source and target data, we also report the Dice Score
between predictions on the paired images. To do so, we split the Paired-private datasets’
pairs into training and testing folds stratified by the type of kernel pairs. The size of the
test fold is approximately 30% of the dataset size. Then, we supplement the source domain
training data (four current folds of the cross-validation) with the fixed training part of the
paired data. Average Dice Score is calculated on the test part in a similar fashion.

4.1. COVID-19 Segmentation
4.1.1. Preprocessing

Before passing to the segmentation model, we apply the same preprocessing pipeline
to all CT images. Preprocessing consists of four steps. (i) We rescale a CT image to have
1.75× 1.75 mm axial resolution using linear interpolation. (ii) Then, the intensity values
are clipped to the minimum of −1000 Hounsfield units (HU) and a maximum of 300 HU.
(iii) The resulting intensities are min-max-scaled to the [0; 1] range. (iv) Finally, we crop the
resulting image to the automatically generated lung mask.

We generate the lung mask by training a standalone CNN segmentation model. The
training procedure and architecture are reproduced from [8]. The training of the lung
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segmentation model involves two external chest CT datasets: LUNA16 [35,36] and NSCLC-
Radiomics [37,38]. These datasets have no intersection with the other datasets used to train
the COVID-19 segmentation models; thus, there is no leak of the test data.

The trained lung segmentation model achieves about 0.98 Dice Score both on the
cross-validation and on the Medseg-9 dataset (it contains annotated lung masks). The latter
result indicates that the lung segmentation model is robust to different kinds of domain
shift and, moreover to the appearance of novel lesions (COVID-19).

4.1.2. Training Details

In all COVID-19 segmentation experiments, we use the same 2D U-Net architecture
described in Section 2.1. We train all models for 25k iterations using Adam [39] optimizer
with the default parameters and an initial learning rate of 10−4. Every 6k batches learning
rate is multiplied by 0.2. Each iteration contains 32 randomly sampled 2D axial slices.
Training of the plain segmentation model and similarly F-Consistency takes approximately
8 h on Nvidia GTX 1080 (8 GB) (Santa Clara, CA, USA). Training of DANN and FBPAug
takes 12 and 30 h, respectively, in the same setting. The inference time is approximately
5–10 seconds depending on the image size and it is the same for all methods.

We further call the model trained only on the source data without any adaptation a
baseline. We refer to the baseline scores on the COVID-test dataset and its consistency
scores on Paired-private as a starting point for all other methods.

4.2. Filtered Backprojection Augmentation

The first method that we consider is FBPAug [14]. In our experiments, we use the
original implementation of FBPAug from [14]. However, we sample parameters from the
interval that corresponds to only sharp reconstruction kernels (a from [10.0, 40.0], b from
[1.0, 4.0]), as our goal is to adapt the model to sharp kernels. We use the same notations of
a and b as in [14]. We also reduce the probability of augmenting an image from 0.5 to 0.1.
The latter change does not affect the performance (tested on a single validation fold) and
reduces the experiment time (saving about 90 h per experiment).

Note that the experimental setup remains the same as in baseline (Section 4.1). FBPAug
is the only adaptation method that does not use paired data.

4.3. Domain Adversarial Neural Network

The next step is to use unlabeled paired data to build a robust domain shift algorithm.
Here, we adopt a DANN approach [15] to the COVID-19 segmentation task.

In our experiments, we use the scheduling of parameter λ as in [15]. The baseline
training procedure is extended to samples from the unlabeled data. At every iteration, we
additionally sample 16 pairs of axial slices (the batch size is 32) from one of the Paired-
private or Paired-public datasets (depending on a data setup). Then, we make the second
forward pass to the discriminator and sum the segmentation and adversarial losses. The
rest of the pipeline remains the same as in the baseline.

For this method, we select two parameters that can drastically change its behavior
in terms of consistency and segmentation quality. Firstly, we evaluate different λ values,
where λ determines how strongly adversarial loss contributes to the total loss. With the
close to zero λ, we expect DANN to behave similarly to baseline. With the larger λ, we
expect our segmentation model to fool the discriminator, making features of the different
kernels indistinguishable for the latter. However, this consequence does not guarantee an
increase in consistency or segmentation quality. Therefore, we manually search for the
λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1} and choose the best by the cross-validation score.

Finally, we evaluate how well DANN generalizes under the presence of different
kernel pairs. To do so, we exclude SOFT/LUNG and STANDARD/LUNG kernel pairs
from training. We compare the results of this experiment with the model that is trained
on all available kernel pairs from Paired-private. We also test the sensitivity of the DANN
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approach to the presence of COVID-19 lesions in the unlabeled data. In this case, we train
DANN on the Paired-public dataset that does not contain COVID-19 targets.

4.4. Cross-Domain Feature Maps Consistency

Our proposed F-Consistency also uses unlabeled paired data. Therefore, the training
procedure is the same as for DANN (Section 4.3), except we do not use any scheduling for
parameter α.

Similarly to DANN’s experimental setup, we evaluate different α values and choose
the best. Here, α controls the trade-off between consistency and segmentation quality.
However, contrary to the discriminator’s λ in Section 4.3, the large α values for consistency
regularization ensure the alignment of the features. We show this trade-off for ten α values
in a log-space from 3−10 to 1.

Finally, we evaluate the generalization of F-Consistency to different kernel pairs
similarly by excluding SOFT/LUNG and STANDARD/LUNG kernel pairs from training.
Similar to DANN, we train our method on the Paired-public dataset that does not contain
COVID-19 lesions and show its generalization, regardless of the semantic content.

4.5. Cross-Domain Predictions Consistency

One special case of F-Consistency is enforcing the paired predictions consistency,
which is independently evaluated in [32]. We call this case a P-Consistency. We follow the
experimental setup as in F-Consistency (Section 4.4) and show the trade-off between the
target and consistency scores for the same values of α.

For the P-Consistency, we draw one’s attention to the experiment on the Paired-public
dataset. Since this dataset does not contain COVID-19 cases, the consistency of the enforced
predictions on empty-target images can result in trivial predictions. Thus, we expect
P-Consistency to be less generalizable to the target domain in terms of target Dice Score.

5. Results

We structure our experimental results as follows. We firstly compare all methods in
Section 5.1 so we directly support our main message. Secondly, we compare the generaliza-
tion of all methods trained on fewer data in Section 5.2. Then, we visualize the trade-off
between the consistency and COVID-19 segmentation quality in Section 5.3.

We compare some of the key results statistically using a one-sided Wilcoxon signed-
rank test. We report p-values in two testing setups: p1, comparing five mean values after
cross-validation, and p2, comparing Dice Score on every image as an independent sample.

5.1. Methods Comparison

To begin with, we show the existence of the domain shift problem within the COVID-19
segmentation task. The Dice Score of the baseline model on the COVID-test dataset is lower
than the cross-validation score on the COVID-train dataset, 0.56 against 0.60. Also, this score
is significantly lower than 0.64 achieved by our adaptation method

(
p1 < 0.05, p2 < 10−4).

Results could be found in Table 3 comparing row Baseline to the others. For all adaptation
methods, we observe an increase in the consistency score and segmentation quality on
the target domain. Moreover, all methods maintain their quality on the source domain
compared to Baseline.

Further, we compare FBPAug to the best adaptation methods since it is a straightfor-
ward solution to the domain shift problem caused by the difference in the reconstruction
kernels (Section 2.2). Although FBPAug achieves comparable results on the target domain,
our method outperforms it in terms of the average consistency score, 0.80 Dice Score against
0.76

(
p1 < 0.05, p2 < 10−5). The results are also in Table 3, row FBPAug.
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Table 3. Comparison of all considered methods. The adaptation methods are trained using all
training kernel pairs of the Paired-private dataset. F-/P-Cons stand for F-/P-Consistency, where
F-Consistency is our proposed method. All results are Dice Scores in the format mean ± std calculated
from 5-fold cross-validation. We highlight the best scores in every column in bold.

COVID-Train COVID-Test
Paired-Private Consistency

FC07/55 FC07/51 SOFT/LUNG STAND/LUNG Mean

Baseline 0.60± 0.04 0.56± 0.03 0.52± 0.06 0.39± 0.07 0.58± 0.08 0.28± 0.05 0.46± 0.05

FBPAug 0.59± 0.04 0.62± 0.03 0.80± 0.02 0.71± 0.03 0.85± 0.01 0.65± 0.03 0.76± 0.02

DANN 0.58± 0.05 0.64± 0.02 0.84± 0.02 0.70± 0.02 0.86± 0.03 0.66± 0.06 0.78± 0.02

P-Cons 0.59± 0.04 0.61± 0.01 0.65± 0.05 0.60± 0.02 0.77± 0.01 0.47± 0.04 0.63± 0.03

F-Cons 0.57± 0.03 0.64± 0.03 0.88± 0.01 0.72± 0.04 0.83± 0.02 0.70± 0.05 0.80± 0.01

Then, we compare P-Consistency (which operates with the last layer of decoder)
with F-Consistency and show it resulting in the significantly lower consistency score,
0.63 against 0.80

(
p1 < 0.05, p2 < 10−10). Thus, our findings align with the message [30]

that the encoder layers contain more domain-specific information than the decoder ones.
F-consistency outperforms DANN. Although both methods score similar in target Dice

Score, F-Consistency has an advantage over DANN in the consistency score: 0.80 against
0.78

(
p1 < 0.05, p2 < 10−2). Our intuition here is F-Consistency explicitly enforces features

alignment, while DANN enforces features to be indistinguishable for the discriminator.
The latter differently impact the consistency score, and F-Consistency performs better.

We conclude the comparison of the methods with the qualitative analysis. In Figure 2,
one could find examples of the Baseline, FBPAug, DANN, and F-Consistency predictions on
the COVID-test dataset and compare them with the ground truth. Although all adaptation
methods perform similar to the ground truth with minor inaccuracies, Baseline outputs the
massive false positive predictions on the unseen domain. Additionally to the quantitative
analysis above, the latter observation highlights the relevance of the domain adaptation
problem in the COVID-19 segmentation task.

Figure 2. Examples of axial CT slices from the COVID-test dataset with the corresponding predictions
and ground truth annotations. Three columns, denoted (A–C), contains three unique slices. The top
row contains the contours of the ground truth and baseline prediction. The bottom row contains the
contours of the adaptation methods’ predictions. DANN and F-Consistency correspond to DANN
and F-Cons from Table 3, respectively.
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In Figure 3, we visualize predictions of the same four methods on the paired images
from the Paired-private dataset. For the Baseline, we observe an extreme inconsistency
(Figure 3A) and massive false positive predictions in healthy lung tissues (Figure 3D)
and even outside lungs (Figure 3B). For the adaptation methods, their predictions are
visually more consistent inside every pair, which aligns with the consistency scores in
Table 3. Despite the high consistency scores, FBPAug and DANN output more aggressive
predictions. FBPAug predicts motion artifacts near the body regions (Figure 3A) and
triggers similarly to the baseline on, most likely, healthy lung tissues (Figure 3B). DANN is
more conservative but triggers on the consolidation-like tissues (Figure 3C,D). However,
without the ground truth annotations on the paired data, we refer to this analysis as
a discussion.

Figure 3. Examples of CT slices from the Private-paired dataset with the corresponding predictions
on the paired images. Four doublets, denoted (A–D), contain corresponding slices from the smooth
and sharp images. The doublets B and D are coronal and sagittal slices, respectively. Every slice
contains predictions of four methods named in the legend.

Below, we investigate the generalization of the models trained with fewer data and
the trade-off between consistency and segmentation quality.

5.2. Generalization with the Less Data

Firstly, we show how DANN, P-Consistency, and F-Consistency generalize to the
unseen reconstruction kernels. We remove SOFT/LUNG and STANDARD/LUNG pairs
of the Paired-private dataset from training, so we train the models using FC07/FC51 and
FC07/FC55 pairs. The results of the removed kernel pairs are shown in Table 4.

The methods preserve their segmentation quality on the COVID-train and COVID-test
datasets despite training them with limited data. Moreover, all three methods score consid-
erably higher than Baseline in consistency scores for unseen kernel pairs (SOFT/LUNG
and STANDARD/LUNG). The latter means that the adaptation methods manage to align
stylistic-related features even from the limited number of training examples. However, we
highlight a decrease in the average consistency scores compared to the versions trained on
full Paired-private. At this point, FBPAug (Table 3) outperforms the adaptation methods.
The latter indicates that the range of synthetically augmented data overlaps the range of
reduced Paired-private.
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Table 4. Comparison of DANN, P-Consistency, and F-Consistency generalizing to previously unseen
SOFT, STANDARD, and LUNG kernels. The numbers in the brackets next to the methods correspond
to the number of kernel pairs in the Paired-private dataset they are trained with, e.g., DANN (4)
matches with the DANN in Table 3. All results are Dice Scores in the format mean ± std calculated
from 5-fold cross-validation.

COVID-Train COVID-Test
Paired-Private Consistency

FC07/55 FC07/51 SOFT/LUNG STAND/LUNG Mean

Baseline 0.60± 0.04 0.56± 0.03 0.52± 0.06 0.39± 0.07 0.58± 0.08 0.28± 0.05 0.46± 0.05

FBPAug 0.59± 0.04 0.62± 0.03 0.80± 0.02 0.71± 0.03 0.85± 0.01 0.65± 0.03 0.76± 0.02

DANN (4) 0.58± 0.05 0.64± 0.02 0.84± 0.02 0.70± 0.02 0.86± 0.03 0.66± 0.06 0.78± 0.02
DANN (2) 0.59± 0.05 0.64± 0.02 0.81± 0.03 0.70± 0.03 0.74± 0.02 0.58± 0.07 0.73± 0.02

P-Cons (4) 0.59± 0.04 0.61± 0.01 0.65± 0.05 0.60± 0.02 0.77± 0.01 0.47± 0.04 0.63± 0.03
P-Cons (2) 0.59± 0.04 0.59± 0.03 0.62± 0.03 0.56± 0.02 0.72± 0.01 0.40± 0.04 0.59± 0.02

F-Cons (4) 0.57± 0.03 0.64± 0.03 0.88± 0.01 0.72± 0.04 0.83± 0.02 0.70± 0.05 0.80± 0.01
F-Cons (2) 0.58± 0.04 0.64± 0.01 0.83± 0.02 0.64± 0.03 0.75± 0.02 0.59± 0.02 0.73± 0.01

Further, we evaluate the models regularized using paired images from the Paired-
public dataset. The dataset contains only FC07/FC51 and FC07/FC55 kernel pairs. Besides
the previous setup, this data does not contain COVID-19 lesions. Thus, we demonstrate
that some methods depend on the semantic content and poorly generalize to kernel styles.
The results are shown in Table 5.

Table 5. Comparison of all adaptation methods from Table 3 except FBPAug trained on the Public-
paired dataset. All results are Dice Scores in the format mean ± std calculated from 5-fold cross-
validation. We highlight the consistency scores near or below Baseline level in italic. The best
consistency scores are highlighted in bold.

COVID-Train COVID-Test
Paired-Private Consistency

FC07/55 FC07/51 LUNG/SOFT LUNG/STAND Mean

Baseline 0.60± 0.04 0.56± 0.03 0.52± 0.06 0.39± 0.07 0.58± 0.08 0.28± 0.05 0.46± 0.05

DANN 0.60± 0.03 0.64± 0.02 0.75± 0.02 0.64± 0.05 0.67± 0.03 0.50± 0.05 0.66± 0.02

P-Cons 0.53± 0.03 0.58± 0.03 0.54± 0.05 0.44± 0.03 0.57± 0.04 0.28± 0.06 0.47± 0.03

F-Cons 0.59± 0.04 0.64± 0.02 0.80± 0.02 0.63± 0.04 0.71± 0.02 0.55± 0.05 0.70± 0.02

We highlight two main findings from these results. Firstly, consistency of the method
that operates with the decoder layers decreases to the level of Baseline; see P-Consistency
in Table 5. Our intuition here is that the decoder version of the model can be more easily
enforced to output the trivial predictions than the encoder one. Simultaneously, the images
without COVID-19 lesions induce trivial predictions. Therefore, it might be easier for these
models to differ the paired dataset from the source dataset by the semantic content and fail
to align the stylistic features. Finally, we observe our method, F-Consistency, to outperform
the other adaptation methods training only on the publicly available data.

5.3. Trade-Off between Consistency and Segmentation Quality

The main problem with maximizing the consistency score is converging to the trivial
solution (empty predictions). We vary α, the parameter that balances the consistency and
segmentation losses, for P-Consistency and F-Consistency; see Figure 4. The resulting trade-
off follows the expected trend: consistency increases to 1 and target Dice Score decreases to
0 with increasing α.
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Figure 4. Trade-off between the segmentation quality and consistency scores induced by the reg-
ularization parameter α (Section 2.4). The blue line corresponds to Dice Scores calculated on the
COVID-train dataset. The orange line corresponds to the consistency scores calculated on the Paired-
private dataset. The shaded areas correspond to the standard deviation along the Y-axis.

We use Dice Score on the COVID-train dataset as a perceptual criterion to choose α. We
stop at the largest α value before Dice Score starts to drop: 10−3 for P-Consistency and 1 for
F-Consistency. However, we use Paired-private, which participates in the final comparison,
to calculate the consistency score. Firstly, we argue that using the Paired-public dataset
in this setup is incorrect. Paired-public does not contain COVID-19 lesions; thus, we can
only measure the consistency of false positive predictions. Secondly, we choose α without
considering consistency scores. Thus, we also do not overfit under the consistency scores.

For the DANN method, we choose λ = 10−2 based on the best score on COVID-
train. Far from the optimal λ values, DANN’s prediction scores have a large standard
deviation, so the trade-off cannot be observed. We also note that the adversarial approach
does not explicitly enforce trivial predictions. Hence, we report the trade-off only for the
F-Consistency and P-Consistency methods.

6. Discussion

Here, we summarize our results, discuss the most important limitations of our study,
and suggest possible directions for future work.

We have shown that the proposed F-consistency significantly improves the perfor-
mance on the target domain compared to the baseline model. However, we do not train the
oracle model, which indicates the upper bound for other methods in a domain adaptation
task. The oracle model should be trained via cross-validation on the target domain. In our
case, the target domain contains only nine images, which leads either to lower results due
to the small size of the training set or high dispersion of the results. Therefore, we compare
the adaptation methods only with the baseline model and between each other.

In Section 5.1, We show our model to achieve the highest results in terms of the
consistency score. Contrary, the authors of [32] observing a tendency of models to converge
to trivial solutions using consistency loss. They assume that the models learn to distinguish
domains for which they are penalized; thus, the models yield trivial but perfectly consistent
predictions. Although we run the same setup with [32], we do not observe trivial predictions
for our method. The latter is demonstrated through the whole Section 5. Our intuition here
is that the inner structure of domains and the semantic content of images in our case are
more diverse, preventing the model from overfitting under a specific domain.

We highlight that adversarial and consistency-based methods depend on a diverse
unlabeled pool of data; see Section 5.2. On the other hand, FBPAug does not require
additional data since it augments the images from source dataset. One could think of this
method as enforcing the consistency between the original and augmented image predictions
using ground truth as a proxy. Simultaneously, we show that the models operating with
the earlier layers perform better. Therefore, we could train F-Consistency on the pairs of
original and augmented with FBPAug images to achieve even better results. We leave the
latter idea for future work.
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Conclusions

We have proposed an unsupervised domain adaptation method, F-Consistency, to
address the difference in CT reconstruction kernels. Our method uses a set of unlabeled
CT image pairs and enforces the similarity between feature maps of paired images. We
have shown that F-Consistency outperformed the other adaptation and augmentation
approaches in the COVID-19 segmentation task when provided with enough unlabeled
data. Finally, through extensive evaluation, we have shown our method to generalize the
unseen reconstruction kernels better and without the specific semantic content.
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