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Abstract
There is compelling evidence that motor imagery contributes to improved motor perfor-

mance, and recent work showed that dynamic motor imagery (dMI) might provide additional

benefits by comparison with traditional MI practice. However, the efficacy of motor imagery

in different states of physical fatigue remains largely unknown, especially as imagery accu-

racy may be hampered by the physical fatigue states elicited by training. We investigated

the effect of static motor imagery (sMI) and dMI on free-throw accuracy in 10 high-level bas-

ketball athletes, both in a non-fatigued state (Experiment 1) and immediately after an incre-

mental running test completed until exhaustion (20m shuttle run-test–Experiment 2). We

collected perceived exhaustion and heart rate to quantify the subjective experience of

fatigue and energy expenditure. We found that dMI brought better shooting performance

than sMI, except when athletes were physically exhausted. These findings shed light on the

conditions eliciting optimal use of sMI and dMI. In particular, considering that the current

physical state affects body representation, performing dMI under fatigue may result in mis-

matches between actual and predicted body states.

Introduction
Motor imagery is the mental representation of an action without physical execution of the cor-
responding movement. Experimental data provides ample evidence that motor imagery con-
tributes to enhanced motor performance in both sporting and everyday life motor skills [1–3].
Likewise, motor imagery has been shown to promote motor recovery in injured athletes and in
patients suffering from motor disorders [4–7]. Motor imagery further positively affects psycho-
logical factors involved in high-level sport performance, e.g. motivation and focus [8, 9]. Due
to structural and functional similarities with physical practice (PP), motor imagery can operate
on neurophysiological processes mediating motor learning, i.e., activity-dependent
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neuroplasticity [7, 10]. Additionally, MI can be used to control non-invasive brain-computer
interfaces ([11], for a recent overview). Typically, brain signals recorded during various MI
tasks are classified and transduced into electric commands to control a robotic device (e.g., [12,
13]). These technologies emphasizes that brain activity during MI embeds relevant compo-
nents of the corresponding motor tasks [14, 15].

Nonetheless, imagery guidelines and instructions for effective interventions vary to a great
extent across disciplines (sports, music, education, medicine and psychology) (for a review, see
[3]). While most training frameworks recommend to directly combine motor imagery with PP
during actual training sessions [16, 17], little is known about the optimal guidelines of motor
imagery practice, particularly considering that PP may elicit physical fatigue. The effect of
fatigue upon motor imagery might change athletes’ dispositions towards mental rehearsal. So
far, physical fatigue is known to impair motor performance, but recent work suggested that it
might also impair imagery accuracy [18, 19], although this deleterious effect is not systemati-
cally observed [20]. Recently, Rozand, Lebon [21] reported that mental fatigue has sufficient
potential to alter the temporal organization of motor imagery, without necessarily impairing
muscle performance (see [22, 23]). Interestingly, there is yet no experimental data comparing
the respective effects of different MI content upon different states of physical fatigue.

Several theoretical frameworks were proposed to determine the optimal way to perform
imagery and develop effective interventions [16, 17, 24, 25]. Practically, motor imagery should
match the spatial and temporal parameters of the corresponding action to achieve optimal
transfer from mental representation to actual performance [26, 27]. However, whether ade-
quately embedding motor imagery into actual training sessions—where physical fatigue can be
prevalent—has been far less considered. According to its classical definition, MI should be per-
formed without concomitant body movements. Yet, recent modes of MI practice combine MI
with actual body movements (e.g., [28]). Such body movements are of limited amplitude, i.e.,
insufficient to fully mimic the imagined action, but nonetheless sufficient to embody its tempo-
ral invariants (e.g., skiers reproducing with hands movements the timing of their slalom
according to the curves of the ski slope, while concomitantly imagining their own perfor-
mance). Guillot, Moschberger [29] investigated the efficacy of dynamic motor imagery (dMI)
practice matching the patterns of the high jump. The dMI intervention improved both imagery
quality and motor performance. This experiment directly addressed, through dMI, the inter-
relationships between mental and motor processes to boost the outcome of imagery interven-
tions. Other experimental studies had showed that dMI might contribute to improve motor
performance, vividness and confidence of athletes [28], as well as the temporal congruence
between actual and imagined actions [30]. While the effects of fatigue on static MI (sMI) men-
tioned earlier have already been explored, little is known about its effect on dMI and subse-
quent consequences on motor performance. A related issue of interest is therefore to
investigate whether high loads of physical exercise eliciting a physical fatigue state might inter-
fere with both sMI and dMI quality and thus motor performance. Practically, physical fatigue
could limit the efficacy of sMI and dMI due to interference between actual and predicted body
states [18, 19].

Free-throw is a basketball skill of specific importance due to its complexity and its crucial
role on final result, particularly when the score is tight. This role is exacerbated during the last
minutes of the match, when players are exhausted [31]. sMI has extensively been shown to
improve performance in basketball free-throw shooting [32–34]. The immediate effects of both
sMI and dMI on free-throw performance (e.g., during matches) have not yet been investigated.
Past protocols foremost implemented sMI practice periods from 1 day (with free-throw perfor-
mance the next day [32]) to 3 weeks [35], but the effect of practicing sMI and dMI under
fatigued states has never been considered. As previously mentioned, physical fatigue is known
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to alter physical performance, but might interfere with the capacity of imagining oneself per-
forming an action as well [18, 19]. Fatigue presumably elicits erroneous updates of the internal
representation of the action due to the central integration of proprioceptive feedback under
altered body state [19, 36, 37]. In the first experiment, we investigated whether sMI and dMI
might elicit short-term effects on free-throw shooting accuracy in non-fatigued athletes. Then,
we tested the efficacy of sMI and dMI in the same sample of athletes, under a state of physical
fatigue corresponding to the last minutes of basketball games.

Experiment 1

Material and Methods
Participants. Ten state-level male basketball players (M = 18.4 years, SD = 0.5;M = 7.3

years of practice, SD = 2.3; 6 hours/day of training, 5 days per week) voluntarily participated in
the study. They provided an informed written consent in agreement with the terms of the Dec-
laration of Helsinki (1982). The study was approved by the ethical committee of Londrina State
University (Brazil).

Experimental design. The study took place in an indoor court meeting the international
standards for line distance, hoop height and ball weight. Each experimental session occurred at
the same time of the day for each condition (9 am ± 1 hour).

Before taking part in the experiment, athletes completed a 4 week sMI program for familiar-
ization, including 2 sessions of 5 min per week embedded in the classical course of regular
training. We delivered a limited amount of sMI practice to meet the purpose of familiarization
without interfering with the classical course of training. We basically wanted athletes to have
basic knowledge of sMI before engaging in the main experiment, hence preventing novelty
bias. We intended to familiarize athletes with the different modalities of sMI practice of basket-
ball skills. Athletes were requested to mentally rehearse strategic schemata of their teammates,
shooting and passing actions using the first or third person perspective. They only used the
first person visual perspective during the first week, combined first person visual perspective
and kinesthetic information during the second and third weeks, and only kinesthetic MI during
the last week of familiarization. Athletes were systematically instructed to match the spatial
and temporal characteristics of the sequences.

Procedure. After familiarization to sMI, athletes went through three experimental condi-
tions (i.e., one time each). Experimental sessions were scheduled within a span of 10 days: i)
sMI condition where athletes performed five MI trials of the shooting task using the first-per-
son perspective, before performing five actual free-throws; ii) dMI condition where athletes
completed five imagery trials while performing concurrently slight body movements matching
the pattern of the shooting task (i.e., limited body movements which do not result in the com-
pletion of the task during its imagination, but sufficient to allow an embodiment of the tempo-
ral invariants of the task such as the durations of the preparatory/shooting phases of free throw
shooting), using the first-person perspective. dMI was followed by five actual free-throws; iii)
control condition without any imagery intervention (CONTROL), where athletes remained
motionless, discussing their daily training with one of the experimenters for an amount of time
corresponding to that allocated to sMI and dMI. This control condition was followed by five
actual free-throws. The purpose of having five free-throws for each condition was twofold.
First, we wanted to limit the learning/habituation effect. The repeated performance of this
closed skill in athletes might have produced ceiling effects which would interfere with the pos-
sible gains originating from a preliminary practice of sMI/dMI [33]. Second, we wanted ath-
letes to feel a context which met as much as possible the demands of the free-throws performed
during actual basketball games. Usually, players have two consecutive free-throws, sometimes
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three according to the type of defensive foul, and must immediately perform at a high level of
accuracy. In the present experimental design, we increased this number to 5 to increase sample
size. The experimental conditions were provided in a counterbalanced order across partici-
pants to control carryover effects. To quantify the perceived carryover training load from one
experimental session to another, athletes were presented before each session the modified Borg
Scale [38] (Fig 1). Finally, each condition was separated from the 2 others by exactly 72 hours.
Each started by a warm-up of five minutes involving running and dribbling with a ball between
cones at own self pace.

Imagery interventions. During sMI and dMI, athletes were instructed to imagine as accu-
rately as possible, the free-throw sequence from receiving the ball up to the final phase of
shooting. During dMI, they were required to perform slight arm movements and semi-flexion
of the legs thus miming the temporal invariants of the actual task. Athletes were positioned in
the context of actual free-throw, i.e. on the line in front of the hoop. This was expected to facili-
tate mental simulation [39]. As indices of both sMI and dMI quality, participants self-reported
the level of perceived vividness on a Likert scale ranging from 1 (“Unclear and inaccurate men-
tal representation”) to 6 (“Perfectly clear and vivid mental representation”). They also held a
manual timer in the non-dominant hand measuring the time needed to imagine a free-throw
sequence, from receiving the ball up to the final shooting phase. We then calculated the delta
between actual and imagined free-throw durations as an index of temporal congruence [40].

Shooting accuracy. All trials were recorded with a video camera, to evaluate the number
of successful trials and the duration of each free-throw through the number of images between
the two action boundaries. Performance was evaluated in terms of converted free-throws (from
0 to 5).

Heart Rate and Exertion Perception. During each experimental session, athletes held a
cardiac monitor (Polar FT21) measuring the heart rate (HR) in beats per minute (bpm). HR
was collected immediately after warm-up and sMI/dMI/CONTROL trials, under each condi-
tion. We used the OMNI Scale to measure fatigue perception after the warm-up, and after
intervention of each experimental session [41].

Fig 1. Flowchart of the experimental design. sMI = Static Motor Imagery, dMI = Dynamic Motor Imagery, HR = Heart Rate, OMNI = Self-exhaustion
perception, TL = Training Load from previous day. sMI, dMI and Shooting time measured in each condition.

doi:10.1371/journal.pone.0149654.g001

Static and Dynamic Imagery in Different States of Physical Fatigue

PLOS ONE | DOI:10.1371/journal.pone.0149654 March 1, 2016 4 / 14



Statistical Analyses. We used R [42] and lme4 [43, 44] to build a mixed linear model for
each dependent variable (i.e., shooting accuracy, heart rate and OMNI ratings). We entered the
experimental conditions as fixed effect, (i.e., dMI, sMI and CONTROL). As a random effect,
we had intercepts by participants (i.e., intra-subject analysis). We applied a rank transforma-
tion to the dependent variables of interest, in order to increase statistical power [45]. For cor-
rected post-hoc comparisons [46], we iterated the mixed linear model on datasets from which
classes of the factor considered were removed to allow dual comparisons. For HR and OMNI
data, the recording moment was added as factor of the model (pre- and post-intervention) (Fig
1). The alpha threshold was settled at 5%. Considering the stringent statistical model imple-
mented for data analysis, trends were investigated using the Smallest Worthwhile Change
(SWC) [47]. SWC was developed to assess performance changes in sports, and specifically the
percentage of chance that a given measure is considered Superior/Trivial/Inferior under two
conditions. SWC provides a probability for each class according the following ranges:< 1% for
“almost impossible”; 1–5% for “very unlikely”, 5–25% for “unlikely”, 25–75% for “possible”,
75–95% for “probably”, 95–99% for “very likely” and>99% for “certain”.

Results
Physical fatigue. Data from one participant was not included due to technical failure. All

athletes reported similar levels (M ± SD) of perceived fatigue before each experimental session on
the Borg Scale (4.2 ± 2.5, χ2(2) = 0.039, p = 0.98). OMNI ratings after warm-up and intervention
were comparable across conditions without time effect (pre = 2.2 ± 1.9, post = 1.1 ± 1.8, p = 0.79).
Mixed linear models yielded a CONDITION � TEST interaction for HR (χ2(2) = 0.019, p = 0.01).
HR values were similar across conditions before intervention (131 ± 15 bpm, p = 0.22). However,
HR values after dMI (114 ± 14 bpm) were higher compared to both sMI and CONTROL (96 ± 12
bpm and 93 ± 10 bpm, respectively; p = 0.02).

sMI/dMI accuracy. No difference was found when comparing sMI and dMI vividness
(4.5 ± 1.2) and the delta between actual and imagined free-throw durations (Fig 2). At the
group level, athletes underestimated actual durations during both sMI and dMI by 0.61 ± 1.2 s
(p< 0.01).

Shooting accuracy. Mixed linear modeling yielded a main effect of experimental condi-
tions on shooting accuracy (χ2(2) = 12.01, p = 0.002). Shooting accuracy was higher following
dMI (3.3 ± 1.4 free-throws converted) compared to both sMI (2.3 ± 1.2, p<0.05) and CON-
TROL (1.6 ± 1.2, p<0.001) (Fig 2). A trend towards higher shooting accuracy during sMI com-
pared to CONTROL was also observed (p = 0.06). This was confirmed by the SWC analyses,
which supported a probable beneficial effect of sMI over CONTROL (i.e., 79% Superior, 17%
Trivial, and 4% Inferior).

Experiment 2

Material and Methods
Participants. The same participants as in experiment 1 took part in experiment 2 (18.4 ± 0.5

years; 7.3 ± 2.3 years of practice, 6 hours/day of training 5 days per week). They provided a new
informed written consent in agreement with the terms of the Declaration of Helsinki (1982). The
study was approved by the ethical committee of Londrina State University (Brazil).

Experimental design. Experiment 2 took also place in the same indoor court as during
experiment 1. The experimental intervention occurred at the same time of day for each condi-
tion (9 am ± 1 hour) to avoid circadian effects. We implemented a counterbalanced design in
order to control carryover effects between the experiments and conditions of the paradigm.
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Experimental conditions. The design involved three experimental sessions, which athletes
went through once. Experimental sessions were scheduled within a span of 10 days and sepa-
rated from each other by exactly 72 h. There was therefore a total intervention time of 20 days
for experiments 1–2. Immediately after the warm-up (same content as in Experiment 1), the
participants completed an incremental running test until exhaustion [48]. They were then sub-
jected to one of the 3 following conditions: i) sMI under fatigue (sMIf) where imagery trials
(n = 5) preceding the 5 shooting trials were completed immediately after exhaustion; ii) dMI
under fatigue (dMIf), allowing slight movements related to the real task during motor imagery
where imagery trials (n = 5) preceding the 5 free throws were also performed immediately after
exhaustion; iii) control under fatigue (CONTROLf) where athletes remained motionless and
talked with the experimenter about their daily training during an equivalent amount of time,
after exhaustion. Experimental sessions were delivered in a counterbalanced order to prevent
carryover effects. Participants rated their perceived exertion before each experimental session
on the modified Borg Scale [38] for each experimental session.

Exhaustion Test. Athletes performed a shuttle test requesting running between two cones
separated from each other by 20 m [48]. Athletes ran from one cone to the other according to
the auditory pace of a metronome. The metronome first paced a running speed of 8 km/h, and
increased every minute by 0.5 km/h. The test ended in case of complete exhaustion, or if when
a participant failed to match the metronome pace 3 times in a row, the test was over and he

Fig 2. A. Self-reports of imagery vividness. B. Delta time between actual and imagined durations for sMI and dMI. C. Free-throw shooting accuracy for each
athlete under each experimental condition. * p<0.05; ** p<0.01; # Different from 0, p<0.05, & Statistical trend (0.05<p<0.1).

doi:10.1371/journal.pone.0149654.g002
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was considered under fatigue. This test is known as closely reproducing efforts encountered
during basketball games.

sMIf/dMIf intervention. For sMIf and dMIf, athletes were positioned on the free-throw
line for better mental simulation [39]. They were instructed to combine first-person visual
imagery with kinesthetic imagery during sMIf. For dMIf, slight arm movements as well as
semi-flexions were allowed. Immediately after the intervention, we collected the perceived viv-
idness of sMIf/dMIf on a Likert scale ranging from 1 (“Unclear and inaccurate mental represen-
tation”) to 6 (“Perfectly clear and vivid mental representation”). We also collected sMIf/dMIf
durations, and calculated the delta between actual and imagined durations, a reliable index of
temporal congruence [40].

Heart Rate and Exertion perception. Athletes held a cardiac monitor (Polar FT21). HR
(bpm) was collected after warm-up, after the exhaustion test, and immediately after the experi-
mental intervention. Participants rated their perceived level of fatigue on the OMNI Scale after
warm-up, after the exhaustion test and after the experimental intervention (Fig 3).

Free-throw performance. Actual shooting times (from the moment participants received
the ball up to the final phase of shooting), as well as the number of converted free throws (from
0 to 5), were collected to evaluate shooting accuracy.

Statistical analyses. We implemented the same statistical procedure as in Experiment 1,
based on mixed linear models. For HR and OMNI data, we included the recording moment
(post warm-up, pre- and post-intervention) as a factor of the model, in addition to the experi-
mental condition factor (sMIf, dMIf and CONTROLf). The alpha threshold was settled at 5%.
We also applied the SWC approach [47] as in Experiment 1.

Results
Physical fatigue. All players reported similar levels of perceived fatigue before each experi-

mental session on the Borg Scale (χ2(2) = 0.061, p = 0.96; sMIf: 4.3 ± 2.5, dMIf: 4.2 ± 1.5, CON-
TROLf: 4.4 ± 1.5). We observed no difference among conditions related to HR and OMNI after
the warm-up (HR: χ2(2) = 3.91, p = 0.14, OMNI: χ2 (2) = 0.91, p = 0.93) and post-exhaustion
test (HR: χ2(2) = 5.29, p = 0.07, OMNI: χ2(2) = 4.43, p = 0.10). As well, OMNI revealed no

Fig 3. Experimental paradigm for Experiment 2 and dependent variables.CON = Control, sMIf = Static Motor Imagery under fatigue, dMIf = Dynamic
Motor Imagery under fatigue, HR = Heart Rate, OMNI = Self-exhaustion perception, TL = Training Load from previous day. sMIf, dMIf and Shooting times
were measured in each condition.

doi:10.1371/journal.pone.0149654.g003
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difference between post-intervention conditions (χ2(2) = 1.14, p = 0.56) (Fig 4). Lower HR val-
ues were recorded (χ2(2) = 7.54, p = 0.02) after the sMIf session (131 ± 18 bpm) as compared to
those monitored under CONTROLf and dMIf sessions (141 ± 17 bpm and 135 ± 15 bpm,
respectively, p< 0.05). Values of HR in dMIf tended to be lower compared to CONTROLf
(p = 0.09) (Fig 4).

Both HR and OMNI values significantly increased between the warm-up and the end of the
exhaustion test preceding the experimental intervention (HR: χ2(1) = 83.25, p< 0.001, OMNI:
(χ2(1) = 67.70, p< 0.001; Warm-up HR: 123 ± 17 bpm, OMNI: 2.2 ± 1.9; Pre-intervention HR:
178 ± 13 bpm, Pre-intervention OMNI: 7.5 ± 1.4). A significant decrease after the experimental
intervention was then recorded (HR: χ2(1) = 65.86, p< 0.001, OMNI: χ2 (1) = 27.37,
p< 0.001; Post-intervention HR: 136 ± 15 bpm, Post-intervention OMNI: 5.7 ± 1.5) (Fig 4).

Shooting accuracy. Self-reports of imagery vividness (sMIf: 4.4 ± 1.2, dMIf: 4.1 ± 0.7) and
the delta between actual and imagined durations were similar across conditions (χ2(1) = 0.62,

Fig 4. HR values and OMNI score after warm-up, pre-intervention and post-experimental intervention. * p<0.05, ** p<0.01, *** p<0.001, # Statistical
trend (0.05 < p < 0.1).

doi:10.1371/journal.pone.0149654.g004
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p = 0.43, and χ2(1) = 0.29, p = 0.58 respectively, Fig 5). As in Experiment 1, participants overall
underestimated actual durations by 1.1 ± 1.3 s (p< 0.01).

Mixed linear modeling yielded a trend for experimental conditions on the free-throw accu-
racy (sMIf: 3.5 ± 0.7, dMIf: 2.6 ± 1.5, CONTROLf: 2.5 ± 1.5 free-throws converted, χ2(2) = 2.78,
p = 0.09, Fig 5). Shooting accuracy tended to be higher during sMIf as compared to CONTROLf
(p = 0.08). The SWC analysis revealed that sMIf presented a higher percentage of chance to
yield greater shooting accuracy values as compared to those recorded during both dMIf (88%
Superior, 10% Trivial, and 2% Inferior) and CONTROLf (83% Superior, 14% Trivial, and 3%
Inferior).

Discussion
The present study was designed to evaluate the selective efficacy of sMI and dMI under differ-
ent states of fatigue. Overall, dMI was found to have the most beneficial effect on free-throw
performance (Experiment 1), except when athletes were physically exhausted (Experiment 2),
a physical state making sMI more efficient.

First, OMNI data showed that participants were in a similar state of perceived exhaustion
before engaging in the different conditions for both Experiments 1 and 2. On average, the par-
ticipants perceived a “moderate” level of fatigue. HR data further revealed that they adequately
complied with the experimental instructions, particularly during Experiment 2 where a neat

Fig 5. A. Self-reports of imagery vividness. B. Delta between actual and imagined free-throw durations during sMIf and dMIf conditions. C. Free-throw
accuracy across conditions. # Different from 0 (p<0.05), & Statistical trend (0.05 < p < 0.1).

doi:10.1371/journal.pone.0149654.g005
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HR increase attested high energy expenditure following the shuttle test. HR data also showed
that before completing the experimental conditions, participants were in a similar state of
physiological arousal. During Experiment 1, we recorded higher HR values immediately after
dMI as compared to both sMI and CONTROL. Indeed, dMI included slight body movements
simultaneously with mental representation. This brings an added amount of physical activity
potentially contributing to higher levels of cardiac activity. During Experiment 2, we recorded
lower HR values under sMIf as compared to both CONTROLf and dMIf. Motor imagery prac-
tice is known to temporarily reduce cardiac activity due to the involvement of attentional
resources (see [49]). However, the intake-rejection theory early postulated different HR
changes according to the focus of attention [50]. Briefly, the authors reported decreased HR
when the participants were requested to process external information, whereas they observed
increased HR when the participants focused their attention on internal cues. Our results may
seem different from what the theory postulated. Yet, although MI is considered an internal pro-
cess, the content of mental representation is externally and spatially oriented. This suggests
that the HR decrease under sMIf may reflect the focus of attentional resources on the environ-
mental context of the free-throw. This effect might have been emphasized compared to experi-
ment 1 as players exhibited increased levels of cardiac activity immediately after the maximal
incremental test. Such MI-related effects occurred to a lesser extent under dMIf since they were
possibly counterbalanced by overt body movement concomitant to motor imagery. From a
physiological level of analysis, changes in HR attest to concurrent effects of the parasympa-
thetic and orthosympathetic branches of the autonomic nervous system. We can thus consider
that both systems were co-activated when high concentration level was associated with high
energy expenditure. Although we did not record physiological data in the present study, recent
findings related to autonomic nervous system functioning have demonstrated that the para-
sympathetic branch could be activated through the nucleus ambiguus which was demonstrated
to specifically reduce heart rate activity in case of high cognitive demand (see [51, 52]). This
remains a working hypothesis, awaiting further experimental investigation.

An important issue addressed in the present study is whether practicing sMI or dMI was likely
to elicit short-term effects on shooting accuracy. In a study involving high-level junior race stan-
dard skiers, Callow, Roberts [28] reported higher levels of vividness during dMI than during sMI,
hence supporting the potential benefits of dMI in applied sport settings. The positive effects of
dMI on motor performance were recently confirmed by Guillot, Moschberger [29] in a sample of
high jumpers, while Fusco, Iosa [30] later reported higher levels of temporal congruence between
PP and dMI rather than between PP and sMI while imagining locomotors sequences.

Data from Experiments 1 and 2 provided evidence that no deleterious effects occurred
under sMI or dMI. Interestingly, higher shooting accuracy was recorded in the dMI condition
for Experiment 1 and the sMIf condition for Experiment 2. Although we support that sMI con-
tributed to increase basketball performance [33], findings from Experiment 1 confirmed better
efficacy from dMI [28, 29], and further demonstrated that dMI can improve immediate subse-
quent motor performance when players are not physically fatigued. Jackson, Lafleur [53]
underlined three key components involved in motor performance improvement over time: i)
declarative knowledge, which refers to the explicit information about the skill available to the
participant, ii) infra-conscious processes referring to implicit knowledge (procedural memory)
related to the skill that participants are able to implement during motor processing but cannot
verbally describe (e.g., complex muscle synergies, etc.), and iii) the feedback loop of actual skill
execution which participants use to correct and stabilize motor programs. Based on this theo-
retical framework, sMI involves the two first aspects (i.e., declarative knowledge and infra-con-
scious processes), whereas dMI might involve the three aspects of the model, hence providing
additional benefits.
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Experiment 2 demonstrated that physical fatigue strongly altered these beneficial effects of
dMI, as sMIf further impacted performance, while dMIf did not (as compared to the CONTROLf
condition). This result first supports the sMI efficacy on shooting tasks [54–57], and more specif-
ically in free-throw shooting [32]. The superiority of sMIf over dMIf might be explained by the
interference between actual and predicted body states in exhausted participants. Previous experi-
ments showed that imagery ability could be degraded by physical fatigue [18, 19]. The authors
inferred a possible erroneous update of the internal representation of the action due to fatigue. In
our experiments, fatigue was elicited by a running test and athletes had to imagine a shooting
task. However, as action representation was embodied and integrated the current state of the
motor system [19], physical fatigue might have led to inappropriate state estimation provided by
the forward model during dMIf. Physiological body state is known to affect body representation
through subtle changes in proprioceptive inputs to the central nervous system [58]. In other
words, physiological body state plays an indirect role during central processing of imagined
actions, since these involve predictive models derived from the current state of the motor system
[15]. Hence, combining body movements during dMI as athletes were fatigued possibly increased
mismatches between actual and predictive body states. Practically, under fatigue, dMI may be
assimilated to a form of incongruence between imagery task and body state [59].

One of the major finding of our experiments is that MI selectively contributed to enhance
motor performance, with the optimal use of sMI under fatigue, concurrently with dMI being
linked to exhaustion/energy expenditure. dMI might have higher abilities than sMI to improve
movement accuracy when athletes are not fatigued, whereas under physical fatigue, sMI would be
more efficient. Although the present study remains a pilot experiment with a limited sample size
including only young athletes, it provides fruitful new insights about the optimal use of sMI and
dMI. As preliminary recommendations, we argue that dMI may be prioritized in activities which
do not lead to extreme effort and fatigue or in the early phases of the game, i.e. when athletes are
not fatigued. In contrast, although dMI is not harmful or debilitative, this is not the most relevant
alternative in a fatigued state or when athletes are exhausted. Conversely, sMI should thus be pre-
ferred in activities where accuracy is crucial and where fatigue can concurrently impair perfor-
mance. To overcome the potential issue of the limited number of shooting trials in the present
pilot experiment, future studies testing the effect of sMI/dMI practice before each free-throwmay
afford a greater number of trials, while concomitantly controlling ceiling effects due to the repeated
practice of the skill. However, such experimental design would not match the demands of an actual
basketball game where the number of consecutive shooting trials remains limited. An interesting
perspective of the present work would be testing whether sMI and dMI might selectively impact
recovery processes in a rehabilitation context according to different fatigue/functional levels.
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