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Radiation-induced rectal injury is a common side effect of radiotherapy. Hypoxia often
occurs after radiotherapy. This study aimed to explore the bystander effect of hypoxia on
radiation-induced rectal injury. In vivo, apoptosis increased nearby the highly hypoxic area
in the rectal tissues in the mouse models of radiation-induced rectal injury, indicating the
potential involvement of hypoxia. In vitro, flow cytometry andWestern blotting showed that
both hypoxia and hypoxic human intestinal epithelial crypt (HIEC) cell supernatant
promoted apoptosis in normoxic HIEC cells. The pro-apoptotic effect of extracellular
vesicles (EVs) derived from hypoxic HIEC cell to normoxic HIEC cells was then determined.
MiR-122-5p was chosen for further studies through a microRNA (miRNA) microarray
assay and apoptosis was alleviated in cells receiving miR-122-5p inhibiting hypoxic EVs.
Together, our study demonstrated that the miR-122-5p containing-EVs derived from
hypoxic HIEC cells promoted apoptosis in normoxic HIEC cells. Hypoxic EV-derived miR-
122-5p plays a critical pathologic role in radiation-induced rectal injury and may be a
potential therapeutic target.
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INTRODUCTION

Radiation therapy (RT) is a major treatment modality for patients with pelvic cancer (Nicholas
et al., 2017). However, it is estimated that more than half of the pelvic cancer patients receiving
RT will suffer from radiation-induced side effects; among them, radiation-induced rectal injury
is a common one (Araujo et al., 2020). The clinical manifestations of radiation-induced rectal
injury generally range from rectal pain, bleeding, and diarrhea (Araujo et al., 2020).
Inflammation, ulcers, and hemorrhage are often observed during endoscopy. Biopsies
usually reveal the presence of angiotelectasis, crypt distortion, and fibrosis (Wu et al., 2015).
Presently, few strategies have been developed to treat radiation-induced rectal injury.
Medications such as antioxidants and anti-inflammatory agents may assist depending on the
stage of the disease (Tabaja and Sidani, 2018).

Hypoxia plays a vital role in the development of radiation-induced rectal injury (Fleckenstein
et al., 2007). In addition to studies showing the involvement of hypoxia in radiation-induced lung
injury (Tubin et al., 2018), our previous work showed that hypoxia also accelerates the development
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of radiation-induced late rectal injury by producing angiogenic
cytokines (Liu et al., 2008). Through the induction of hypoxia
inducible-factor-1α (HIF-1α) (Lema and Cunningham, 2010),
hypoxia results in the activation of vascular endothelial growth
factor (VEGF) and transforming growth factor beta pathways,
which lead to inflammation and fibrosis (Ramakrishnan et al.,
2014; Lei et al., 2019). Other studies have shown that
nicotinamide adenine dinucleotide phosphate oxidase and
reactive oxygen species contribute to hypoxic cell damage
(Song et al., 2015). Moreover, clinical investigations have
reported the effectiveness of hyperbaric oxygen therapy as a
treatment for radiation-induced rectal injury, indicating the
therapeutic role of targeting hypoxia (Oliai et al., 2012;
Yoshimizu et al., 2017). However, the precise pathogenic
mechanism of radiation-induced rectal injury remains unclear,
and there are few studies on how hypoxia affects radiation-
induced rectal injury, especially in a bystander manner.

Originated from the endosomal system or plasma membrane,
EVs are a heterogeneous group of membranous particles
comprising exosomes, microvesicles, and apoptotic bodies
(Abels and Breakefield, 2016). Much research is undergoing
on the promising role of EVs as biomarkers or intercellular
messengers (Shao et al., 2018; Van Niel et al., 2018). Henrich
(Henrich et al., 2020) found that EVs secret from prostate cancer
promote metastasis through intercellular communication with
bone marrow cells. In oral squamous cell carcinoma, it was
observed that exosomal miR-1246 promotes tumor invasion by
targeting the DENN/MADD domain containing 2D (Sakha et al.,
2016). There is increasing evidence that the secretion of EVs and
changes in their content and functions are enhanced under
hypoxia (Venturella et al., 2021). In mouse models of chronic
asthma, hypoxic hUCMSC-derived EVs attenuate allergic airway
inflammation (Dong et al., 2021). After myocardial infarction,
EV-derived miR-486-5p enhance cardiac angiogenesis via
fibroblastic MMP19-VEGFA cleavage signaling (Li J. et al.,
2021). These findings show that EVs funtions in normal tissue
damage, especially under hypoxia. While molecules such as
proteins, lipids, DNAs, and mRNAs are contained in EVs,
miRNAs are among the most explored and best-investigated
contents because of their overwhelming biological functions
(Zhang et al., 2015). As mentioned above, hypoxia is involved
in the pathogenic mechanism of radiation-induced rectal injury.
Therefore, we hypothesized that hypoxic parts of the rectum may
transfer miRNAs to the normoxic parts of the rectum through
EVs, leading to the modulation of bioactivity in the latter.

MATERIALS AND METHODS

Animal Studies
All animal study protocols were approved by the Animal
Ethical Commission of the Shanghai General Hospital (No.
2020AW067). Female C57BL/6 mice (5-week-old) were
purchased from Shanghai SIPPR/BK Laboratory Animal Co.
Ltd. According to our previous studies, a single 25 Gy of X-ray
elicited from a medical linear accelerator (Varian Clinac IX)
was administered to the 1 cm-width of anal area of mice after

general anesthesia. The rectal tissues of mice were collected on
the 14th day after radiation following cervical dislocation for
further research.

Immunohistochemistry
The rectal tissue sections were deparaffinized and incubated in
a sodium citrate buffer. Following blocking with 10% bovine
serum albumin (BSA), the sections were incubated with
primary antibodies against cleaved caspase-3 (casp-3) (Cell
Signaling Technology, 9661, 1:100) or HIF-1α (Affinity,
BF8002, 1:400) overnight at 4°C. The sections were then
rinsed with phosphate buffered saline (PBS) and incubated
with secondary antibodies (Jackson ImmunoResearch Inc.,
111-035-003, 1:100) for 1 h at room temperature. Images of
the slides were captured using a microscope (Leica, Germany).
The level of hypoxia was evaluated using the immunoreactive
score of HIF-1α in nuclei by two pathologists, and an average
score was used for the final scores. The intensity scores were as
follows, 0, negative; 1, weak; 2, moderate; and 3, strong. The
frequencies of positive cells were clarified as follows, 0,
negative; 1, 10% positive cells; 2, 11–50% positive cells; 3,
51–80% positive cells; and 4, more than 80% positive cells.
Immunoreactive score = intensity score × frequency of positive
cells (Xue et al., 2016). An immunoreactive score >8 was
considered as high HIF-1α, and ≤8 was considered as low
HIF-1α. The degree of cleaved casp-3 was estimated by the
number of cleaved casp-3 positive cells per field.

Terminal Deoxynucleotidyl Transferase-Mediated
dUTP Nick-End Labeling Assay
A TUNEL apoptosis kit (Roche) was used to detect apoptosis
in tissue sections according to the manufacturer’s instructions.
Images were captured using a microscope (Leica, Wetzlar,
Germany). ImageJ software was used to estimate the
percentage of TUNEL-positive areas.

Cell Line, Treatment and Culture
The HIEC cell line was a gift from Professor Shao (Institute of
Radiation Medicine, Fudan University, Shanghai, China). The
cells were cultured in RPMI-1640 medium (Wisent, Canada)
containing 10% fetal bovine serum (FBS) (Wisent, Canada)
and 1% penicillin–streptomycin (Gibco, United States) in a
37°C humidified incubator with an atmosphere of 5% CO2. For
the hypoxia group, the cells were cultured under hypoxic
conditions (37°C, 1% O2, 5% CO2, 94% N2) for 24 h. For
the EV-treated group, the cells were collected for further
research 48 h after the addition of EVs. The EVs were
removed from FBS by ultracentrifugation (100000 × g, 20 h,
4°C) when the cultured cells were prepared for EV isolation.

HIF-1α Immunofluorescent Detection
After rinsed with PBS, the cells were treated with 4%
paraformaldehyde for 15 min followed by permeabilization
with 0.1% Triton X-100 for another 15 min. Then, 1% BSA
was used for block before incubation with HIF-1α primary
antibody (1:500, 179483, Abcam) overnight at 4°C. The next
day, the cells were incubated with Alexa Fluor 488 Goat Anti-
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Rabbit IgG secondary antibody (1:1000, 150077, Abcam) for
1 h in the dark, after which, the nuclei were stained with DAPI
(1:1000, D9542, Sigma).

Flow Cytometry
For the detection of apoptosis, an Annexin V-FITC Apoptosis
Detection Kit (BD Pharmingen TM, United States) was used
according to the manufacturer’s instructions. Briefly, the cells
were digested and resuspended in binding buffer, followed by
staining with Annexin V-FITC and PI in turn protected from
light. They were then analyzed using an Accuri C6 Flow
cytometer (BD Biosciences, United States). The total
apoptosis rate was considered to be the sum of the early
(lower right area of the scatter diagram) and late (upper
right area of the scatter diagram) apoptosis rates.

Isolation and Identification of EVs
To isolate EVs, 120 ml of HIEC cell culture supernatant was
collected and subjected to sequential centrifugation at 300 × g
for 10 min to remove cells, 2000 × g for 10 min to remove dead
cells, 10000 × g for 30 min to remove cell debris, and
ultracentrifugation at 100000 × g for 70 min at 4°C. The
sediments were washed, resuspended in PBS, and subjected
to ultracentrifugation at 100000 × g for 70 min at 4°C for final
extraction (Beckman Coulter, United States).

To identify the characteristics of EVs, transmission electron
microscopy (TEM) was used to observe the morphology of the
extract. DiO (Beyotime, C1038, China)-labeled EVs along with
DAPI staining were captured under a confocal microscope to
define the cellular uptake of EVs by HIEC cells. Specific EV
surface markers were examined by Western blotting.

Western Blotting Analysis
The cells were washed with pre-cooled PBS and lysed with
radioimmunoprecipitation assay buffer (Beyotime, China)
containing protease and phosphatase inhibitors (Bimake,
United States) when the total protein was collected. The
nuclear and cytosolic proteins were extracted using a
Nuclear and Cytoplasmic Protein Extraction Kit (Beyotime,
P0028, China) according the manufactures’ introduction. The
protein concentration was determined using a BCA Protein
Quantification kit (Thermo, United States). 20 μg of total
protein was electrophoresed on a sodium dodecyl sulphate-
polyacrylamide gel electrophoresis gel, followed by transfer to
polyvinylidene difluoride membranes (Millipore,
United States). After blocking with 5% (w/v) BSA in TBST
for 1 h, the membranes were incubated with primary
antibodies overnight at 4°C. The next day, the primary
antibodies were eliminated, and the membranes were rinsed

in TBST before they were further incubated with secondary
antibodies (Cell Signaling Technology, 7074, 7076, 1:3000) at
room temperature for 1 h. A chemiluminescent detection
system (Tanon, China) was used to visualize the blots. The
primary antibodies used were as follows, HIF-1α (Abcam,
179483, 1:1000), Lamin B1 (Proteintech, 66095-1-Ig, 1:
10000), a-Tubulin (Sigma, T8203, 1:5000), CD9 (CST,
13403, 1:1000), Alix (Santa Cruz, sc-53540, 1:500), Calnexin
(Proteintech, 10427-2-AP, 1:10000), ß-actin (Cell Signaling
Technology, 4970, 1:1000), phospho-AKT (p-AKT) (Ser473,
Cell Signaling Technology, 4060, 1:1000), and γH2AX (CST,
9718, 1:1000).

MicroRNA Inhibitor Transfection
MiR-122-5p inhibitor and negative control were synthesized
by RiboBio (Guangzhou, China) and were diluted to a final
concentration of 200 nM during transfection. Lipofectamine
2000 (Invitrogen, United States) was used to perform the
transfection process according to the manufacturer’s
instructions.

Quantitative Real-Time PCR
cDNA was synthetized using a miRcute Plus miRNA First-
Strand cDNA Kit (Tiangen, KR201, China). qRT-PCR was
conducted using a miRcute Plus miRNA qPCR Kit (Tiangen,
FP411, China) on a QuantStudio 6 Flex system (Life
Technologies, United States) with U6 chosen to be the
reference gene. The 2−△△Ct method was applied for the
calculation of relative expressions of genes. The primers

TABLE 1 | Primer sequences for qRT-PCR in this study.

miRNA Primer Sequence

miR-122-5p Forward 5′-GTGACAATGGTGGAATGTGG-3′
Reverse 3′-CAGAACCGTAGCAAACGAAA-5′

U6 Forward 5′-CTCGCTTCGGCAGCACA-3′
Reverse 3′-TGCGTTTAAGCACTTCGCAA-5′

FIGURE 1 | Apoptosis is increased adjacent to high-HIF-1α area in
rectum of mouse after 25 Gy radiation. (A) Representative pictures of TUNEL
and cleaved casp-3 staining in low-HIF-1α and high-HIF-1α groups in vivo.
Scale bar: 20 μm. (B) The extent of TUNEL and (C) the counts of cleaved
casp-3 positive cells per field were positively correlated with the degree of
hypoxia. *p < 0.05.
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were synthesized by RiboBio (Guangzhou, China) and were
listed in Table 1.

Microarray Assay and Bioinformatics
Analysis
The miRNAs were extracted using a mirVana RNA Isolation
Kit (Life Technologies, United States). The miRNA
microarrays were performed using an Agilent (Santa Clara,
United States) human miRNA (8 × 60 K) chip to identify
differentially expressed miRNAs between hypoxic and
normoxic EVs. Briefly, after quantification and integrity
assessment, the total RNA sample was subjected to labeling,
microarray hybridization, and washing according to the
manufacturer’s protocols. Raw data were obtained using
Feature Extraction software (version 10.7.1.1, Agilent
Technologies). GeneSpring software (version 13.1, Agilent
Technologies) was then applied to complete the
standardization and subsequent management of the raw
data. The differentially expressed miRNAs were screened
under the criterion of a Fold change>2.0 or Fold change <
−2.0，and a p value <0.05, and their target genes were

predicted using Targetscan, microRNAorg, and PITA
databases. Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were
performed to conduct the functional analysis of these
target genes.

Statistical Analysis
All statistical analysis were performed using GraphPad Prism
7 software (La Jolla, United States). Student’s t-test was
applied for statistical analysis between two groups. A
minimum of three biological replicates were performed,
and a value of p < 0.05 was considered statistically
significant. The data were showed as the mean ± standard
deviation.

RESULTS

Rectal Tissue Apoptosis is Aggravated Near
Hypoxic Area in Mouse After Radiation
In the mouse models of radiation-induced rectal injury with a
25 Gy radiation, adjacent sections of the rectum were

FIGURE 2 |Hypoxia and hypoxic supernatant promote apoptosis in normoxic HIEC cells. (A)Western blotting and (B) IF detection of the levels of HIF-1α in nuclear
and cytoplasmic fractions of HIEC cells under normoxia or hypoxia. (C, D) Flow cytometry investigation of apoptosis of HIEC cells under normoxia or hypoxia. (E, F) Flow
cytometry investigation of apoptosis of HIEC cells cultured in normoxic or hypoxic HIEC cell supernatant. Scale bar: 10 μm. N, normoxia; H, hypoxia; N supernatant,
normoxic supernatant; H supernatant, hypoxic supernatant. **p < 0.01, ***p < 0.001.
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separately stained for HIF-1α, TUNEL, and cleaved casp-3,
and the degree of each staining was measured as mentioned
above. The sections were then divided into high-HIF-1α and
low-HIF-1α groups based on their immunoreactive scores for
HIF-1α. As shown in Figure 1A, both the extent of TUNEL
staining (Figure 1B) and the counts of cleaved casp-3 positive
cells per field (Figure 1C) were positively correlated with the
expression of HIF-1α in their adjacent sections, indicating that
hypoxia may promote injury to surrounding tissues after
radiation.

Hypoxia and Hypoxic Supernatant Increase
the Apoptosis of Normoxic HIEC Cells
To determine the remote effects of hypoxia on normoxic tissues,
HIEC cells were used in vitro. We first cultivatedHIEC cells in either
normoxic or hypoxic conditions for 24 h. Western blotting showed
that the hypoxic sensor HIF-1α had a higher expression in the
nuclear fraction under hypoxic conditions compared to the
normoxic group (Figure 2A). IF detection also exhibited the
translocation of HIF-1α in the nucleus under hypoxia
(Figure 2B), indicating that the hypoxic culture conditions were
successfully established. The Annexin V-FITC staining assay
demonstrated that the apoptosis rate of HIEC cells increased
under hypoxic conditions (Figures 2C,D). To further clarify the

biological influence of hypoxia, the supernatant of hypoxic HIEC
cells was collected and utilized to cultivate normoxic cells. After 48 h
of incubation, the pro-apoptotic effect of the hypoxic cell
supernatant was confirmed by flow cytometry (Figures 2E,F).
Collectively, these data indicate that both hypoxia and hypoxic
cell supernatants promote apoptosis in normoxic HIEC cells.

Hypoxic HIEC Cell-Derived EVs Promote
Apoptosis in Normoxic HIEC Cells
To investigate whether EVs were involved in hypoxia-induced
apoptosis, EVs from either normoxic or hypoxic HIEC cells were
extracted by ultracentrifugation. As shown by TEM, typical saucer-
like structures with a diameter of 50–200 nm were captured
(Figure 3A). The levels of EV markers CD9 and Alix along with
the endoplasmic reticulum marker Calnexin were detected by
Western blotting (Figure 3B). The fluorescent confocal images
also showed the uptake of DiO-labeled hypoxic HIEC cell-
derived EVs by normoxic HIEC cells (Figure 3C). After
confirmation of successful EV extraction, we added normoxic or
hypoxic EVs into the medium of normoxic HIEC cells. After 48 h,
Annexin V-FITC staining revealed that hypoxic EVs promoted
apoptosis in HIEC cells compared to normoxic EVs (Figures
3D,E). In addition, we further evaluated the expression of
apoptosis-related DNA damage marker γH2AX and the

FIGURE 3 | Hypoxic EVs enhance apoptosis in normoxic HIEC cells. (A) Representative TEM image of the saucer-like structures of EVs (red arrow). Scale bar:
100 nm. (B) Western blotting analyzed the EV markers. (C) Representative confocal images showing the uptake of EVs. Scale bar: 10 μm. (D,E) Flow cytometry
investigation of apoptosis and (F)Western blotting analysis of the expression of γH2AX and p-AKT in HIEC cells given either normoxic or hypoxic EVs. ß-Actin was used
as the internal control. N-EV, normoxic EVs; H-EV, hypoxic EVs. *p < 0.05.
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apoptosis-related AKT pathway. Western blotting showed that the
expression of γH2AX increased while that of p-AKT decreased
owing to the addition of hypoxic EVs (Figure 3F).

Microarray Assay of Differentially
Expressed MiRNAs Between Normoxic EVs
and Hypoxic EVs
It can be concluded from above that hypoxic HIEC cell-
derived EVs promoted injury of normoxic HIEC cells. To
further elucidate the molecular mechanism responsible for
this, a miRNA microarray assay was conducted. The
differential miRNA clustering heat map (Figure 4A) and a
volcano plot (Figure 4B) demonstrated that there were nine
miRNAs upregulated in hypoxic EVs compared to normoxic
EVs (Fold change>2.0 or Fold change < −2.0， and p < 0.05).
Then, GO and KEGG analyses were performed to analyze the
functions of 136 predicted target genes of these differentially
expressed miRNAs. The top-ranked terms are displayed in
the bubble charts. Apoptosis related pathways, for example,
NF-kappaB and MAPK signaling, were among them
(Figures 4C,D).

MiR-122-5p is Involved in the
Hypoxia-Induced Bystander Effects of EVs
in Normoxic HIEC Cells
Based on the microarray assay, miR-122-5p was selected for further
research because of its highest fold change among all the upregulated

FIGURE 4 | Screening of differentially expressed miRNAs between EVs from normoxic or hypoxic HIEC cells. (A) The differential miRNA clustering showed in heat
map and (B) volcano plot. The top 20 terms in (C,D) GO and KEGG analysis of targeted genes of differential miRNAs. N, normoxic EV-derived miRNAs; H, hypoxic EV-
derived miRNAs.

TABLE 2 | Significantly differentially expressed EV-derived miRNAs under hypoxia
for 24 h in HIEC cells.

Hypoxia versus Normoxia Fold Change p Value

Upregulated
hsa-miR-122-5p 8.604761 0.045137
hsa-miR-98-3p 8.588404 0.045548
hsa-miR-5008-5p 8.350174 0.036899
hsa-miR-887-3p 7.036182 0.029985
hsa-miR-495-3p 5.760533 0.001771
hsa-miR-4487 5.686698 0.001685
hsa-miR-371a-3p 5.06989 0.016827
hsa-miR-4750-3p 4.620697 0.019536
hsa-miR-548q 3.233005 1.16E-04
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miRNAs (Table 2). To determine the role of miR-122-5p in hypoxic
EVs-aggravated apoptosis, HIEC cells were transfected with either
miR-122-5p inhibitor or negative control and cultured under
hypoxic conditions. qRT-PCR showed that miR-122-5p decreased
at 24 h after transfection (Figure 5A). EVs from hypoxic HIEC cells
at 24 h after transfection were extracted and used to culture
normoxic HIEC cells as previously described. Annexin V-FITC
staining showed that the apoptosis rate in HIEC cells treated
with hypoxic miR-122-5p inhibiting EVs was significantly lower
than that in the control group (Figures 5B,C). In addition, Western

blotting also showed an increased expression of p-AKT along with a
decreased expression of γH2AX upon treatment with hypoxic miR-
122-5p inhibiting EVs compared to the control groups (Figure 5D).
These results indicated that EV-derived miR-122-5p secreted by
hypoxicHIEC cells promoted apoptosis in normoxicHIEC cells, and
perhaps the AKT pathway was involved in this process (Figure 6).

DISCUSSION

As mentioned above, radiation-induced rectal injury not only
causes great physical and mental pain in oncology patients
receiving pelvic radiotherapy, but also limits the clinical
application of radiotherapy. Tissue hypoxia is one of the
features of radiotherapy (Rabbani et al., 2010). In this
study, we observed aggravated apoptosis adjacent to highly
hypoxic regions in the mouse rectum after radiation, which
suggested that hypoxia may promote injury to the surrounding
area. Then, the apoptosis rates were found to increase in
hypoxic HIEC cells, and in normoxic HIEC cells cultured in
supernatant from hypoxic HIEC cells. After extraction and
identification, hypoxic HIEC cell-derived EVs were added to
normoxic HIEC cells, which were found to induce apoptosis
and γH2AX expression. miR-122-5p was chosen for further
study through miRNA microarray assays. Compared to
negative controls, HIEC cells receiving miR-122-5p
inhibiting hypoxic EVs had a lower apoptosis rate,
decreased γH2AX expression, and increased p-AKT
expression.

Vascular and epithelial abnormalities caused by radiation
contribute to a hypoxic microenvironment through the
upregulation of HIF-1α (Vujaskovic et al., 1998; Lu et al.,

FIGURE 5 | Hypoxic EV-derived miR-122-5p mediates the apoptosis of normoxic HIEC cells. (A) The transfection efficiency of miR-122-5p after 24 h of
transfection with miR-122-5p inhibitor. U6 was used as the endogenous control. (B, C) Flow cytometry investigation of apoptosis and (D)Western blotting analysis of the
expression of γH2AX and p-AKT of HIEC cells given the hypoxic EVs from either miR-122-5p inhibitor group or negative control group. ß-Actin was used as the internal
control. NC, negative control. **p < 0.01, ***p < 0.001.

FIGURE 6 | Schematic diagram of the effect of hypoxic EV-derived miR-
122-5p on normoxic rectum. IR, ionizing radiation.
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2012). There is growing evidence that HIF activation leads to
the abnormal blood supply, mucosal barrier injury,
inflammation, and immune dysregulation in the gut under
hypoxic conditions induced by radiation or ischemic
reperfusion (Khanna et al., 2019; Singhal and Shah, 2020),
indicating the important role of hypoxia in gastrointestinal
diseases. Similar results were also found in this study when
aggravated apoptosis was observed in tissues adjacent to the
high-HIF-1a area in the mouse rectum after radiation. Thus, in
addition to the direct effects mentioned above, we assumed
that hypoxia may have a wider impact on tissue damage in an
indirect way. Recently, hypoxia has been found to take part in
radiation-induced bystander effects (RIBE), which refer to
effects in non-irradiated cells responding to signals released
from irradiated cells (Zhang et al., 2021). RIBE results from
multiple mechanisms including oxidative DNA damage
(Havaki et al., 2015), epigenetic factors (Aypar et al., 2011),
oxidative metabolism (Azzam et al., 2003), and cytokine
release (Facoetti et al., 2006), increasing the risk of
secondary carcinogenesis and normal tissue injury (Wang
et al., 2015). Several studies have shown that exposure to
hypoxia leads to an increased release of signaling factors
from irradiated cancer cells, contributing to damage in non-
irradiated bystander cells (Zhang et al., 2021). In the present
study, we found that hypoxic supernatants significantly
promoted apoptosis in HIEC cells under normoxic
conditions. This allowed us to reminisce how hypoxic HIEC
cells transmitted injury signals to normoxic HIEC cells,
accounting for an expanded injury area, and how hypoxia
acted in the injury cascade after radiation through its crosstalk
with components in the hypoxic microenvironment as a
potential cause of distant damage.

As potential biomarkers or drug delivery in multiple
diseases, EVs are found to be important in cell
communications, including RIBE (Du et al., 2020). Research
reports that EVs isolated from the bone marrow of total-body
irradiated mice mediate radiation-induced immune and
inflammatory responses in non-irradiated mice (Szatmari
et al., 2019). Radiation-induced miR-34c enriched-EVs
cause oxidative stress in non-irradiated HaCaT cells
(Rastogi et al., 2018). Intestinal epithelial cells are also
capable of secreting exosome-like vesicles (Van Niel et al.,
2001). Jiang (Jiang et al., 2016) found that EVs extracted from
intestinal tissues participate in regulating the intestinal tract
immune functions. On top of that, EVs secreted by gut
microbiota also exert a significant impact on gut
immunomodulation and barrier integrity (Chelakkot et al.,
2018; Liu et al., 2021). In the present study, we discovered the
pro-apoptotic effects of EVs secreted from hypoxic HIEC cells
on normoxic HIEC cells, again highlighting the important
biological role of EVs in gut disorders.

EVs, along with their containing miRNAs are attracting growing
attention because of their potent biological effects under various
conditions (Zhang et al., 2015). Serum miR-122-5p expression can
be used as a potential biomarker for gastric and renal cancers
(Heinemann et al., 2018; Zhang et al., 2019). In normal tissues,
however,miR-122-5p also functions. Inmyocardial injury,miR-122-

5p aggravates oxidative stress (Song et al., 2021). Inflammatory
cytokines are reduced in lipopolysaccharide-induced lung injury
when miR-122-5p is inhibited (Li Q. et al., 2021). In our previous
study (Ge et al., 2020), we found that miR-122-5p promoted
radiation-induced rectal injury through inhibiting cell cycle and
apoptosis regulator 1. In this study,miR-122-5pwas identified as one
of the upregulated EV-derived miRNAs in hypoxic HIEC cells
compared to normoxic cells. Upon knockdown of miR-122-5p
with miRNA inhibitors, miR-122-5p was found to be involved in
the pro-apoptotic effect of EVs on normoxic HIEC cells from
hypoxic cells. These results, along with our previous studies,
together suggest the important role of miR-122-5p in promoting
intestinal injury, not only induced by radiation, but also by hypoxia.

Studies have shown that hypoxia accumulates DNA
double-strand break (γH2AX) formation and promotes
apoptosis (Kumareswaran et al., 2012; Wozny et al., 2020).
In the present study, the level of γH2AX was measured to
evaluate if there was the effect of DNA damage brought by
hypoxic EVs to HIEC cells which perhaps contributed to the
increased apoptotic rate. The increased γH2AX observed in
cells receiving hypoxic EVs indicated exacerbated DNA
damage caused by hypoxic EVs. The expression of γH2AX
declined when given miR-122-5p inhibiting EVs, which
suggested that EV-derived miR-122-5p functioned in this
process. Moreover, the Akt (Ser473) signaling pathway
regulates a wide range of cellular functions, including cell
survival and apoptosis (Zhang et al., 2018). Studies have
shown that upregulation of p-AKT inhibits apoptosis in
normal tissue damage induced by hypoxia (Cai et al., 2018;
Wei et al., 2020). In agreement with this, we found that the
expression of p-AKT was negatively correlated with the
apoptosis rate when given EVs extracted from different
treatments, suggesting the involvement of p-AKT in the
pro-apoptotic effect of hypoxic EV-derived miR-122-5p.

Few studies have been conducted on the influence of
pathological hypoxic guts on their normal counterparts. In
summary, in this study, we found that hypoxic EV-derived
miR-122-5p aggravated apoptosis in normoxic HIEC cells
involving γH2AX and p-AKT. The current study may
enrich the research on the pathogenic mechanisms of
radiation-induced rectal injury. Researchers have reported
the application of antagomiRNAs as remedies (Zhou et al.,
2021). Our study provides a rationale for the treatment of
radiation-induced rectal injury. Future studies on the specific
mechanisms of miR-122-5p are warranted.
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