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Background: Hydrogen sulfide (H2S) is considered to be the third gasotransmitter after carbon monoxide
(CO) and nitric oxide (NO). It plays an important role in the regulation of vascular homeostasis. Vascular
remodeling have has proved to be related to the impaired H2S generation.
Aim of Review: This study aimed to summarize and discuss current data about the function of H2S in vas-
cular physiology and pathophysiology as well as the underlying mechanisms.
Key Scientific Concepts of Review: Endogenous hydrogen sulfide (H2S) as a third gasotransmitter is primar-
ily generated by the enzymatic pathways and regulated by several metabolic pathways. H2S as a physi-
ologic vascular regulator, inhibits proliferation, regulates its apoptosis and autophagy of vascular cells
and controls the vascular tone. Accumulating evidence shows that the downregulation of H2S pathway
is involved in the pathogenesis of a variety of vascular diseases, such as hypertension, atherosclerosis
and pulmonary hypertension. Alternatively, H2S supplementation may greatly help to prevent the pro-
gression of the vascular diseases by regulating vascular tone, inhibiting vascular inflammation, protecting
against oxidative stress and proliferation, and modulating vascular cell apoptosis, which has been verified
in animal and cell experiments and even in the clinical investigation. Besides, H2S system and
angiotensin-converting enzyme (ACE) inhibitors play a vital role in alleviating ischemic heart disease
and left ventricular dysfunction. Notably, sulfhydryl-containing ACEI inhibitor zofenopril is superior to
other ACE inhibitors due to its capability of H2S releasing, in addition to ACE inhibition. The design
and application of novel H2S donors have significant clinical implications in the treatment of vascular-
related diseases. However, further research regarding the role of H2S in vascular physiology and patho-
physiology is required.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Hydrogen sulfide (H2S) was discovered to be the third gaso-
transmitter after nitric oxide (NO) and carbon monoxide (CO). This
novel gaseous molecule has been proved to be widely involved in
the regulation of various systems in human body [1]. Moreover,
H2S has attracted great attention in regulating the structure and
function of blood vessels. Many researchers have shown that H2S
exerts vital effects on vascular cellular processes, such as inflam-
mation, apoptosis, cell cycle, cytoprotection, and mitochondrial
metabolic function and biogenesis [2].

In the vasculature, H2S modulates vascular tension, suppresses
the proliferation, and exerts a bidirectional effect on apoptosis
and autophagy of vascular smooth muscle cells (VSMCs). Further-
more, the development of many vascular remodeling-associated
diseases, including hypertension, atherosclerosis and pulmonary
hypertension has been proved to be related to the impaired H2S
generation. In addition, H2S and the use of zofenopril, one of the
ACE inhibitors that can promote the release of H2S, in cardiovascu-
lar diseases are also gradually being valued. Therefore, the under-
standing how H2S is endogenously generated, as well as the
regulation of blood vessels by H2S under physiological and patho-
logical conditions, may elucidate the pathogenesis of vascular dis-
eases and uncover new promising targets for the prevention and
treatment of vascular diseases.
Endogenous H2S generation and metabolism

The generation of endogenous H2S is mostly catalyzed by
enzymes, while only a small part is produced by non-enzymatic
pathways [3,4]. The enzymes that catalyze H2S production mainly
include cystathionine-b-synthase (CBS), cystathionine-c-lyase
(CSE), 3-mercaptopyruvate sulfur transferase (3-MST) and cysteine
aminotransferase (CAT) [5,6]. CBS and CSE are the primary
enzymes involved in H2S production [7] that catalyze the substrate
L- cysteine with tissue specificity. CBS is abundant in the brain,
liver, and kidney, with small amount of expression in the uterine
artery, mesenteric artery, and carotid ball [8]. CSE predominantly
catalyzes synthesis of H2S in the liver, ileum, portal vein, thoracic
aorta and non-vasculature [2,9]. Recently, 3-MST has been found
to catalyze H2S synthesis in the central and peripheral nervous sys-
tems, vascular endothelium and other tissues [10]. It catalyzes 3-
mercaptopyruvate (3-MPT), which produces H2S and pyruvate
in vivo. Among these three enzymes, homocysteine is converted
into cystathionine and cysteine in turn by sulfur transfer under
the catalysis of CBS and CSE. Cysteine and thiols are catalyzed by
CBS via b-substitution. Different from CBS, CSE catalyzes three
kinds of reactions, including the a, b-cleavage of cysteine, the a,
c-cleavage of homocysteine, and the c-substitution of homocys-
teine through a second mole of homocysteine. As a sulfurtrans-
ferase, 3-MST is responsible for transferring sulfur from
mercaptopyruvate to an active cysteine site, and then forms
MST-SSH, a persulfide intermediate. Except for thioredoxin, a vari-
ety of small molecules such as dihydrolipoic acid, homocysteine,
cysteine and glutathione (GSH) release H2S by receiving the persul-
fide group in the presence of reductant [11]. Opposite to the enzy-
matic reaction, the non-enzymatic reaction of H2S generation is
partial for cysteine as a substrate and is catalyzed by coordinated
activities of VitB6 and iron. Non-enzymatic production of H2S
occurs in the spleen, heart, lung, muscles, bone marrow and
plasma, especially in RBCs [12]. The aortic H2S production rate is
reported to be 5.8 ± 1.7 pmol s�1 mg protein-1[13]. In addition, var-
ious arteries demonstrate different production rates of H2S. The
H2S production rate in the caudal artery, the mesenteric artery,
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the pulmonary artery and the thoracic aorta was 8.12 ± 0.85,
6.17 ± 0.56, 5.31 ± 0.70 and 4.06 ± 0.28 pmol s�1 mg wet tissue-1,
respectively [14].

After synthesis by transsulfuration from L-cysteine, various
metabolic pathways participate in the regulation of H2S concentra-
tion in the cell. Significant pathways for H2S metabolism include
oxidation by sulfide quinone oxidoreductase (SQR) and persulfide
dioxgenase (ETHE1) in the mitochondrion and methylation by cys-
teine dioxygenase (CDO) in the cytoplasm [15]. Sulfide is oxidized
in the mitochondrion by SQR to generate persulfide. Persulfide is
further oxidized to sulfite by ETHE1, and sulfite is finally oxidized
by rhodanese or sulfite oxidase. After ubiquinone captures elec-
trons released in the SQR reaction, the electrons are transferred
to complex III in the electron transport chain [16]. In addition to
the above oxidation pathway metabolism, Olson et al [17] proved
that superoxide dismutase (SOD) also oxidizes H2S to produce
polysulfides. Methemoglobin and molecules containing metallo
or disulfides such as oxidized glutathione may also eliminate H2S
[3,18].

Physiological regulation of blood vessels by H2S
H2S on vascular tone

H2S has a bidirectional regulatory effect on vascular tone. H2S
can not only relax blood vessels, but also contract blood vessels
[19]. A study published in Science [20] showed that the activation
of CSE by calcium-calmodulin (CaM) under physiological condi-
tions is the main mechanism of H2S production in the vascular sys-
tem. Mutant mice lacking CSE displayed lower levels of H2S, with
abnormally elevated blood pressure and loss of endothelium-
dependent vasodilatory function. These findings directly prove
the significance of H2S for the maintenance of vascular function.
Intriguingly, the vasodilation of H2S on the portal vein and the
ileum was notable stronger than that on the thoracic aorta [21].
In addition, compared with H2S, hydrogen polysulfides (H2Sn)
tended to contain more sulfane sulfur atoms which have a relaxing
effect and ultimately lowered blood pressure [22,23].

H2S also has vasoconstrictive effects under certain conditions.
NaHS contracts VSMCs at concentrations between 5 � 10�6 M
and 10�4 M [24]. A study by Ping reported similar results [25].
NaHS at concentrations ranging from 10 to 300 lM induced coro-
nary artery constriction in rats. Therefore, the regulation of H2S on
vascular tone is bidirectional.

The mechanisms underlying H2S-induced vasodilation are not
fully understood. The effects of vasodilation have been attributed
to iron channels that are activated by H2S according to previous
studies [26]. It is suggested that H2S exerts a vasorelaxant effect
via opening ATP-sensitive potassium channels (KATP channels) in
VSMCs [27]. H2S mediates a new type of protein post-
translational modification that is sensitive to redox, namely sulfhy-
dration. [28]. More specifically, H2S causes sulfhydration of
cysteine-43 (C43) in Kir6.1 (a subunit of KATP channel), resulting
in a decrease in the capacity of Kir 6.1 binding to ATP, while the
capacity of Kir 6.1 binding to PIP2 is enhanced. This event eventu-
ally causes KATP channels to open and VSMCs to relax [29]. Except-
ing the KATP channel, growing evidence demonstrates that calcium-
activated potassium channels (Kca channels) are also activated by
H2S [30,31]. H2S increases smooth muscle Ca2+ spark activity to
activate endothelial large-conductance calcium-activated potas-
sium channels (BKCa channel) [32]. Transient receptor potential
cation channel V4 (TRPV4) is also modified by H2S through sulfhy-
dration. This is followed by the activation and the opening of
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TRPV4-dependent Ca2+ internal flow and the endothelial BKCa

channel and results in vasodilation [33]. In addition, the SK2.3 chan-
nel which acts as an a-subunit isoform of the SKCa channel is acti-
vated by H2S through S-sulfhydration [34]. Moreover, the
activation of voltage sensitive potassium channels (KV channels)
and Kv7.4 voltage-gated potassium channels which are predomi-
nantly expressed in VSMCs are seen as targets for H2S action on
vascular tone [35,36]. Recent reports have also demonstrated that
H2S caused S-sulfhydration of L-type Ca2+ channels, leading to a
decrease in intracellular Ca2+ concentration ([Ca2+] i) [37].

Whether H2S participates in the regulation of the cyclic guano-
sine monophosphate (cGMP) pathway remains controversy. A
compelling amount of evidence indicates that H2S exerts a
vasodilative effect through the activation of endothelial nitric
oxide synthase (eNOS) and the inhibition of cGMP degradation
[38–40]. There are several primary mechanisms thought to partic-
ipate: (1) H2S directly reacts with NO to produce nitroxyl (HNO),
thereby activating the HNO– transient receptor potential ankyrin
1 (TRPA1)–calcitonin gene-related peptide (CGRP) pathway to reg-
ulate vascular tone [41]. (2) H2S inhibits the activity of phosphodi-
esterase 5 (PDE5) by reducing cGMP degradation and promoting
cGMP signaling, followed by the activation of cGMP-dependent
protein kinase (PKG) to phosphorylate the vasodilator-stimulated
phosphoprotein (VASP), eventually resulting in vasodilation [42].
In addition, Sun et al. [43] believed that H2S sulfhydrated associ-
ated PDE5A dimerization to exert the vasorelaxant function. (3)
H2S may alleviate oxidative stress, resulting in increased eNOS
coupling by phosphorylation of eNOSS1177 [44,45]. (4) The reaction
of soluble guanylyl cyclases (sGCs) to NO can be enhanced by H2S
[40,46]. It might be related to the reduction of sGC heme Fe by H2S,
so as to facilitate NO-regulated cellular signaling processes [47].
However, there is disagreement over the role of H2S. For instance,
Wang [48] et al. suggested that H2S did not rely on cGMP pathway
to exert vasodilation, although vasodilation was strengthened by
specific sGC inhibitors (ODQ and NS-2028). Similarly, NaHS-
induced relaxation was unaffected by ODQ in rat coronary arteries
[49]. Taken together, the vasorelaxation of H2S varied very widely
in different species and cell types. This might explain the conflict-
ing results [46].

The vasodilation of H2S was also related to the suppression
of mitochondrial complexes I and III. It was shown that NaHS
(100–1000 lM) suppressed mitochondrial electron transport to
exert a vasodilation effect in rat mesenteric arterioles. This
effect was inhibited by complex I and complex III inhibitors
[30].

Accumulating evidence from H2S studies demonstrates that
H2S derived from perivascular adipose tissue (PVAT) also exerts
a critical effect in the regulation of vascular tension [33,50].
PVAT exerts predominantly anti-contractile effects, which is
induced by adipocyte-derived relaxing factor (ADRF) [51,52].
Schleifenbaum et al. [53] suggested that H2S could be an ADRF
to regulate vascular tone. The mechanism of H2S as ADRF could
relate to activate KATP and (or) voltage-sensitive KCNQ potassium
channels [54,55]. Importantly, the findings from Kohn et al. [55]
suggest that with technical progress, future studies on the vascu-
lar H2S/KCNQ pathways make it possible to relieve vascular
dysfunction.

In summary, H2S-induced vasorelaxation takes place via the
activation of iron channels, the interactions with NO-cGMP signal-
ing, the inhibition of mitochondrial complexes I and III, and H2S as
an ADRF. However, under certain conditions, H2S has vasoconstric-
tive effects which appear to involve the activation of Na+-K+-2Cl-–
co-transporters and voltage-gated calcium ion channels by H2S
[24]. Additionally, Ping et al. [25] suggested that the activation of
the Rho kinase signaling pathway by H2S may participates in the
contraction of rat coronary arteries.
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Effects of H2S on proliferation and apoptosis of vascular smooth
muscle cells

Accumulating evidence implicates H2S as an inhibitor of VSMC
proliferation. It was shown that the VSMC proliferation rate in CSE
knockout mice was dramatically increased. However, endogenous
H2S significantly inhibited the proliferation of smooth muscle cell
(SMC) in CSE knockout mice [56]. Similarly, NaHS, a commonly
used H2S donor, dose-dependently suppressed the proliferation
of VSMCs [57]. The potential mechanisms for H2S-induced prolifer-
ation are as follows: Du et al. [57] demonstrated that H2S sup-
pressed the activity of mitogen-activated protein kinase (MAPK),
which might be responsible for H2S-inhibited VSMC proliferation.
Furthermore, endogenous CSE/H2S pathway can inhibit the cascade
conduction of MAPK/thioredoxin interacting protein (TXNIP) sig-
nals [58], thereby protecting endothelial function. In addition,
H2S dramatically inhibited the transcription and expression of
Brg1 gene, reduced the recruitment of Brg1 in the promoter region
of proliferating genes (pcna, ntf3 and PDGFa) and consequently
inhibited the proliferation of VSMCs [59]. On the other hand, H2S
not only decreased the expression of insulin-like growth factor-1
receptor (IGF-1R), but also modified IGF-1R through sulfhydration
to prevent IGF-1 binding, ultimately inhibiting VSMC proliferation
[60]. Recently, Wang et al. [61] demonstrated that calcium-sensing
receptor (CaSR) increased endogenous generation of H2S via
calcium-CaM signal pathways, ultimately inhibiting the prolifera-
tion of VSMCs. Therefore, several genes, molecules, and signaling
pathways (such as MAPK/TXNIP signals, Brg1, ERK1/2, IGF-1R and
CaSR) have been identified in the regulation by H2S, and contribute
to the suppression of VSMC proliferation.

H2S can promote or inhibit vascular cell apoptosis. Several stud-
ies agree with the view that H2S promotes apoptosis. Studies
[62,63] have demonstrated that H2S can activate the ERK/caspase
3 pathway and promote the apoptosis of human aorta smooth
muscle cell (HASMC). CSE overexpression or exogenous H2S sup-
plementation promotes apoptosis via stimulating extracellular reg-
ulated protein kinases (ERK) 1/2, p38 MAPK, and p21 Cip/WAK-1 but
suppressing cyclin D1 [56,62]. In contrast, several studies suggest
that H2S inhibits apoptosis. H2S decreased the elevated ratio of
Bcl2-associated x (Bax)/B-cell lymphoma-2 (Bcl-2) and the activity
of caspase-3, thus inhibiting apoptosis caused by high glucose [64].
It was also shown that NaHS suppressed apoptosis by reducing the
expression of caspase-12, C/EBP homologous protein (CHOP), and
glucose-regulated protein 78 (GRP78) which are related to endo-
plasmic reticulum stress (ERS), thus protecting vascular endothe-
lial function [65]. Therefore, the regulation of apoptosis by H2S is
bidirectional. It can promote and inhibit apoptosis under different
pathological conditions.

Effect of H2S on vascular autophagy

Autophagy is essential for homeostasis in processes including
cell development and differentiation, regulation of cell longevity
and programmed cell death, degradation of invading pathogens,
and provision of antigens to the immune system [66]. Pathogens,
abnormal proteins and organelles are engulfed by autophagosomes
and undergo lysosomal degradation [67,68]. H2S is reported to
either promote or inhibit autophagy depending on the different
pathological process [69 70]. NaHS was shown to activate mito-
phagy in rat aortic endothelial cells (RAECs) [71]. Mechanistically,
NaHS facilitates Parkin recruited by PTEN induced putative kinase
1 (PINK1), and then ubiquitylates mitofusin 2 (Mfn2), leading to
the upregulation of mitophagy [71]. However, several studies
showed that both supplementation of H2S and the overexpression
of its synthetases mitigated mitophagy [72]. H2S inhibited adeno-
sine 5‘-monophosphate (AMP)-activated protein kinase (AMPK)/-



B. Lv et al. Journal of Advanced Research 27 (2021) 85–97
mammalian target of rapamycin (mTOR) pathway, which is closely
associated with autophagy [73]. On the other hand, the ratio of
microtubule-associated protein 1A/1B-light chain 3 (LC3)-II to
LC3-I is commonly used as an indicator of autophagy. Expression
of LC3A I/II was significantly decreased with supplementation of
H2S (30 lM) [72]. NaHS could also inhibit the excessive autophagy
of vascular endothelial cells by suppressing nuclear factor
erythroid-2-related factor 2 (Nrf2)- reactive oxygen species (ROS)
-AMPK signaling pathway [74]. Taken together, there are still dif-
ferent opinions of vascular autophagy regulation by H2S. A variety
of pathological conditions likely contribute to the differences in the
effect that have been observed.
Pathophysiological regulation of H2S on blood vessels
H2S and hypertension

Treating hypertension which is defined as � 140/90 mmHgwith
chronically increased blood pressure remains a great challenge.
Several clinical studies showed a close correlation between hyper-
tension and reduction of H2S. The reduction of endogenous H2S
synthesis and H2S-dependent vasodilation led to a microvascular
dysfunction in hypertensive patients [75]. Notably, CBS, CSE and
3-MST as the H2S generating enzymes, were markedly decreased
in humans with hypertension [76], suggesting that H2S generation
pathway may be involved in the pathogenesis of hypertension.
Similar results have also been shown in animal research. For
instance, a decreased endogenous H2S content in the aorta was
observed in the development and progression of spontaneously
hypertensive rats (SHRs) [77]. The use of DL-propargylglycine
(PPG), a CSE inhibitor, dramatically elevated the level of basal
blood pressure in WKY rats and promoted vascular remodeling,
demonstrating that a sufficient H2S level is necessary for the main-
tenance of basal blood pressure [78]. Similar to that of SHRs, it was
shown that CBS/H2S pathway was down-regulated in salt-sensitive
Dahl rats [79].

Extensive evidence shows that H2S exerts a crucial effect on
blood pressure regulation in pathological cases. For instance, stud-
ies by Sun et al. [80] suggested that NaHS lowered tail artery pres-
sure in SHRs. Similarly, it was shown that H2S delayed the shift
from prehypertensive to hypertensive status in SHRs [81]. Notably,
H2S improved endothelial function in renovascular hypertensive
rats and ameliorated the damaged endothelium-dependent con-
traction (EDC) and endothelium-dependent relaxation (EDR)
[82,83]. Furthermore, the H2S donor alleviated hypertension,
reversed aortic remodeling, and inhibited the renin–angiotensin–
aldosterone (RAS) system in renal tissue of Dahl rats [79]. These
experimental results demonstrate that H2S dramatically sup-
pressed the elevation in blood pressure in two animal models.

Many scholars have discussed the protective effect of H2S on
hypertension and its potential mechanisms. Previous studies
[82,83] showed that the H2S donor NaHS significantly suppressed
the activation of NOD-like receptors (NLRP3), inflammasomes,
and oxidative stress in SHRs. Moreover, the amelioration of exces-
sive EDC of H2S was associated with the inhibition of the bone
morphogenetic protein 4 (BMP4) and its downstream signal mole-
cules [84]. NaHS can also protect renal artery endothelial cells and
improve endothelial function through the activation of the perox-
isome proliferator-activated receptor d (PPARd) signaling [85]. In
addition to improvements in the vascular endothelium, NaHS also
regulated immune function by reducing the expression of connexin
40 (Cx40)/connexin 43 (Cx43) T lymphocytes in SHRs, and reversed
changes in multiple T lymphocyte subtypes in SHRs [86], which
may explain the anti-inflammatory effect of H2S. Ion channels
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are considered as key targets for H2S depressurization. A report
from Sun et al. [80] suggested that the KATP channel is activated
by H2S and causes vasodilation. Furthermore, H2S may activate
KATP channel by inhibiting Forkhead box O1 (FOXO1) and Forkhead
box O3a (FOXO3a) phosphorylation, subsequently inducing their
nuclear binding to SUR2B and Kir6.1. In addition to the regulation
of the KATP channel, H2S can also activate the TRP vanilloid 1
(TRPV1) ion channel through S-sulfhydration, increasing the sensi-
tivity of carotid sinus pressure receptors in SHRs [87]. TRPA1 chan-
nels were also activated by H2S, inducing the release of CGRP and
promoting vasodilation [88,89]. On the other hand, H2S also inhib-
ited the pathological state of SHRs by regulating the RAS system.
H2S reduced the expression of RAS-related mRNA (Ren, Atp6ap2,
Agt, Ace, and Agtr1a) in the kidneys of SHRs, which blocked the
RAS system and exerted a vasomotor effect [81]. Finally, an under-
lying H2S mechanism may be related to the inhibition of collagen
deposition. H2S dose-dependently inhibited MAPK activation
induced by angiotensin II in SHRs and down-regulated the affinity
of angiotensin II type 1 (AT1), ultimately inhibiting vascular
remodeling and collagen deposition in SHRs [90]. Furthermore,
reduced collagen deposition by H2S may be related to the suppres-
sion of transforming growth factor-b /Smad signaling pathway
[91].

The mechanism by which H2S regulates blood pressure in high-
salt Dahl rats may be as follows. Liang et al. [92] showed that H2S
reduced the oxidative stress response in the paraventricular
nucleus of high-salt Dahl rats, attenuated sympathetic activity,
and promoted the secretion of anti-inflammatory factors, thus
inhibiting the inflammatory response. H2S may also regulate blood
pressure by the inactivation of epithelial sodium channels (ENaC).
Reabsorption of sodium by the ENaC promotes the progress of salt-
sensitive hypertension. It was shown that H2S completely blocked
abnormal activation of ENaC caused by excessive H2O2. H2O2

increased sodium reabsorption by up-regulating phosphatidylinos-
itol 3, 4, 5-trisphosphate. H2S can significantly inhibit PTEN inacti-
vation caused by H2O2, thereby reducing oxidative stress [93].

To summarize, the mechanisms by which H2S inhibits hyper-
tension are complicated, including the reduction of oxidative stress
and inflammation, the modulation of immune function and ion
channels, and the inhibition of collagen deposition and vascular
remodeling.
H2S and atherosclerosis

Atherosclerosis (AS) is a chronic, complicated and progressive
pathological process of large and medium-sized arteries. Several
studies have shown that H2S deficiency is related to the pathogen-
esis of AS. For example, Gao et al. [94] suggested that H2S defi-
ciency may predispose stable coronary artery disease (CAD)
patients to vulnerable plaque rupture. As reported in many clinical
studies, Wang et al. [95] found disorders of the vascular CSE/H2S
pathway in apolipoprotein E (ApoE)-knockout mice. Another study
from Meng et al. [96] also demonstrated that decreased endoge-
nous H2S generation accelerated AS in CSE-knockout mice. Accu-
mulating evidence [97,98] has shown that endogenous H2S
produced by CSE in blood vessels has an anti-AS effect. Unstable
plaques generated by AS are prone to rupture and have the risk
of infarction [99]. In ApoE-knockout mice, H2S stabilizes
atherosclerotic plaques and suppresses lipid deposition [100,101].

Key mechanisms for the anti-AS effect of H2S include anti-
oxidative stress, anti-inflammatory effect, and regulation of ion
channels [102] to protect the vascular endothelium. Intriguingly,
it was reported that vascular CSE/H2S, as the target of estrogen,
was involved in the mechanism by which estrogen protected
against AS [103]. The detailed mechanism is as follows.
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First, H2S attenuates oxidative stress to protect against AS. It
induces S-sulfhydration of glutathione peroxidase 1 (GPx1) to
prompt glutathione synthesis, resulting in alleviating lipid perox-
idation and improving antioxidant capacities [104]. Several stud-
ies [105,106] further found that H2S may induce Nrf2 to
dissociate from kelch-like ec-associated protein 1 (Keap1) by
sulfhydration of Cys151 in Keap1, enhancing nuclear transloca-
tion of Nrf2 and thereby exerting antioxidant stress and cardio-
vascular protection. Moreover, translocation of Nrf2 further
stimulated its downstream molecules, including the NADPH
quinoneoxidoreductase 1 (NQO1), thus preventing the release
of inflammatory cytokines [107]. H2S was found to attenuate
atherosclerotic lesions by blocking oxidative modification of
low density lipoprotein (LDL) and elevating antioxidative ability
[108]. A recent study shows that H2S-induced antioxidant stress
is also related to its elimination of oxidized hemoglobin (Hb)
and inhibition of the interaction between Hb and lipid in AS
[109]. Through the regulation of above molecules, H2S exerts a
critical role in prevention of collagen deposition and protection
of vascular function.

Secondly, H2S attenuates inflammation to protect against AS.
Inactivation of nuclear factor kappa-B (NF-jB) caused by H2S
reduces the expression of inflammatory factor intercellular cell
adhesion molecule-1 (ICAM-1), which may be an important reason
for H2S to maintain the stability of AS plaques [95]. Moreover, Du
et al. [110] found that H2S modified cysteine 38 in p65 via sulfhy-
dration, which was responsible for NF-jB inactivation. Recent
studies also showed that the anti-inflammatory effect of H2S might
suppress TXNIP, an activator of NLRP3, which inhibited excessive
production of interleukin 18 (IL-18) and interleukin 1b (IL-1b)
[111]. Additionally, H2S was identified as an agonist of histone
deacetylase Sirtuin-1 (SIRT-1). H2S directly induced deacetylation
of SIRT-1 and its target proteins (P53, P65, and sterol response
element-binding protein), alleviating inflammation in the endothe-
lium and macrophages, inhibiting macrophage cholesterol uptake
in ApoE knockout mice, and eventually reducing the formation of
AS plaques [112]. Furthermore, it is worth noting that the activa-
tion of matrix metalloproteinases (MMPs) was involved in AS. As
a member of MMPs, MMP9 is considered to be a critical factor
causing instability of AS plaques [113]. Studies have found that
H2S reduced MMP9 activity by inhibiting activator protein 1 (AP-
1) nuclear translocation, thus alleviating the inflammatory reaction
of AS [100].

Thirdly, the interactions between NO and H2S may also be one
of the anti-AS mechanisms. Specifically, H2S upregulates the
expression of inducible nitric oxide synthase (iNOS) protein and
promotes NO production. [114].

Fourthly, H2S has an anti-apoptotic effect. Studies showed that
H2S increased the stability of plaques in ApoE knockout mice by
inhibiting caspase-3/9 activity and lipoprotein receptor-1 (Lox-1)
[100].

Additionally, there are other mechanisms that mediate the anti-
AS effect of H2S. H2S donors can reduce the level of adrenomedullin
(ADM) and increase the level of atrial natriuretic peptide (ANP) in
AS rats, thus antagonizing the formation of AS [115]. Mani et al.
[96] proposed that H2S plays an anti-AS effect, which may inhibit
intimal proliferation and adhesion molecule expression. Recently,
a study also showed that NaHS notably activated angiotensin con-
verting enzyme 2 (ACE2)-related pathways, so as to promote the
transformation from pro-atherosclerosis to anti- atherosclerosis
[116].

In conclusion, H2S retarded the development of AS by a
variety of molecular mechanisms that include anti-oxidative
stress, anti-inflammation, anti-apoptosis, and interactions with
NO.
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H2S and pulmonary hypertension

Abnormal vascular remodeling and increased pulmonary artery
pressure that results in right ventricular (RV) hypertrophy and
heart failure are characteristic pathological features of pulmonary
hypertension (PH). PH consists of hypoxic pulmonary hypertension
(HPH) and PH caused by high pulmonary blood flow and so on.
Acute or chronic hypoxic stimulation leads to the progression of
HPH, which is typically characterized by PH and increased pul-
monary vascular resistance. It was shown that both the expression
of CSE and its activity were inhibited in lung tissues during HPH
[117]. In another model of PH, endogenous H2S pathway was also
downregulated in rat PH models caused by high pulmonary blood
flow [118]. In addition, Feng et al. [119] suggested that the contents
of H2S in lung tissues and serum of rats in the monocrotaline
(MCT)-induced PH group were obviously inhibited, and CSE
expression was dramatically co-downregulated.

However, a clinical study demonstrated that H2S at 500 lM
induced an average dilation of 42.3% from the pre-constricted ten-
sion in dissected human arterial rings. In addition, H2S at 500 lM
also induced an average reduction of 17.73% in pulmonary artery
pressure [120]. This effect was also seen in animal models. For
instance, H2S donors reduced pulmonary artery pressure and alle-
viated structural remodeling of pulmonary vessels during HPH
[117]. In addition, exogenous H2S restored H2S contents in plasma,
alleviating pulmonary artery remodeling caused by HPH.

The mechanisms by which H2S protects against PH include but
are not restricted to anti-inflammation [121], anti-endoplasmic
reticulum stress (ERS) [122], induction of apoptosis [123], anti-
proliferation [124,125] and upregulation of the CO/HO pathway
[126]. The detailed mechanisms are as follows.

First, H2S antagonizes pulmonary vascular inflammation.
Inflammation exerts a central effect on the pathogenesis of PH. Pre-
vious studies [122,127] demonstrated that H2S inhibited pro-
inflammatory and oxidative stress. It was shown that H2S allevi-
ates pulmonary artery endothelial inflammation by inhibiting
NF-jB signaling pathway [127]. Moreover, H2S not only inhibits
the NF-jB signaling pathway, but also alleviates ERS by inhibiting
the expression of NADPH oxidase 4 (Nox4), as well as GRP78 and
CHOP the ERS-related molecule markers [122,65].

Secondly, H2S induces PASMC apoptosis. The effect of H2S on
apoptosis is bidirectional, which can promote and inhibit apopto-
sis. However, Li et al. [123] suggested that H2S induces apoptosis
through inhibiting Bcl-2 and activating Fas signaling pathway of
PASMCs in PH rats.

Thirdly, H2S significantly inhibited the expression of prolifera-
tive cell nuclear antigen (PCNA) and urotensin II (U-II), which are
critical molecules related to cell proliferation [128]. This anti-
proliferative effect may be related to the up-regulation of
cyclooxygenase-2(COX-2)/prostaglandin I2 (PGI2) signaling path-
way [124,125].

Fourthly, H2S exerts the anti-oxidative stress effect in PHmodel.
Oxidative stress is another important cause of elevated pulmonary
arterial systolic pressure in humans. H2S enhances the ratio of
GSH/ oxidized glutathione (GSSG), which represents antioxidant
capacity, by scavenging GSSG, thus exerting antioxidant capacity
in HPH [129]. Moreover, the expression of collagen-promoting
molecules connective tissue growth factor (CTGF) and MMP-13
were increased after the application of D, L-propargylglycine
(PPG), whereas the expression of tissue inhibitor of metallopro-
teinase 1 (TIMP-1) was significantly decreased. All of the above
results indicate that H2S alleviates oxidative stress injuries, thus
inhibiting pulmonary vascular remodeling [130,131].

Lastly, H2S upregulates the CO/heme oxygenase (HO-1) path-
way and is regulated by NO simultaneously in PH [132,133]. The
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interaction between CO and H2S potentially contributes to the
pathogenesis of HPH. Zhang et al. demonstrated that H2S might
modulate the pathogenesis of HPH by activating HO-1 [126]. How-
ever, the mechanisms underlying H2S through regulation of the
CO/HO pathway in PASMCs remain unknown. Accumulating evi-
dence [134] also demonstrates that defects of NO signaling possi-
bly contribute to the progression of PH. The NO substrate, L-
arginine, is known to upregulate CSE/H2S signaling in PH caused
by high blood flow [135]. Therefore, H2S protects pulmonary vas-
cular structure through the interaction with the other two gas
molecules-NO and CO.

In summary, H2S attenuates PH through several mechanisms,
including anti-inflammation, induction of apoptosis, anti-
proliferation, anti-oxidative stress, and regulating CO and NO sig-
naling pathways.
H2S and other cardiovascular diseases

Previous studies have confirmed that the abnormality of
endogenous H2S pathway may participate in the pathogenesis of
ischemic heart disease (IHD) and left ventricular dysfunction
[136]. Overexpression of CSE or supplementation of H2S donors
significantly improved cardiac function and structural lesions
[137,138,139]. The following mechanisms might be involved in
the protective effect of H2S on the IHD and left ventricular dysfunc-
tion: 1) suppression of oxidative stress: H2S increases the activity
of antioxidant enzymes SOD, CAT and GSH in the cardiac tissues
of mice with ischemia/reperfusion (IR) injury [140]. Furthermore,
Fig. 1. Generation and metabo
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a 7-day treatment of H2S donor Na2S promoted the nuclear translo-
cation of Nrf2, an important transcription factor that regulates
antioxidant genes as an adaptive response to oxidative stress, in
the hearts of mice with left coronary artery occlusion and reperfu-
sion, which might contribute to the increase in the antioxidant
enzymes [137]. Moreover, the upregulation of the rhythm gene
Bmal1 expression was also involved in the antioxidant effects of
H2S in the ischemic cardiomyocyte H9c2 cells [141]. 2) inhibition
of apoptosis and autophagy: H2S reduced the proportion of apop-
totic cells in the myocardium of mice with heart failure (HF) by
increasing the expression of Bcl-2 and inhibiting the expression
of Bax and caspase 3 [138]. In another study, H2S alleviates autop-
hagy of myocardial ischemia in SOD1 KO mice through the inhibi-
tion of S6 kinase (S6K) phosphorylation and AMPK
phosphorylation [142]. 3) regulation of macrophage-related car-
diac inflammatory response: H2S promoted the infiltration of
macrophages into the infarcted myocardium in both wild type
and CSE-KO mice targeting on the macrophage integrin b1 and
its downstream Src-FAK/Pyk2-Rac pathway [143]. Moreover, the
polarization of infiltrated macrophage in the heart of mice with
MI was also governed by H2S. The results showed that H2S donor
NaHS promoted the number and the proportion of anti-
inflammatory M2 macrophages in left ventricular tissue after MI
by increasing mitochondrial biosynthesis and fatty acid oxidation
[144]. 4) interaction with other bioactive molecules: In the previ-
ous studies, the interaction between H2S and NO was involved in
the vascular regulation [145]. Similarly, it is reported that H2S
enhanced endogenous NO generation by increasing the mRNA level
of eNOS and nNOS and decreasing the mRNA level of iNOS in the
lism of endogenous H2S.



Fig. 2. Regulation of H2S on hypertension. ? means stimulating effect, whereas \means inhibiting effect. P means phosphorylation.

B. Lv et al. Journal of Advanced Research 27 (2021) 85–97
heart tissues of myocardial IR rats [146]. 5) mitochondrial protec-
tion: H2S maintains mitochondrial homeostasis by restoring the
balance of Bcl-2/Bax and reducing mitochondrial-dependent apop-
tosis in HF rats [138], and improving mitochondrial respiration and
Fig. 3. Regulation of H2S on atherosclerosis. ? means stimulating effect, whereas \ me
oxidized low-density lipoprotein; Ang II, angiotensin II; Ang (1–7), angiotensin (1–7).
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ATP synthesis in isolated cardiac mitochondria from HF mice [137].
In addition, a blocker of mitoKATP channel 5-HD completely
blocked the protective effect of H2S donor on the isolated I/R rat
heart, suggesting that the opening of mitoKATP channel might be
ans inhibiting effect. –SSH means S- sulfhydrylation. Ace means acetylation. oxLDL,
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involved in the regulatory effect of H2S on the cardiac mitochon-
dria [147].
Application of sulfhydryl group-containing angiotensin-converting
enzyme (ACE) inhibitor in cardiovascular diseases

Angiotensin-converting enzyme (ACE) inhibitors are widely
used as therapeutic agents in the treatment of cardiovascular dis-
eases such as hypertension, IHD and left ventricular dysfunction in
experimental studies and clinical trials [148–150]. The protective
mechanisms of ACE inhibitors were mainly mediated by the inhibi-
tion of angiotension II generation and bradykinin degradation. For
example, the mechanisms of cardioprotection in patients treated
with ACE inhibitors might include the reduction in LV preload
and afterload, suppression of sympathetic stimulation, restoration
Table 1
H2S has a bidirectional regulation effect on vascular tone.

Action Mechanisms

Relaxation Activation of KATP channel

Activation of KCa channel
Activation of Ca2+ spark activity
Activation of TRPV4 channel
Activation of BK channels
Activation of IKCa and SKCa channels

Activation of Kv7 channels
Activation of Kv7.4 channels (subtype of Kv7)
Activation of KCNQ-type Kv channels
[37]
Activation of HNO-TRPA1-CGRP pathway
Activation of cGMP-PKG-VASP pathway
Inhibition of sGC heme Fe

Constriction Activation of Na+-K+-2Cl-–co-transporters and voltage-gated calcium
ion channels
Activation of Ca2+ influx

Fig. 4. Regulation of H2S on pulmonary hypertension. ? means stimula
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the balance of myocardial oxygen supply and demand, improve-
ment in endogenous fibrinolysis, and alleviation of diastolic dys-
function, etc [151]. Compared with other ACE inhibitors, a
sulfhydryl-group-containing ACE inhibitor zofenopril has been
demonstrated to have a better clinical efficacy and safety in
patients with hypertension, acute myocardial infarction (AMI) or
CAD, particularly in high risk patients such as diabetes mellitus,
in many clinical and preclinical studies such as SMILE series stud-
ies [152–154]. Borghi et al compared the difference in the efficacy
between zofenopril and other ACE inhibitors in patients with AMI.
The results showed that early administration of zofenopril in the
patients � 1 cardiovascular risk factor had a better prognosis and
less risk of cardiovascular events than the administration of lisino-
pril and ramipril [153]. It has been reported that the peculiar pro-
tective effects of zofenopril including the capability of scavenging
Models H2S gas/donor application
(concentration)

Refs.

Mesenteric artery VSMCs of
rats

NaHS (100–300 lM) [27,29]

Rat cerebral arteries NaHS (10 and 100 lM) [31]
Rat mesenteric small arteries NaHS (10 lM) [32]
Rat mesenteric small arteries NaHS (1–1000 lM) [33]
Rat mesenteric small arteries NaHS (1–1000 lM) [33]
Mouse mesenteric arteries and
aortas

NaHS (�100 lM) [34]

Rat mesenteric small arteries NaHS (100–3000 lM) [30]
Rat aortic rings NaHS (1000 lM) [35]
Rat and mouse aortas NaHS (10–3000 lM) [55]

Rat mesenteric arteries Na2S (10 lM) [41]
Mouse aortic rings NaHS (30 lM) [42]
Mouse thoracic aorta Na2S (50 mM) [47]
Rat thoracic aortas NaHS (5–100 lM) [24]

Rat coronary arteries NaHS (10–300 lM) [25]

ting effect, whereas \ means inhibiting effect. \ means scavenging.



Table 2
Effects of H2S on proliferation and apoptosis of vascular smooth muscle cells.

Action Mechanisms Cells/Models H2S gas/donor
application
(concentration)

Refs.

Anti-proliferation Inhibition of Brg1 transcription and expression by reducing the recruitment
of Brg1 to the Pcna, Ntf3 and Pdgfa promoter regions

VSMCs NaHS (1000 lM) [59]

Anti-proliferation Inhibition of the MAPK pathway VSMC isolated from rat
thoracic aortas

NaHS (50–500 lM) [57]

Anti-proliferation Inhibition of the MAPK/TXNIP cascade HUVECs/CSE-KO mice NaHS (56 mM/kg/d) [58]
Anti-proliferation Inhibition of the expression of IGF-1R and the binding of IGF-1 with IGF-1R

via S-sulfhydration
SMCs isolated from mouse
mesenteric arteries

NaHS (10–100 lM) [60]

Inducing apoptosis/
Anti-proliferation

Increasing ERK1/2, p21Cip/WAF-1, and decreasing cyclin D1 in SMCs-KO mice.
Inhibition of proliferation-related genes CRL, HB-EGF and IB1 in CSE KO
mice.

SMCs-KO mice/CSE-KO
mice/HASMCs

H2S (100 lM) [5662]

Inducing apoptosis Activation of MAPKs and caspase-3 HASMCs H2S (50–100 lM) [63]
Inhibiting apoptosis Activation of SOD activity

Inhibition of ROS generation and MDA levels
HUVECs NaHS (50 lM) [64]

Inhibiting apoptosis Inhibition of caspase-12, CHOP, GRP78 PAECs NaHS (56 mM/kg/d) [65]

Table 3
Effect of H2S on vascular autophagy.

Action Mechanisms Cells/Models H2S gas/donor application
(concentration)

Refs.

Promoting
mitophagy

Activation of Parkin recruited by PINK1 and then
ubiquitination of Mfn2

RAECs NaHS (100 lM) [71]

Inhibiting
mitophagy

Phosphorylation of Akt and dephosphorylation of FoxO3a MAECs NaHS (30 lM) [72]

Inhibiting
autophagy

Dephosphorylation of AMPK and phosphorylation of mTOR VSMCs isolated from rat thoracic
aorta

NaHS (100 lM) [73]

Inhibiting
autophagy

Dephosphorylation of AMPK and activation of Nrf2 RAECs/db/db mice NaHS (100 lM) [74]
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ROS, preventing of endothelial dysfunction, suppressing inflamma-
tory response, promoting of NO generation and bioactivity, and
regulating of cell apoptosis might be related to its sulfhydryl
groups [151]. However, Bucci et al found that H2S could be released
from S-zofenoprilat, an active metabolite of S-zofenopril, in a cell-
free assay and directly play a vasorelaxant effect in vitro. Also, the
key H2S-producing enzyme CSE expression in the vessel and the
endothelial-dependent vasodilation in SHRs treated with S-
zofenopril was recovered to normal level [155]. As well as the reg-
ulation of vessel function, H2S was found to mediate the pro-
angiogenic effect of zofenopril, supported by the fact that CSE inhi-
bitor or CSE siRNA blocked the zofenopril-induced angiogenesis
in vivo and in vitro [156]. In addition, CSE-dependent H2S was also
involved in the anti-inflammatory effect of zofenopril in IL-1b-
induced endothelial inflammation model [157]. Interestingly, an
increase in the H2S and NO level in the myocardial tissue and
plasma was found to be associated with the cardioprotective effect
of zofenopril pretreated before I/R injury in mouse and pig I/R
[158]. Therefore, although further studies are needed, the above-
mentioned studies suggest that the property of H2S donor/genera-
tor might contribute to the superior clinical application of
sulfhydrated ACE inhibitor zofenopril compared with other ACE
inhibitors, which would open a new avenue for the treatment of
cardiovascular diseases.
Conclusions

H2S participates in the physiological and pathological regula-
tion of vasculature. The mechanisms underlying H2S-induced
vasodilation are complex. H2S induced vasorelaxation predomi-
nantly by activating iron channels, interacting with NO-cGMP sig-
naling, inhibiting mitochondrial complex I and III, and acting as an
ADRF. In addition, H2S inhibits the proliferation of VSMCs in asso-
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ciation with MAPK/ TXNIP, Brg1, ERK1/2, IGF-1R and CaSR signals.
The regulation of H2S on vascular cell apoptosis and autophagy is
bidirectional. It can either promote or inhibit autophagy and apop-
tosis depending on the different pathological process (see Figs. 1-4
and Tables 1-3).

Recent experimental data provide evidence that H2S can pre-
vent vascular-related diseases, such as hypertension, atherosclero-
sis and PH. The underlying mechanisms may include the regulation
of vascular tone, anti-inflammation, anti-oxidative stress, the inhi-
bition of VSMC proliferation, and the modulation of VSMC apopto-
sis. Regulating H2S level provides a novel therapeutic method
against these vascular diseases. In addition, the application of
H2S system and ACE inhibitors in the treatment of cardiovascular
diseases has gradually been paid attention. Notably, the effective-
ness of zofenopril in clinical trials is significantly better than other
ACE inhibitors due to its capability of H2S releasing. Therefore, H2S
has important clinical implications. Further understanding of its
protective role in cardiovascular system is needed.

Future studies should investigate the interaction amongst H2S
and other gaseous signaling molecules including NO and sulfur
dioxide (SO2). There remain many opportunities to explore its role
in atherosclerosis, PH and hypertension. Of note, drugs targeting
H2S producing enzymes (CBS, CSE and 3-MST) merits further clin-
ical research.
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