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Cognitive reserve (CR) is the adaptability of cognitive processes that helps

to explain differences in the susceptibility of cognitive or daily functions to

resist the onslaught of brain-related injury or the normal aging process. The

underlying brain mechanisms of CR studied through electroencephalogram

(EEG) are scarcely reported. To our knowledge, few studies have considered

a combination of exclusively dynamic proxy measures of CR. We evaluated

the association of CR with cognition and resting-state EEG in older adults

using three of the most frequently used dynamic proxy measures of

CR: verbal intelligence, leisure activities, and physical activities. Multiple

linear regression analyses with the CR proxies as independent variables

and cognitive performance and the absolute power (AP) on six resting-

state EEG components (beta, alpha1, alpha2, gamma, theta, and delta) as

outcomes were performed. Eighty-eight healthy older adults aged 60–77

(58 female) were selected from previous study data. Verbal intelligence was

a significant positive predictor of perceptual organization, working memory,

processing speed, executive functions, and central delta power. Leisure

activities were a significant positive predictor of posterior alpha2 power.

The dynamic proxy variables of CR are differently associated with cognitive

performance and resting-state EEG. Implementing leisure activities and tasks

to increase vocabulary may promote better cognitive performance through

compensation or neural efficiency mechanisms.
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Introduction

The normal aging process brings several structural and
functional brain changes with gains and losses in cognition
(Fjell and Walhovd, 2010; Juraska and Lowry, 2012; Spreng
and Turner, 2019). For instance, increasing age is associated
with better performance in general knowledge and semantic
information accumulated over the life course (i.e., crystallized
intelligence), whereas fluid cognition, such as the ability to
process information and solve problems, declines steadily (Park
and Reuter-Lorenz, 2009; Harada et al., 2013; Spreng and
Turner, 2019).

These changes in cognition seem to relate to changes
in brain functioning (Fjell and Walhovd, 2010; Toepper,
2017). A technique to assess brain functioning is
electroencephalography (EEG). Studies have shown that
cognitive decline is associated with reduced power in the
alpha frequency band (Roca-Stappung et al., 2012; Vlahou
et al., 2014; Barry and De Blasio, 2017; Choi et al., 2019;
Kamal et al., 2020; Kumral et al., 2020) and increased power in
theta and delta frequency bands (Roca-Stappung et al., 2012;
Vlahou et al., 2014; Barry and De Blasio, 2017; Choi et al.,
2019; Kamal et al., 2020; Kumral et al., 2020), referred to as
generalized EEG slowing, in the resting-state EEG of healthy
older subjects (50 years or more). However, the interaction
between neuropathology (e.g., amyloid load, tangle density,
cerebral infarcts) and the level of cognitive function seems
to be a non-linear relationship (Bennett et al., 2006, 2012).
There is evidence of individuals who present pathological brain
features of Alzheimer’s disease (AD) or the aging process,
but they do not display major clinical symptoms of cognitive
decline (Bennett et al., 2006, 2012; SantaCruz et al., 2011; Boyle
et al., 2013; Castro-Chavira et al., 2016). This variation may be
attributable to multiple factors, such as their level of education,
occupational attainment, participation in leisure and physical
activities, or social networks (Arenaza-Urquijo et al., 2015; Qiu
and Fratiglioni, 2018).

Efforts have been made to investigate the factors that may
reduce the impact of aging on both brain structure and function
to better understand individual differences in cognitive abilities
(Cabeza et al., 2018; Stern et al., 2019, 2020). An extensively
studied concept that seems to alter the effect of age-related brain
changes on cognitive performance is the cognitive reserve (CR).
CR is the adaptability of cognitive processes that helps to explain
differences in the susceptibility of cognitive or daily functions to
resist the onslaught of brain-related injury or the normal aging
process (Stern et al., 2020).

CR is a concept that challenges researchers to evaluate
it (Stern, 2009). Frequently, CR has been studied by using
proxy variables such as years of education and occupational
attainment, attributes that remain static after mid-adulthood.
Years (or level) of education is the most used proxy variable
in studies of CR (Harrison et al., 2015; Opdebeeck et al., 2016).

Dynamic proxy measures (modifiable factors) seem to more
accurately reflect the influence of CR on cognition, as reported
by Malek-Ahmadi et al. (2017), who compared years of
education (static measure) and verbal intelligence (dynamic
measure). One of the dynamic proxy measures most used in
studies is verbal intelligence (Opdebeeck et al., 2016; Nogueira
et al., 2022). Nevertheless, other dynamic proxy measures, such
as leisure and physical activities, may contribute to a better
understanding of CR plasticity on both cognitive and brain
function (Malek-Ahmadi et al., 2017). Contrary to static proxy
measures, leisure and physical activities can be voluntarily and
easily implemented by individuals in later life, producing active
changes in their routine, and are considered to be characteristic
components of a healthy lifestyle (Wang et al., 2012; Fallahpour
et al., 2016; Erickson et al., 2019).

The underlying mechanisms of CR seem to rely on
the interaction of different brain networks (Stern et al.,
2019, 2020). Cabeza et al. (2018) propose three mechanisms:
reserve, a cumulative improvement in neural resources that
mitigates brain injury or age-related decline; maintenance, the
preservation of neural resources that implies a constant repair
of the brain; or compensation, neural recruitment to enhance
the performance of a high cognitive demanding task.

These brain mechanisms of CR have been scarcely studied
through EEG even though it directly assesses neuronal
processing. The few studies that explore the relationship
between CR and EEG are heterogeneous in design, samples,
and measures (Šneidere et al., 2020; Balart-Sánchez et al., 2021).
Furthermore, the proportion of the studies decreases if we focus
on resting-state EEG, which evaluates spontaneous and intrinsic
neural activity independently of cognitive task demands (Fleck
et al., 2017), and can inform us about the functional integrity of
the brain (Harmony, 2009).

CR and resting-state EEG research have been shown to
depend on the proxy measure used, either static or dynamic.
A set of studies considered just one proxy measure of CR
(dynamic or static), such as educational level (Babiloni et al.,
2020) or incidental physical activity (Sanchez-Lopez et al.,
2018). The remaining studies indistinctly use a combination
of dynamic and static proxy measures of CR: a composite
of verbal intelligence and education (Fleck et al., 2017), the
total score of the Lifetime Experience Questionnaire (LEQ;
Valenzuela and Sachdev, 2007) that assesses educational, leisure,
social, and occupational history (Moezzi et al., 2019), or a
composition through factorial analysis of proxy measures of CR
named as a cognitive factor (education, IQ, and occupation),
social factor (leisure and social activities), and exercise factor
(physical activities and IQ; Fleck et al., 2019). The main
findings of these studies on CR and resting-state EEG in the
eyes-closed condition showed that a higher CR is associated
with higher alpha power (Sanchez-Lopez et al., 2018; Babiloni
et al., 2020), higher alpha and theta coherence (Fleck et al.,
2017), higher alpha and theta lagged linear connectivity (LLC;
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Fleck et al., 2019), reduced theta power (Sanchez-Lopez et al.,
2018), and reduced alpha imaginary coherence (Moezzi et al.,
2019). In the eyes-open condition, a higher CR is related to
higher alpha1 and theta LLC (Fleck et al., 2019) and higher theta
imaginary coherence (Moezzi et al., 2019).

The results on cognition in these studies have shown
that a higher CR is associated with higher scores in spatial
working memory, sustained attention (Fleck et al., 2019), digit
span, fluency (Fleck et al., 2017), matrix reasoning, digit-
symbol coding, picture arrangement (Sanchez-Lopez et al.,
2018), general cognition assessed by the Mini-Mental State
Examination (MMSE; Fleck et al., 2017), performance IQ
(Sanchez-Lopez et al., 2018), and Addenbrooke’s Cognitive
Examination-Revised (ACE-R; Moezzi et al., 2019). Only one
study controlled for general cognition (MMSE; Babiloni et al.,
2020), and another study did not find an association between
the exercise factor and EEG and cognition (Fleck et al., 2019).
A meta-analysis reported positive correlations between different
cognitive domains (language, memory, working memory,
executive function, visuospatial abilities, and general cognition)
and three proxy measures of CR (measured through education,
occupational status, and engagement in cognitively stimulating
activities) in healthy older adults (Opdebeeck et al., 2016).

Evidence suggests a relationship of CR with alpha and theta
bands, yet the direction of this association is still ambiguous.
One reason that could explain the heterogeneity of the results
may be the different CR proxies employed. The usage of
composite scores, scales, questionnaires (Cognitive Reserve
Index questionnaire, LEQ, Valenzuela and Sachdev, 2007; CRIq,
Nucci et al., 2012) or a combination of factors has been
recommended to accurately assess CR variability (Harrison
et al., 2015; Opdebeeck et al., 2016), but there is evidence of
a different association with cognition and brain functioning
between static and dynamic proxy measures of CR (Malek-
Ahmadi et al., 2017; Serra et al., 2019). The first ones seem to
relate to crystallized knowledge and differentiate hippocampal
and parahippocampal volumes in AD patients; the second
ones correlate more with fluid abilities and can distinguish
individuals since the amnestic mild cognitive impairment
(aMCI) stage (Malek-Ahmadi et al., 2017; Serra et al., 2019).
Despite this evidence, few studies about resting-state EEG
assessed CR as a composition of variables of just one category.

Therefore, the aim of our study was to evaluate the
association of CR with cognition and resting-state EEG in
healthy older adults using three of the most frequently used
dynamic proxy measures of CR: verbal intelligence, leisure
activities, and physical activities. To study brain electrical
activity, we employed resting-state EEG, which has been widely
used to assess cognitive and brain changes in healthy and
pathological aging (Koenig et al., 2020) but has been scarcely
used in CR studies (Šneidere et al., 2020; Balart-Sánchez et al.,
2021).

We hypothesized that healthy older adults with higher
dynamic CR would show better cognitive performance on fluid
cognitive abilities (Serra et al., 2019), greater power in alpha
(Fleck et al., 2017, 2019; Sanchez-Lopez et al., 2018; Babiloni
et al., 2020), and reduced power in theta (Sanchez-Lopez et al.,
2018) in resting-state EEG eyes-closed conditions compared to
participants with lower dynamic CR.

Materials and methods

Design and sample

We conducted a secondary analysis of the study by Sanchez-
Lopez et al. (2018). Complete objectives and procedures are
available elsewhere (Sanchez-Lopez et al., 2018).

Participants were enrolled according to the following
inclusion criteria: absence of cognitive decline symptoms
considering the scores from the Global Deterioration Scale
(GDS; Reisberg et al., 1982), the MMSE (Folstein et al.,
1975), and the brief neuropsychological test battery in
Spanish (NEUROPSI; Ostrosky-Solís et al., 1999); absence
of depressive symptoms indirectly evaluated by the Quality
of Life Enjoyment and Satisfaction Questionnaire (Q-LES-
Q; Endicott et al., 1993); normal intellectual ability assessed
by the Wechsler Adult Intelligence Scale in Spanish (WAIS-
III-R; Wechsler, 2003); and absence of major socioeconomic
disadvantages evaluated by The Mexican Association of
Marketing Research and Public Opinion Agencies (The
Mexican Association of Marketing Research and Public Opinion
Agencies [AMAI] 8 x 7, 2018) questionnaire, because previous
studies have demonstrated how socioeconomic deprivation
influences cognitive performance and EEG (Wu et al., 2016;
Maguire and Schneider, 2019; Zhang et al., 2022). Additionally,
participants who at least completed junior high school were
included to control the influence of this static proxy measure
of CR. Volunteers were evaluated by a geriatric psychiatrist
and were excluded from the study if they presented any
psychiatric or neurological disorder; they were also excluded
if they had abnormal levels of cells in a complete blood
count, cholesterol, triglycerides, glucose, or thyroid-stimulating
hormone.

The present study also considered the inclusion criteria of
right-handedness, and we excluded participants acquired with a
sampling rate of 100 Hz, which was insufficient to analyze the
activity of the gamma frequency band.

For the present report, we included 88 healthy older adults
(58 women, 30 men). Their ages ranged from 60 to 77 years.

All participants signed informed consent forms that were
approved by The Ethical Committee of the Institute of
Neurobiology at the National Autonomous University of
Mexico (INEU/SA/CB/109, protocol 030-H-RM).
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Sociodemographic variables

The sociodemographic variables were assessed through a
brief interview. Age was considered in years, and sex was a
dichotomic variable (male = 1, female = 0). Education was
categorized into four levels, starting from junior high school
because of the inclusion criteria: (1) junior high school, (2) high
school, (3) university/college graduate (first degree), and (4)
postgraduate (master’s and doctoral degree).

Dependent variables

Cognition
Wechsler adult intelligence scale in Spanish
(WAIS-III-R)

This is used to assess the cognitive ability of adolescents
and adults who are 16–90 years and 11 months old, and it is
standardized for the Mexican population (Wechsler, 2003). This
test consists of 13 subtests. From the score obtained for each
of these subtests, three intelligence quotient (IQ) scores (verbal
IQ, performance IQ, and full-scale IQ) and four index scores
(verbal comprehension index, VCI; working memory index,
WMI; perceptual organization index, POI; and processing speed
index, PSI) were calculated. These indices are integrated by some
of the 13 subtests: (a) VCI, similarities, vocabulary, information,
and comprehension; (b) WMI, arithmetic, digit span, and letter-
number sequencing; (c) POI, picture completion, block design,
matrix reasoning, and picture arrangement; (d) PSI, symbol
search, and coding.

For data analysis, we used the scalar score of the vocabulary
subtest for CR and three index scores (WMI, POI, and PSI) for
cognitive performance. VCI was excluded because the total score
is also composed of the vocabulary subtest.

Brief neuropsychological test battery in Spanish
(NEUROPSI)

This instrument assesses cognitive function in people from
16 to 85 years old and is standardized for the Mexican
population (Ostrosky-Solís et al., 1999). It is particularly used
on neurological, geriatric, and psychiatric patients. The battery
is composed of different subtests that evaluate the following
cognitive processes: (a) attention and concentration (digit span,
visual detection, and subtraction), (b) memory (encoding and
retrieval of a list of words and a semicomplex figure), (c)
language (semantic and phonological fluency, denomination,
repetition, and comprehension), and (d) executive and motor
functions (motor programming and opposite reactions). We
included semantic and phonological fluency in the executive
functions as considered by some authors (Piatt et al., 1999;
Snyder and Munakata, 2008).

For data analysis, we computed the standardized scores of
each subtest into a composite score for every cognitive process:
attention, memory, language, and executive functions.

Electroencephalogram
In a sound-proof, faradized, and dimly lit room, 12 (from

10 to 15) minutes on average of resting-state EEG at eyes-
closed condition were recorded from each participant using
the MedicidTM IV System (Neuronic Mexicana, S.A.; México)
and EEG signal acquisition software (Track WalkerTM v2.0).
EEG data were recorded using 19 channels of the 10/20 system
(ElectroCapTM, International Inc.; Eaton, Ohio), referred to
the linked earlobes (A1A2). The amplifier bandwidth was set
between 0.50 and 50 Hz, and the sensor impedance levels were
at or below 10 k�. Data were sampled at 200 Hz, and the
EEG signal was amplified with a gain of 20,000. Participants
were instructed not to take any sleeping pills the night before,
to sleep at least 6 h and to go about their morning activities
normally. EEG recordings were made between 8:00 and 12:00
in the morning. To rule out the presence of slow activity due to
drowsiness, breaks were taken regularly.

Each participant’s EEG record was visually inspected
offline for artifacts by an expert electroencephalographer. No
participant showed paroxysmal activity. One criterion used in
EEG editing was that the frequency or amplitude of the posterior
rhythm should not be reduced with respect to what it had
been at the beginning of the recording. Twenty-four artifact-free
segments of 2.56 s were selected for quantitative analysis.

The preprocessing and quantitative EEG analyses were
performed offline using EEGLAB (Delorme and Makeig, 2004)
and a customized script in MATLAB software (The MathWorks
Inc., Natick, MA, USA). The data were filtered from 0.5 to 50 Hz.
Artifact subspace reconstruction, a method that eliminates high
amplitude noise, including movement-related artifacts (Mullen
et al., 2015), was performed. Absolute power (AP) was calculated
by applying the fast Fourier transform for each electrode
within different EEG frequency bands, including delta (0.5–
3.5 Hz), theta (3.6–7.5 Hz), alpha1 (7.6–10 Hz), alpha2 (10.1–
12.5 Hz), beta1 (12.6–16.5 Hz), beta2 (16.6–20.5 Hz), beta3
(20.6–30.5 Hz), and gamma (30.6–50 Hz).

Principal component analysis (PCA) with varimax rotation
was then performed on the AP at the 19 electrodes in the eight
frequency bands to reduce the dimension of the variable space.
The PCA results showed 15 components using Kaiser’s criterion
(Kaiser, 1960) that explained 92.67% of the total variance, but
only the first 11 components that explained 88.11% of the total
variance included all 152 variables (Supplementary Table 1).
The factor scores of the first 11 components were calculated.

We selected the first six components that explained
72.49% of the total variance because they were primarily
composed of electrodes from the following frequency bands:
beta (12.6–30.5 Hz), alpha1, alpha2, gamma, theta, and delta
(Supplementary Figure 1). The last five components were
excluded because they were composed of just a few of the
remaining electrodes of the delta, beta, or gamma frequency
bands (Supplementary Table 1 and Supplementary Figure 1).
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For data analysis, we used the factor scores of the
first six components.

Independent variable

Cognitive reserve
To assess CR, we considered three dynamic proxy measures:

(a) verbal intelligence, using the score of the vocabulary subtest
of WAIS-III-R (Wechsler, 2003); (b) leisure activities, using
the total score of an adaptation from the “hobbies” dimension
of the Cognitive Reserve Scale (CRS) pilot study (León et al.,
2011, 2014); and (c) physical activity, considering the total index
of the Yale Physical Activity Survey (YPAS; Dipietro et al.,
1993; De Abajo et al., 2001). We selected verbal intelligence as
the most frequently used dynamic proxy measure and leisure
and physical activities as factors that account for the later life
variability of CR.

Hobbies dimension

We elaborated questions from the items related to hobbies
presented in the pilot study of the CRS (León et al., 2011, 2014):
reading, playing games, writing, listening to music, watching
TV, playing a musical instrument, collecting objects, traveling,
attending cultural events, crafting, cooking, painting/taking
pictures, shopping, and doing physical activity. We assessed
the frequency of these activities with a Likert-type scale from

TABLE 1 Sample sociodemographics.

n % Mean SD

Age 66.72 4.32

Total IQ 103.98 8.76

Total
NEUROPSI

101.80 7.36

Quality of life
(Q-LES-Q)

76.68 9.84

Sex

Female 58 65.9

Male 30 34.1

Education level

Junior high school 4 4.5

High school 21 23.9

College/university 25 28.4

Postgraduate 38 43.2

Socioeconomic
status

Lower-middle (C−) 1 1.1

Middle-middle (C) 2 2.3

Upper-middle (C +) 13 14.8

Upper (A/B) 72 81.8

IQ, Intelligence Quotient; Q-LES-Q, Quality of Life Enjoyment and Satisfaction
Questionnaire; SD, Standard Deviation.

0 to 4 points into three different life stages (young adulthood,
adulthood, and late adulthood). To account for the development
of CR throughout their lifespan, we considered the total score of
the three life stages of the participants.

For data analysis, we used the total score of the different
activities from the three life stages.

Yale physical activity survey (YPAS)

The YPAS is a questionnaire integrating two sections
that describe the everyday physical activation in older adults
(Dipietro et al., 1993), and has been adapted into a Spanish
version (De Abajo et al., 2001). The first part comprises different
items about time spent (hours per week) on work, exercise, and
recreational activities. The second part consists of five items
with categorical options (frequency and time spent in minutes
or hours) about different physical activities (vigorous activity,
leisurely walking, moving, standing, and sitting). For each type
of activity, an index is computed: the frequency and duration of
each activity are multiplied by a weighting factor based on the
intensity of the activity.

For data analysis, we used the final index (total physical
index), which is the sum of the five indices of the second part.

Statistical analysis

All statistical analyses were conducted using IBM SPSS
Statistics 25.0 software (SPSS Inc., Chicago, USA) for Windows.
The significance level considered was p < 0.05.

Descriptive analyses of the sample’s age, level of education,
and sex were performed (Table 1).

Multiple linear regression analyses were performed using
the three dynamic proxy measures of CR as predictors:
verbal intelligence (vocabulary, WAIS-III-R), leisure activities
(hobbies), and physical activities (total physical index, YPAS).

Before running the regression analyses, the linearity,
homoscedasticity, independence and normality assumptions
were checked, and correlations were run to assess whether
age, level of education, or sex were associated with cognitive
performance or resting-state EEG variables.

A series of multiple linear regression models were then
performed with three index scores of the WAIS (POI, WMI,
and PSI), the four cognitive processes of the NEUROPSI
(attention, memory, language, and executive functions), and
the six EEG components (beta, alpha1, alpha2, gamma, theta,
and delta) as dependent variables. A Bonferroni correction
was applied to the seven regression models of cognition
(p < 0.05/7 = 0.007) and the six regression models of resting-
state EEG (p< 0.05/6 = 0.008) to evaluate statistically significant
models. Model 1 included verbal intelligence, physical, and
leisure activities as predictors; then, age, sex, and level of
education were entered all together as covariates in Model 2 to
adjust for these variables.
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Results

Key sociodemographics for these participants are presented
in Table 1.

We found correlations between some of the cognitive and
resting-state EEG variables and age, sex, and level of education
(Supplementary Table 2). Thus, these variables were adjusted in
further linear regression models.

Cognition

Multiple linear regression models for cognitive performance
are summarized in Table 2 (WAIS results) and Table 3
(NEUROPSI results).

For the WAIS indices, a significant regression equation was
found for the POI [F(6, 81) = 8.141, p < 0.001], with an R2 of
0.376, and verbal intelligence was a positive predictor [β = 2.955,
95% CI (1.275, 4.635), p = 0.001]. Another significant regression
was found for the WMI [F(6, 81) = 3.980, p = 0.002], with
an R2 of 0.228, and verbal intelligence as a positive predictor
[β = 1.384, 95% CI (0.690, 2.078), p < 0.001]. The PSI also

showed a significant regression [F(6, 81) = 11.175, p < 0.001],
with an R2 of 0.453, and verbal intelligence was a positive
predictor [β = 4.221, 95% CI (1.892, 6.550), p = 0.001].

The NEUROPSI results only showed a significant regression
for the Executive functions regression [F(6, 81) = 4.733,
p < 0.001], with an R2 of 0.509, and verbal intelligence as a
positive predictor [β = 0.573, 95% CI (0.302, 0.845), p < 0.001].

All statistically significant models (Bonferroni corrected:
p < 0.007) were found even after adjusting for age, sex, and
level of education.

A visual summary of the statistically significant (Bonferroni
corrected: p < 0.007) multiple linear regressions for cognitive
performance is presented in Figure 1.

Electroencephalogram

Multiple linear regression models for EEG are summarized
in Table 4. A significant regression equation was found for
alpha2 [F(6, 81) = 3.488, p = 0.004], with an R2 of 0.453, with
leisure activities as a positive predictor [β = 0.019, 95% CI
(0.009, 0.028), p < 0.001]. Additionally, delta [F(6, 81) = 2.816,

TABLE 2 Multiple linear regression analysis with WAIS-III-R indices as outcomes.

Model 1a Model 2b

β (95% CI) P-value β (95% CI) P-value

POI Verbal intelligence 3.734 (2.078, 5.390) <0.001* 2.955 (1.275, 4.635) 0.001*

Physical activities 0.055 (−0.059, 0.170) 0.337 0.028 (−0.078, 0.135) 0.600

Leisure activities 0.013 (−0.098, 0.124) 0.820 0.062 (−0.044, 0.169) 0.247

Age − −1.160 (−1.737, −0.583) <0.001

Sex − 0.978 (−4.193, 6.148) 0.708

Level of education − 3.438 (0.540, 6.335) 0.021

a. R2 = 0.217, F(3, 84) = 7.739, p = < 0.001
b. R2 = 0.376, F(6, 81) = 8.141, p = < 0.001*

WMI Verbal intelligence 1.329 (0.702, 1.955) <0.001* 1.384 (0.690, 2.078) <0.001*

Physical activities −0.025 (−0.068, 0.018) 0.256 −0.020 (−0.064, 0.025) 0.380

Leisure activities −0.036 (−0.078, 0.006) 0.094 −0.045 (−0.089, −0.002) 0.043

Age − 0.211 (−0.028, 0.449) 0.083

Sex − 0.640 (−1.495, 2.776) 0.552

Level of education − −0.268 (−1.465, 0.929) 0.657

a. R2 = 0.187, F(3, 84) = 6.461, p = 0.001
b. R2 = 0.228, F(6, 81) = 3.980, p = 0.002*

PSI Verbal intelligence 3.907 (1.374, 6.441) 0.003* 4.221 (1.892, 6.550) 0.001*

Physical activities 0.209 (0.034, 0.383) 0.020* 0.126 (−0.022, 0.274) 0.093

Leisure activities −0.045 (−0.215, 0.124) 0.598 0.087 (−0.060, 0.234) 0.244

Age − −2.456 (−3.256, −1.656) <0.001

Sex − −1.612 (−8.781, 5.558) 0.656

Level of education − −0.531 (−4.549, 3.487) 0.793

a: R2 = 0.164, F(3, 84) = 5.476, p = 0.002
b: R2 = 0.453, F(6, 81) = 11.175, p = < 0.001*

POI, Perceptual Organization Index; WMI, Working Memory Index; PSI, Processing Speed Index; CI, confidence interval. *Significant at the Bonferroni corrected alpha level of 0.007.
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TABLE 3 Multiple linear regression analysis with NEUROPSI cognitive processes as outcomes.

Model 1a Model 2b

B (95% CI) P-value B (95% CI) P-value

Attention Verbal intelligence 0.226 (0.070, 0.381) 0.005 0.255 (0.080, 0.430) 0.005
Physical activities −0.003 (−0.014, 0.007) 0.538 −0.004 (−0.015, 0.007) 0.493
Leisure activities 0.001 (−0.009, 0.012) 0.809 0.002 (−0.009, 0.013) 0.721

Age − −0.007 (−0.067, 0.053) 0.818
Sex − −0.112 (−0.652, 0.427) 0.679

Level of education − −0.115 (−0.418, 0.187) 0.451
a: R2 = 0.312, F(3, 84) = 3.025, p = 0.034
b: R2 = 0.333, F(6, 81) = 1.685, p = 0.135

Memory Verbal intelligence 0.422 (0.147, 0.697) 0.003* 0.384 (0.088, 0.679) 0.012
Physical activities −0.006 (−0.025, 0.013) 0.558 −0.001 (−0.020, 0.018) 0.900
Leisure activities 0.021 (0.003, 0.040) 0.023* 0.016 (−0.002, 0.035) 0.085

Age − 0.070 (−0.032, 0.171) 0.175
Sex − −1.367 (−2.276, −0.458) 0.004

Level of education − 0.099 (−0.411, 0.608) 0.701
a: R2 = 0.176, F(3, 84) = 5.982, p = 0.001
b: R2 = 0.263, F(6, 81) = 4.819, p = < 0.001*

Language Verbal intelligence 0.255 (0.048, 0.462) 0.017* 0.248 (0.016, 0.480) 0.036

Physical activities 0.004 (−0.010, 0.019) 0.537 0.006 (−0.009, 0.020) 0.451

Leisure activities 0.011 (−0.003, 0.025) 0.109 0.009 (−0.006, 0.024) 0.218

Age − 0.043 (−0.037, 0.122) 0.291

Sex − 0.262 (−0.452, 0.975) 0.468

Level of education − 0.018 (−0.382, 0.418) 0.931

a: R2 = 0.344, F(3, 84) = 3.763, p = 0.014
b: R2 = 0.379, F(6, 81) = 2.268, p = 0.045*

Executive functions Verbal intelligence 0.557 (0.307, 0.806) <0.001* 0.573 (0.302, 0.845) <0.001*

Physical activities −0.003 (−0.021, 0.014) 0.699 0.000 (−0.017, 0.018) 0.955

Leisure activities −0.003 (−0.020, 0.014) 0.712 −0.009 (−0.027, 0.008) 0.278

Age − 0.125 (0.032, 0.218) 0.009

Sex − −0.040 (−0.875, 0.795) 0.924

Level of education − −0.105 (−0.573, 0.363) 0.658

a: R2 = 0.437, F(3, 84) = 6.624, p = < 0.001
b: R2 = 0.509, F(6, 81) = 4.733, p = < 0.001*

CI, confidence interval. *Significant at the Bonferroni corrected alpha level of 0.007.

p = 0.015] showed a significant regression with an R2 of 0.415,
and verbal intelligence was a positive predictor [β = 0.241, 95%
CI (0.092, 0.390), p = 0.002].

All statistically significant models (Bonferroni corrected:
p < 0.008) were found even after adjusting for age, sex, and
level of education.

A topographic representation of the scalp distribution of
beta values for each electrode of the frequency bands with
its statistically significant (Bonferroni corrected: p < 0.008)
predictors is presented in Figure 2.

Discussion

The aim of the study was to evaluate the association of CR
with cognition and resting-state EEG in healthy older adults
using dynamic proxy measures of CR.

Our first hypothesis was that dynamic proxy measures of CR
would relate to fluid cognitive abilities, as reported in previous

studies (Malek-Ahmadi et al., 2017; Serra et al., 2019). We found
that not only fluid cognitive abilities but also crystallized abilities
seem to be influenced by dynamic proxy measures of CR. Verbal
intelligence was a positive predictor of perceptual organization,
working memory, processing speed, and executive functions.
As already reported by Boyle et al. (2021), verbal intelligence
is a more robust cross-sectional measure of CR in comparison
to education, occupational complexity, leisure activities, and
exercise. These results are in line with the findings of the meta-
analysis performed by Opdebeeck et al. (2016), where CR was
positively associated with language, memory, working memory,
executive function, visuospatial abilities, and general cognition.
Even though the proxies of CR used were different between the
studies, the results were similar. However, this result contrasts
with the study of Ritchie et al. (2013) because they used years of
education as a proxy of CR, which is a static proxy, and did not
find any association with processing speed. The dynamic proxy
measures seem to better reflect the fluid process of building CR
over the lifespan (Malek-Ahmadi et al., 2017).
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FIGURE 1

Visual summary of the statistically significant (Bonferroni corrected: p < 0.007) multiple linear regressions for cognitive performance. POI,
Perceptual Organization Index; WMI, Working Memory Index; PSI, Processing Speed Index; CI, confidence interval.

However, contrary to expectations, leisure and physical
activities were not predictors of cognitive performance. Similar
results were found by Fleck et al. (2019), who reported that
the exercise factor group displayed no effect on cognition. The
absence of associations between leisure and physical activities
and cognition may be due to the lack of standardization of these
variables, such as the frequency, intensity, duration, and type
of activities, as concluded by some authors in previous studies
(Wang et al., 2012; Anatürk et al., 2021).

Our second hypothesis was that dynamic proxy measures of
CR would associate positively with alpha power and negatively
with theta power of the resting-state EEG. Our findings support
the hypothesis that a higher dynamic proxy measure is related
to higher alpha power but do not support their relationship
with lower theta activity. We found that leisure activities
were a significant positive predictor of alpha2, particularly in
posterior regions, which agrees with previous studies even using
different proxies: static, dynamic, or a combination of both
(Fleck et al., 2017, 2019; Sanchez-Lopez et al., 2018; Babiloni
et al., 2020). This result may be due to compensatory processes.

It has been demonstrated that the reduction in alpha rhythms in
aging is related to a gradual loss of cholinergic function (Babiloni
et al., 2020). Robertson (2013) proposed a model regarding the
role of the noradrenergic system in mediating CR (represented
by enrichment/mental stimulation), which leads to a set of
brain mechanisms (disease compensation or modification) that
reduce the risk of AD. One of these brain mechanisms is
cholinergic rescue, which may explain the higher posterior alpha
observed with higher scores of leisure activities. It is important
to highlight that higher alpha has been related to better cognitive
performance in older adults (Roca-Stappung et al., 2012; Barry
and De Blasio, 2017; Choi et al., 2019; Kamal et al., 2020;
Zangrossi et al., 2021).

An unexpected result was verbal intelligence as a positive
predictor of delta, particularly in central regions. In the aging
population, generalized EEG slowing characterized by increased
power in theta and delta frequency bands, which are also related
to cognitive decline, has been reported (Barry and De Blasio,
2017; Choi et al., 2019; Kamal et al., 2020; Kumral et al.,
2020). Therefore, we were expecting a protective effect by CR
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TABLE 4 Multiple linear regression analysis with resting-state EEG components as outcomes.

Model 1a Model 2b

B (95% CI) P-value B (95% CI) P-value

Beta Verbal intelligence −0.060 (−0.202, 0.081) 0.398 −0.127 (−0.281, 0.026) 0.103

Physical activities −0.004 (−0.014, 0.006) 0.396 −0.003 (−0.013, 0.007) 0.552

Leisure activities 0.007 (−0.003, 0.016) 0.170 0.006 (−0.004, 0.016) 0.236

Age − −0.011 (−0.064, 0.041) 0.666

Sex − −0.556 (−1.028, −0.083) 0.022

Level of education − 0.254 (−0.011, 0.519) 0.060

a: R2 = 0.187, F(3, 84) = 1.010, p = 0.392
b: R2 = 0.347, F(6, 81) = 1.853, p = 0.099

Alpha1 Verbal intelligence −0.032 (−0.170, 0.105) 0.641 −0.119 (−0.268, 0.030) 0.116

Physical activities 0.009 (0.000, 0.019) 0.060 0.010 (0.001, 0.020) 0.036

Leisure activities 0.010 (0.000, 0.019) 0.040* 0.009 (−0.001, 0.018) 0.072

Age − −0.005 (−0.057, 0.046) 0.839

Sex − 0.015 (−0.445, 0.474) 0.949

Level of education − 0.344 (0.86, 0.601) 0.010

a: R2 = 0.300, F(3, 84) = 2.760, p = 0.047
b: R2 = 0.412, F(6, 81) = 2.764, p = 0.017*

Alpha2 Verbal intelligence −0.085 (−0.220, 0.051) 0.216 −0.020 (−0.166, 0.126) 0.783

Physical activities −0.004 (−0.014, 0.005) 0.358 −0.007 (−0.017, 0.002) 0.119

Leisure activities 0.015 (0.006, 0.024) 0.002* 0.019 (0.009, 0.028) <0.001*

Age − −0.055 (−0.106, −0.005) 0.031

Sex − 0.226 (−0.223, 0.676) 0.319

Level of education − −0.231 (−0.483, 0.020) 0.071

a: R2 = 0.348, F(3, 84) = 3.854, p = 0.012
b: R2 = 0.453, F(6, 81) = 3.488, p = 0.004*

Gamma Verbal intelligence −0.104 (−0.245, 0.038) 0.148 −0.097 (−0.258, 0.063) 0.232

Physical activities −0.004 (−0.013, 0.006) 0.469 −0.004 (−0.014, 0.006) 0.469

Leisure activities −0.001 (−0.011, 0.008) 0.824 −0.001 (−0.011, 0.009) 0.840

Age − 0.003 (−0.052, 0.058) 0.912

Sex − 0.132 (−0.362, 0.626) 0.597

Level of education − −0.025 (−0.302, 0.252) 0.859

a: R2 = 0.190, F(3, 84) = 1.053, p = 0.374
b: R2 = 0.201, F(6, 81) = 0.567, p = 0.755

Theta Verbal intelligence −0.020 (−0.164, 0.124) 0.782 −0.011 (−0.172, 0.150) 0.892

Physical activities 0.001 (−0.009, 0.011) 0.836 0.002 (−0.008, 0.012) 0.672

Leisure activities 0.002 (−0.008, 0.011) 0.738 0.000 (−0.010, 0.010) 0.980

Age − 0.027 (−0.028, 0.082) 0.334

Sex − −0.348 (−0.843, 0.147) 0.165

Level of education − −0.051 (−0.329, 0.226) 0.714

a: R2 = 0.049, F(3, 84) = 0.067, p = 0.977
b: R2 = 0.192, F(6, 81) = 0.519, p = 0.793

Delta Verbal intelligence 0.193 (0.056, 0.330) 0.006* 0.241 (0.092, 0.390) 0.002*

Physical activities −0.005 (−0.014, 0.005) 0.325 −0.004 (−0.013, 0.006) 0.434

Leisure activities 0.000 (−0.009, 0.010) 0.918 −0.001 (−0.010, 0.008) 0.823

Age 0.039 (−0.012, 0.090) 0.133

Sex −0.345 (−0.804, 0.113) 0.138

Level of education −0.209 (−0.466, 0.048) 0.110

a: R2 = 0.307, F(3, 84) = 2.916, p = 0.039
b: R2 = 0.415, F(6, 81) = 2.816, p = 0.015

CI, confidence interval. *Significant at the Bonferroni corrected alpha level of 0.008.
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FIGURE 2

Topographic representation of the scalp distribution of beta values for each electrode of the frequency bands with its statistically significant
(Bonferroni corrected: p < 0.008) predictors. Leisure activities as a predictor of Alpha2: All electrodes were significant. Verbal intelligence as a
predictor of delta: C3, C4, P3, P4, O2, Fz, Cz, and Pz were significant.

proxies, a reduction of slower frequency bands, and our result
seemed counterintuitive. Verbal intelligence was associated not
only with higher AP in the delta but also with better cognitive
performance. The different brain mechanisms underlying CR
may explain this finding; perhaps verbal intelligence acts as
the reserve theory effect of neural efficiency, i.e., less use of
neural resources despite displaying better cognitive performance
(Cabeza et al., 2018). In some cases, CR can even mask a
cognitive decline process mediating the association between
the pathological features of aging and cognitive performance
(Arenaza-Urquijo et al., 2015; Gorges et al., 2017). Another
possible explanation may be that individuals with higher verbal
intelligence have a better structure of alpha rhythm, with a
modulated fusiform amplitude; this modulation may change
alpha spindles into an enveloping of slow frequency in the delta
range (Chang et al., 2011). However, these heterogeneous results
in the elderly population are expected because they are related
to the aging process and its less distinct and more random brain
functioning (Zangrossi et al., 2021).

Additionally, physical activities were not a predictor of
either cognitive performance or resting-state EEG. As we
already mentioned, Fleck et al. (2019) did not find an effect of the
exercise factor on cognition or resting-state EEG connectivity,
and Landau et al. (2012) reported a lack of association of
physical activities with an indicator of β-amyloid deposition
(carbon 11–labeled Pittsburgh Compound B). Similarly, in a
longitudinal study, Verghese et al. (2003) concluded that leisure
activities are a predictor of cognitive decline, whereas physical
activities are not.

Some limitations of the present study are listed. First, the
mean age of the sample was 66.72 (S.D. 4.32); however, old-
old (over the age of 80) adults are a growing segment of
the population that exhibit accelerated declines in cognitive
function (Zhuravleva et al., 2014), and they were not included
in our study. Additionally, our sample’s level of education and
socioeconomic status does not represent the aging Mexican
population. Although the inclusion criteria were the completion
of junior high school and the absence of socioeconomic
disadvantages, the sample recruited was particularly highly
educated (M = 15.75 years of education, SD = 3.91) and from an
upper socioeconomic status (82% of the sample). Even though
the level of education was adjusted in the regression models,
both the higher educational level and socioeconomic status of
our sample may bias the conclusions. Thus, the findings are less
generalizable and have a narrow scope.

The third limitation is that we performed a cross-sectional
study, so the conclusions about the associations between CR and
the behavioral and brain responses lack causality. For instance,
it has been proposed that older adults who implement fewer
leisure activities may be in a prodromal phase of AD (Verghese
et al., 2003). Another limitation is the overlap of the CR proxies.
The hobby score included an item about physical activities,
and some leisure activities imply a physical activation (traveling
and shopping). However, the interpretations can be integrated
into the dynamic proxy measures of CR. Future studies should
consider older samples or perform longitudinal studies to assess
the relationship of these variables in the long term to better
understand the evolution of CR’s underlying brain mechanisms
and cognitive trajectories.
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Conclusion

In conclusion, the dynamic proxy measures of CR seem
to relate to resting-state EEG and cognitive performance
differently. These findings suggest that implementing leisure
activities and tasks to increase vocabulary not just as prevention
strategies but even as interventions in later life may promote
better cognitive performance through compensation or neural
efficiency mechanisms.
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Kumral, D., Şansal, F., Cesnaite, E., Mahjoory, K., Al, E., Gaebler, M., et al.
(2020). BOLD and EEG signal variability at rest differently relate to aging in the
human brain. Neuroimage 207:116373. doi: 10.1016/j.neuroimage.2019.116373

Landau, S. M., Marks, S. M., Mormino, E. C., Rabinovici, G. D., Oh, H., O’Neil,
J. P., et al. (2012). Association of lifetime cognitive engagement and low β-amyloid
deposition. Arch. Neurol. 69, 623–629. doi: 10.1001/archneurol.2011.2748

León, I., García, J., and Roldán-Tapia, L. (2011). Construcción de la escala de
reserva cognitiva en población española: estudio piloto [Development of the scale
of cognitive reserve in Spanish population: a pilot study]. Rev. Neurol. 52, 653–660.

León, I., García-García, J., and Roldán-Tapia, L. (2014). Estimating cognitive
reserve in healthy adults using the cognitive reserve scale. PLoS One 9:e102632.
doi: 10.1371/journal.pone.0102632

Maguire, M. J., and Schneider, J. M. (2019). Socioeconomic status related
differences in resting state EEG activity correspond to differences in vocabulary
and working memory in grade school. Brain Cogn. 137:103619. doi: 10.1016/j.
bandc.2019.103619

Malek-Ahmadi, M., Lu, S., Chan, Y. Y., Perez, S. E., Chen, K., and Mufson, E. J.
(2017). Static and dynamic cognitive reserve proxy measures: interactions with
Alzheimer’s disease neuropathology and cognition. J. Alzheimers Dis. Parkinson.
7:390. doi: 10.4172/2161-0460.1000390

Moezzi, B., Lavrencic, L. M., Goldsworthy, M. R., Coussens, S., and Keage,
H. A. D. (2019). Associations between EEG functional brain connectivity and a
cognitive reserve proxy in healthy older adults. bioRxiv [Preprint]. doi: 10.1101/
625608v1

Mullen, T. R., Kothe, C. A., Chi, Y. M., Ojeda, A., Kerth, T., Makeig, S.,
et al. (2015). Real-Time Neuroimaging and Cognitive Monitoring Using Wearable
Dry EEG. IEEE Trans. Biomed. Eng. 62, 2553–2567. doi: 10.1109/TBME.2015.24
81482

Nogueira, J., Gerardo, B., Santana, I., Simões, M. R., and Freitas, S. (2022). The
assessment of cognitive reserve: a systematic review of the most used quantitative
measurement methods of cognitive reserve for aging. Front. Psychol. 13:847186.
doi: 10.3389/fpsyg.2022.847186

Nucci, M., Mapelli, D., and Mondini, S. (2012). Cognitive Reserve Index
questionnaire (CRIq): a new instrument for measuring cognitive reserve. Aging
Clin. Exp. Res. 24, 218–226. doi: 10.3275/7800

Opdebeeck, C., Martyr, A., and Clare, L. (2016). Cognitive reserve and
cognitive function in healthy older people: a meta-analysis. Neuropsychol. Dev.
Cogn. B Aging Neuropsychol. Cogn. 23, 40–60. doi: 10.1080/13825585.2015.10
41450

Ostrosky-Solís, F., Ardila, A., and Rosselli, M. (1999). NEUROPSI: a
brief neuropsychological test battery in Spanish with norms by age and
educational level. J. Int. Neuropsychol. Soc. 5, 413–433. doi: 10.1017/s13556177995
55045

Park, D. C., and Reuter-Lorenz, P. (2009). The adaptive brain: aging and
neurocognitive scaffolding. Annu. Rev. Psychol. 60, 173–196. doi: 10.1146/
annurev.psych.59.103006.093656

Piatt, A. L., Fields, J. A., Paolo, A. M., and Tröster, A. I. (1999). Action
(verb naming) fluency as an executive function measure: convergent and

Frontiers in Aging Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2022.921518
https://doi.org/10.1016/j.neurobiolaging.2020.01.012
https://doi.org/10.1016/j.neurobiolaging.2020.01.012
https://doi.org/10.1093/arclin/acaa132
https://doi.org/10.1016/j.biopsycho.2017.09.010
https://doi.org/10.1016/j.biopsycho.2017.09.010
https://doi.org/10.1212/01.wnl.0000219668.47116.e6
https://doi.org/10.1212/01.wnl.0000219668.47116.e6
https://doi.org/10.1002/ana.23654
https://doi.org/10.3389/fnagi.2013.00050
https://doi.org/10.1186/s13195-021-00870-z
https://doi.org/10.1038/s41583-018-0068-2
https://doi.org/10.1097/WNR.0000000000000602
https://doi.org/10.1038/s41598-019-46789-2
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1249/MSS.0000000000001936
https://doi.org/10.3109/11038128.2015.1102320
https://doi.org/10.1515/revneuro.2010.21.3.187
https://doi.org/10.1515/revneuro.2010.21.3.187
https://doi.org/10.3389/fnagi.2019.00310
https://doi.org/10.3389/fnagi.2017.00392
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.3389/fneur.2017.00200
https://doi.org/10.3389/fneur.2017.00200
https://doi.org/10.1016/j.cger.2013.07.002
https://doi.org/10.1080/13803395.2014.1002759
https://doi.org/10.1080/13803395.2014.1002759
https://doi.org/10.1177/001316446002000116
https://doi.org/10.1177/1550059420983624
https://doi.org/10.1016/j.pscychresns.2020.111182
https://doi.org/10.1016/j.neuroimage.2019.116373
https://doi.org/10.1001/archneurol.2011.2748
https://doi.org/10.1371/journal.pone.0102632
https://doi.org/10.1016/j.bandc.2019.103619
https://doi.org/10.1016/j.bandc.2019.103619
https://doi.org/10.4172/2161-0460.1000390
https://doi.org/10.1101/625608v1
https://doi.org/10.1101/625608v1
https://doi.org/10.1109/TBME.2015.2481482
https://doi.org/10.1109/TBME.2015.2481482
https://doi.org/10.3389/fpsyg.2022.847186
https://doi.org/10.3275/7800
https://doi.org/10.1080/13825585.2015.1041450
https://doi.org/10.1080/13825585.2015.1041450
https://doi.org/10.1017/s1355617799555045
https://doi.org/10.1017/s1355617799555045
https://doi.org/10.1146/annurev.psych.59.103006.093656
https://doi.org/10.1146/annurev.psych.59.103006.093656
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-921518 September 28, 2022 Time: 15:13 # 13

Ferrari-Díaz et al. 10.3389/fnagi.2022.921518

divergent evidence of validity. Neuropsychologia 37, 1499–1503. doi: 10.1016/
s0028-3932(99)00066-4

Qiu, C., and Fratiglioni, L. (2018). Aging without dementia is achievable: current
evidence from epidemiological research. J. Alzheimers Dis. 62, 933–942. doi: 10.
3233/JAD-171037

Reisberg, B., Ferris, S. H., de Leon, M. J., and Crook, T. (1982). The Global
Deterioration Scale for assessment of primary degenerative dementia. Am. J.
Psychiatry 139, 1136–1139. doi: 10.1176/ajp.139.9.1136

Ritchie, S. J., Bates, T. C., Der, G., Starr, J. M., and Deary, I. J. (2013). Education is
associated with higher later life IQ scores, but not with faster cognitive processing
speed. Psychol. Aging 28, 515–521. doi: 10.1037/a0030820

Robertson, I. H. (2013). A noradrenergic theory of cognitive reserve:
implications for Alzheimer’s disease. Neurobiol. Aging 34, 298–308. doi: 10.1016/j.
neurobiolaging.2012.05.019

Roca-Stappung, M., Fernández, T., Becerra, J., Mendoza-Montoya, O., Espino,
M., and Harmony, T. (2012). Healthy aging: relationship between quantitative
electroencephalogram and cognition. Neurosci. Lett. 510, 115–120. doi: 10.1016/
j.neulet.2012.01.015

Sanchez-Lopez, J., Silva-Pereyra, J., Fernández, T., Alatorre-Cruz, G. C., Castro-
Chavira, S. A., González-López, M., et al. (2018). High levels of incidental physical
activity are positively associated with cognition and EEG activity in aging. PLoS
One 13:e0191561. doi: 10.1371/journal.pone.0191561

SantaCruz, K. S., Sonnen, J. A., Pezhouh, M. K., Desrosiers, M. F., Nelson,
P. T., and Tyas, S. L. (2011). Alzheimer disease pathology in subjects without
dementia in 2 studies of aging: the Nun Study and the Adult Changes in Thought
Study. J. Neuropathol. Exp. Neurol. 70, 832–840. doi: 10.1097/NEN.0b013e3182
2e8ae9

Serra, L., Petrosini, L., Salaris, A., Pica, L., Bruschini, M., Di Domenico, C.,
et al. (2019). Testing for the myth of cognitive reserve: are the static and dynamic
cognitive reserve indexes a representation of different reserve warehouses?
J. Alzheimers Dis. 72, 111–126. doi: 10.3233/JAD-190716

Šneidere, K. N., Mondini, S., and Stepens, A. (2020). Role of EEG in measuring
cognitive reserve: a rapid review. Front. Aging Neurosci. 12:249. doi: 10.3389/fnagi.
2020.00249

Snyder, H. R., and Munakata, Y. (2008). So many options, so little time: the
roles of association and competition in underdetermined responding. Psychon.
Bull. Rev. 15, 1083–1088. doi: 10.3758/PBR.15.6.1083

Spreng, R. N., and Turner, G. R. (2019). The shifting architecture of cognition
and brain function in older adulthood. Perspect. Psychol. Sci. 14, 523–542. doi:
10.1177/1745691619827511

Stern, Y. (2009). Cognitive Reserve. Neuropsychologia 47, 2015–2028. doi: 10.
1016/j.neuropsychologia.2009.03.004

Stern, Y., Arenaza-Urquijo, E. M., Bartrés-Faz, D., Belleville, S., Cantilon,
M., Chetelat, G., et al. (2020). Whitepaper: defining and investigating cognitive
reserve, brain reserve, and brain maintenance. Alzheimers Dement. 16, 1305–1311.
doi: 10.1016/j.jalz.2018.07.219

Stern, Y., Barnes, C. A., Grady, C., Jones, R. N., and Raz, N. (2019). Brain
reserve, cognitive reserve, compensation, and maintenance: operationalization,
validity, and mechanisms of cognitive resilience. Neurobiol. Aging 83, 124–129.
doi: 10.1016/j.neurobiolaging.2019.03.022

The Mexican Association of Marketing Research and Public Opinion Agencies
[AMAI] 8 x 7, (2018). Questionnaire of Socioeconomical Levels. Available
online at: https://www.amai.org/descargas/Cuestionario-NSE-2018.pdf (accessed
December 10, 2021).

Toepper, M. (2017). Dissociating normal aging from Alzheimer’s disease: a view
from cognitive neuroscience. J. Alzheimers Dis. 57, 331–352. doi: 10.3233/JAD-
161099

Valenzuela, M. J., and Sachdev, P. (2007). Assessment of complex mental activity
across the lifespan: development of the Lifetime of Experiences Questionnaire
(LEQ). Psychol. Med. 37, 1015–1025. doi: 10.1017/S003329170600938X

Verghese, J., Lipton, R. B., Katz, M. J., Hall, C. B., Derby, C. A., Kuslansky, G.,
et al. (2003). Leisure activities and the risk of dementia in the elderly. N. Engl. J.
Med. 348, 2508–2516. doi: 10.1056/NEJMoa022252

Vlahou, E. L., Thurm, F., Kolassa, I. T., and Schlee, W. (2014). Resting-state
slow wave power, healthy aging and cognitive performance. Sci. Rep. 4:5101.
doi: 10.1038/srep05101

Wang, H. X., Xu, W., and Pei, J. J. (2012). Leisure activities, cognition and
dementia. Biochim. Biophys. Acta 1822, 482–491. doi: 10.1016/j.bbadis.2011.09.002

Wechsler, D. (2003). Escala Wechsler de Inteligencia para Adultos III. Manual
técnico. Ciudad de México: Manual Moderno.

Wu, F., Guo, Y., Zheng, Y., Ma, W., Kowal, P., Chatterji, S., et al. (2016). Social-
economic status and cognitive performance among chinese aged 50 years and
older. PLoS One 11:e0166986. doi: 10.1371/journal.pone.0166986

Zangrossi, A., Zanzotto, G., Lorenzoni, F., Indelicato, G., Cannas Aghedu, F.,
Cermelli, P., et al. (2021). Resting-state functional brain connectivity predicts
cognitive performance: an exploratory study on a time-based prospective memory
task. Behav. Brain Res. 402:113130. doi: 10.1016/j.bbr.2021.113130

Zhang, Z., Zhao, Y., and Bian, Y. (2022). A role of socioeconomic status in
cognitive impairment among older adults in macau: a decomposition approach.
Front. Aging Neurosci. 14:804307. doi: 10.3389/fnagi.2022.804307

Zhuravleva, T. Y., Alperin, B. R., Haring, A. E., Rentz, D. M., Holcomb, P. J., and
Daffner, K. R. (2014). Age-related decline in bottom-up processing and selective
attention in the very old. J. Clin. Neurophysiol. 31, 261–271. doi: 10.1097/WNP.
0000000000000056

Frontiers in Aging Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnagi.2022.921518
https://doi.org/10.1016/s0028-3932(99)00066-4
https://doi.org/10.1016/s0028-3932(99)00066-4
https://doi.org/10.3233/JAD-171037
https://doi.org/10.3233/JAD-171037
https://doi.org/10.1176/ajp.139.9.1136
https://doi.org/10.1037/a0030820
https://doi.org/10.1016/j.neurobiolaging.2012.05.019
https://doi.org/10.1016/j.neurobiolaging.2012.05.019
https://doi.org/10.1016/j.neulet.2012.01.015
https://doi.org/10.1016/j.neulet.2012.01.015
https://doi.org/10.1371/journal.pone.0191561
https://doi.org/10.1097/NEN.0b013e31822e8ae9
https://doi.org/10.1097/NEN.0b013e31822e8ae9
https://doi.org/10.3233/JAD-190716
https://doi.org/10.3389/fnagi.2020.00249
https://doi.org/10.3389/fnagi.2020.00249
https://doi.org/10.3758/PBR.15.6.1083
https://doi.org/10.1177/1745691619827511
https://doi.org/10.1177/1745691619827511
https://doi.org/10.1016/j.neuropsychologia.2009.03.004
https://doi.org/10.1016/j.neuropsychologia.2009.03.004
https://doi.org/10.1016/j.jalz.2018.07.219
https://doi.org/10.1016/j.neurobiolaging.2019.03.022
https://www.amai.org/descargas/Cuestionario-NSE-2018.pdf
https://doi.org/10.3233/JAD-161099
https://doi.org/10.3233/JAD-161099
https://doi.org/10.1017/S003329170600938X
https://doi.org/10.1056/NEJMoa022252
https://doi.org/10.1038/srep05101
https://doi.org/10.1016/j.bbadis.2011.09.002
https://doi.org/10.1371/journal.pone.0166986
https://doi.org/10.1016/j.bbr.2021.113130
https://doi.org/10.3389/fnagi.2022.804307
https://doi.org/10.1097/WNP.0000000000000056
https://doi.org/10.1097/WNP.0000000000000056
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Verbal intelligence and leisure activities are associated with cognitive performance and resting-state electroencephalogram
	Introduction
	Materials and methods
	Design and sample
	Sociodemographic variables
	Dependent variables
	Cognition
	Wechsler adult intelligence scale in Spanish (WAIS-III-R)
	Brief neuropsychological test battery in Spanish (NEUROPSI)

	Electroencephalogram

	Independent variable
	Cognitive reserve
	Hobbies dimension
	Yale physical activity survey (YPAS)


	Statistical analysis

	Results
	Cognition
	Electroencephalogram

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


