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Abstract

Background: There is strong scientific evidence linking obesity and overweight to the risk of various cancers and to
cancer survivorship. Nevertheless, the existing online information about the relationship between obesity and cancer
is poorly organized, not evidenced-based, of poor quality, and confusing to health information consumers. A formal
knowledge representation such as a Semantic Web knowledge base (KB) can help better organize and deliver quality
health information. We previously presented the OC-2-KB (Obesity and Cancer to Knowledge Base), a software
pipeline that can automatically build an obesity and cancer KB from scientific literature. In this work, we investigated
crowdsourcing strategies to increase the number of ground truth annotations and improve the quality of the KB.

Methods: We developed a new release of the OC-2-KB system addressing key challenges in automatic KB construction.
OC-2-KB automatically extracts semantic triples in the form of subject-predicate-object expressions from PubMed
abstracts related to the obesity and cancer literature. The accuracy of the facts extracted from scientific literature
heavily relies on both the quantity and quality of the available ground truth triples. Thus, we incorporated a
crowdsourcing process to improve the quality of the KB.

Results: We conducted two rounds of crowdsourcing experiments using a new corpus with 82 obesity and cancer-
related PubMed abstracts. We demonstrated that crowdsourcing is indeed a low-cost mechanism to collect labeled
data from non-expert laypeople. Even though individual layperson might not offer reliable answers, the collective
wisdom of the crowd is comparable to expert opinions. We also retrained the relation detection machine learning
models in OC-2-KB using the crowd annotated data and evaluated the content of the curated KB with a set of
competency questions. Our evaluation showed improved performance of the underlying relation detection model in
comparison to the baseline OC-2-KB.

Conclusions: We presented a new version of OC-2-KB, a system that automatically builds an evidence-based obesity
and cancer KB from scientific literature. Our KB construction framework integrated automatic information extraction
with crowdsourcing techniques to verify the extracted knowledge. Our ultimate goal is a paradigm shift in how the
general public access, read, digest, and use online health information.
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Background
Overweight and obesity are associated with 2.8 million
deaths throughout the world. More than 1.9 billion adults
(39% of adults) were overweight in 2014; of which, over
600 million (13% of adults) were obese. More than one-
third (34.9% or 78.6 million) of US adults are obese and
the prevalence of obesity among children is also increas-
ing [1]. As a result of many meta- and pooled analyses on
obesity-related cancers, existing knowledge and data on
obesity and the increased risk it poses for cancer, are pro-
liferating. Obesity and overweight are related with major
risk factors for cancers of the endometrium, breast, kid-
ney, colorectal, pancreas, esophagus, ovaries, gallbladder,
thyroid, and possibly prostate [2–5]. Obesity accounts
for 3–10% of cancer cases and deaths [6, 7], and it will
be linked to more cancer cases than smoking within
ten years [4].
On the other hand, interventions that may effectively

modify excess weight can be used for cancer control, pre-
venting further cancer burden [8]. Many health behavior
theories, such as the information-motivation-behavioral
skills mode (IMB) [9] and the integrated behavior model
(IBM) [10], recognized that an individual needs the infor-
mation and knowledge to initiate and perform health
behavior changes towards healthier lifestyles. Increas-
ingly, people engage in health information seeking via the
Internet. In the US, 87% of adults have Internet access and
72% look online for health information [11]. Meanwhile,
the quality of online health information varies widely
[12–14]. In particular, existing online information on obe-
sity, especially its relationship to cancer, is heterogeneous
ranging from pre-clinical models to case studies to mere
hypothesis-based arguments. While the direct causal rela-
tionship between obesity and cancer has been difficult
to definitively prove, research studies have generated a
tremendous amount of supporting data. But collectively,
these data are poorly organized in the public domain.
Typical consumers cannot translate the vast amounts of
online health information into usable knowledge nor can
they assess its quality. Online health information con-
sumers face a number of access barriers including infor-
mation overload and disorganization, terminology and
language barriers, lack of user friendliness, and inconsis-
tent updates [13, 15, 16].
There is an urgent need to organize the vast and increas-

ing amount of information on possible links between
obesity and cancer in a way that helps consumers under-
stand and use the information in a meaningful way. This
involves collating the information, linking it to evidence
in the scientific literature, evaluating its quality, and pre-
senting high quality information relevant to their spe-
cific questions in a user-friendly way. Thus, we seek to
fill critical gaps in knowledge representation of obesity
and its relationship to cancer, improve dissemination of

knowledge in obesity and cancer research, and ultimately
to provide the general public with a knowledge base (KB)
of well-organized obesity and cancer information to help
them make informed health decisions.
Creating KBs has been an active research area with

academic projects such as YAGO [17] and NELL [18],
community-driven efforts such as Freebase [19] and
Wikidata [20], and commercial projects such as those by
Google [21] and Facebook [22]. All of these KBs used a
formal ontology-driven knowledge representation, using
the Resource Description Framework (RDF) and the Web
Ontology Language (OWL) to form the Semantic Web.
Regardless of the debate on what is an ontology [23],
an ontology can be used to encode the knowledge (i.e.,
specifically, the logical structure) of a domain at the
semantic-level under a controlled, standardized vocab-
ulary for describing entities and the semantic relation-
ships between them. For example, a statement “obesity
is a risk factor for cancer.” can be decomposed into a
semantic triple, where the relationship between two enti-
ties“obesity” and “cancer” is “is a risk factor for”. An
ontology-driven knowledge base provides a consistent
representation of the facts about the domain and makes
it possible to reason about those facts and use rules or
other forms of logic to deduce new facts or highlight
inconsistencies [24].
In the biomedical domain, there also have been sev-

eral efforts in making Semantic Web KBs, such as the
“Gene Ontology knowledgebase” [25, 26], UniProt [27],
Literome [28], BioNELL [29], and SemMedDB [30]. These
KBs provided a huge collection of entities and facts, but
nonetheless, contained noises and can be unreliable due
to the limited accuracy of their information extraction (IE)
systems. For example, similar to our effort, SemMedDB
was created with SemRep [31] based on the Unified
Medical Language System (UMLS) to extract semantic
triples. As of June, 2017, SemMedDB contained 91.6
million triples extracted from 27.2 million PubMed cita-
tions. Nevertheless, unlike SemRep, our approach can
accurately identify meaningful entities beyond the lim-
itation of having to be in existing terminologies. Fur-
ther, recent studies have reported numerous quality issues
(e.g., inaccurate facts) in the SemMedDB [32–34], for
instance, “Insuli-AUGMENTS-catecholamine secretion”
[35]. A major challenge in KB construction is to assess the
quality of the candidate facts extracted by the IE system,
and turn them into useful knowledge [36].
Crowdsourcing is a way to outsource a task to a group or

community of people [37]. Crowdsourcing allows to anno-
tate enormous volumes of data in a short time, and opened
a new door to tackle complex problems and challenges in
research [38, 39]. KBs can also be curated via crowdsourc-
ing. Wikipedia (although not a Semantic Web KB) is the
classic example of massively decentralized, peer-produced
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KB on the Web. In terms of Semantic Web KBs, Freebase
[40] and Wikidata [41] are two successful crowd-sourced
examples in the general domain. The use of crowdsourc-
ing to solve important problems in biomedical domain
is also growing and has a wide variety of applications
[42]. Relevant to this project, crowdsourcing is successful
in biomedical natural language processing (NLP) espe-
cially on named-entity recognition [43–45], curating clin-
ical ontology [46, 47], constructing specialized biomedical
KBs [48, 49].
In our previous work [50], we created a IE soft-

ware pipeline, Obesity and Cancer to Knowledge Base
(OC-2-KB), aiming to build an evidence-based obesity
and cancer Semantic Web KB. Using a set of NLP and
machine learning techniques [51], OC-2-KB was able to
automatically extract subject-predicate-object semantic
triples from PubMed abstracts related to obesity and
cancer. In this paper, we present a new release of the
OC-2-KB system (available at: https://github.com/
bianjiang/BioText-2-KB), and investigated the use of
crowdsourcing to improve the quality of the extracted
facts. Further, the crowd-sourced semantic triples are fed
back to the machine learning modules to enrich the train-
ing corpus and subsequently improve the performance of
the IE system.
The primary contributions of this work in comparison

to our previous study [50], are detailed below:

• We conducted two rounds of crowdsourcing
experiments to assess the feasibility of adding human
knowledge to the KB construction process.

• We extended our original corpus from 23 random
obesity and cancer related Pubmed abstracts to 82
abstracts from systematic review papers. We curated
a preliminary obesity and cancer knowledge base
(OCKB) with these abstracts using OC-2-KB and
evaluated the query results against this OCKB.

• Finally, we refined the underlying machine learning
models incorporating the crowdsourcing results.

The rest of the paper is organized as follows. We will
briefly recap the OC-2-KB framework, and the crowd-
sourcing approach in the “Methods” section. The results
of the crowdsourcing experiments and our evaluations of
the updated machine learning models will be presented in
the “Results” section. We will discuss the lessons learned,
conclude the current work, and present future directions
in the “Discussion and Conclusions” section.

Methods
The obesity and cancer to knowledge base (OC-2-KB)
information extraction pipeline
Figure 1 shows the overview of the new release of OC-
2-KB, where we added a new step called “Crowdsourcing
Feedback” to the original OC-2-KB system. OC-2-KB

Fig. 1 An overview of the new OC-2-KB information extraction system with crowdsourcing feedback. The offlinemodule creates dictionaries of
domain-relevant entities and predicates. The onlinemodule extracts facts from scientific literature to construct an obesity and cancer knowledge base

https://github.com/bianjiang/BioText-2-KB
https://github.com/bianjiang/BioText-2-KB
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has two components: (1) an offline process that iden-
tifies the most domain-relevant entities and predicates
with importance scores, and (2) an online process that
can automatically extract the facts in the format of
semantic triples from relevant scientific text. For the
sake of completeness, we briefly describe the crucial
components of the OC-2-KB system along with our
new experiments. Please refer to [50] for more system
details.

The offline process: identify domain-relevant entities and
predicates
The offline process was part of the configuration pro-
cess of the OC-2-KB system. As our goal is to cre-
ate a KB related to obesity and cancer, we used the
titles and abstracts of PubMed articles containing the
keywords “obesity” and “cancer” to create the dic-
tionaries. A total of 12,263 articles were extracted.
We used the LIDF-value [52] measure implemented
in BioTex [53] to assess the importance of the can-
didate entities and predicates. Two separate dictio-
naries were created, which contained approximately
34,500 entities and 8,200 predicates, respectively. The
entity and predicate dictionaries were then be used
as inputs to the biomedical named-entity recognition
(BioNER) and predicate extraction process as described
below.

The online process: extract semantic triples from scientific
literature
The online process has 5 main steps to extract facts in the
format of semantic triples from scientific literature related
to obesity and cancer.

• Input: PubMed titles and abstracts relevant to
obesity and cancer.

• Step 1 - Preprocessing: Using the Stanford
CoreNLP toolkit, we first preprocessed the PubMed
titles and abstracts to split each document into a
collection of sentences (i.e., sentence segmentation)
as the semantic triples are currently extracted from
each sentence independently.

• Step 2 - Biomedical Named-Entity Recognition
(BioNER) and Predicate Extraction: Based on the
entity and predicate dictionaries created in the offline
process, we then extracted candidate entities and
predicates from each sentence. As discussed in our
previous work [51], our methods for biomedical NER
and predicate extraction were based on both
linguistic and statistic features of the text, and
outperformed other state-of-the-art systems on our
obesity and cancer corpus. Our experiments obtained
F-measures of 90.1 and 51.8% for entity and predicate
extractions, respectively.

• Step 3 - Relation Detection: Using supervised
classifiers with a set of statistical, lexical, and
semantic features [51], we were able to determine
whether a pair of two candidate biomedical entities
and a candidate predicate formed a valid assertion as
a subject-predicate-object statement. The random
forest algorithm achieved the best performance with
an F-measure of 84.7% on an independent test set.

• Step 4 - Relation Classification: After relation
detection, we normalized the predicate to one of
thirteen relation classes using a multi-class classifier.
Based on a manually annotated sample corpus (i.e.,
23 obesity and cancer abstracts), we previously
adopted [50] 12 relation classes from the Relation
Ontology (RO) [54]. We added an “other” category in
this work to temporarily hold all predicates that
cannot be classified into one of the 12 specific
relation classes. With the same set of statistical,
lexical, and semantic features [51], the random forest
model achieved the best results with an F-measure of
85.3% on a independent test set.

• Step 5 - RDF Graph Creation: The semantic triples
extracted in the previous steps were then inserted
into a graph database (i.e., GraphDB [55]) using the
RDF4J [56] framework .

Incorporating crowdsourcing feedback
Even though our machine learning models demonstrated
state-of-the-art performance, they were not perfect. Thus,
we investigated a crowdsourcing strategy to validate the
extracted semantic triples. For this purpose, we used
Amazon Mechanical Turk (MTurk) [57]—an online plat-
form that allows users to create “crowdsourcing tasks”,
called Human-Intelligence Tasks (HITs), to be completed
for small incentives. The Amazon MTurk platform allows
anyone to become a requester in order to create HITs,
while people that perform those tasks are called workers
[58]. Recent studies that used AmazonMTurk have shown
that it is an efficient, reliable, and cost-effective research
tool for generating sample responses where human feed-
back is essential [59, 60].
We conducted two rounds of the crowdsourcing exper-

iment. First, a pilot study was done in September, 2017
with a small sample (i.e., one HIT that contains 10 sen-
tences) to establish the feasibility of using crowdsourc-
ing workers to validate the candidate triples. The small
sample was randomly selected from the corpus that we
used to develop the original OC-2-KB system. All candi-
date triples for the 10 sentences were annotated by two
members of the study team (the percent agreement was
80.41%). As shown in Fig. 2, each item of the HIT was a
multiple choice question, where the question represented
a sentence, and each option was a candidate triple state-
ment describing the potential relationship between two
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Fig. 2 An example question of the crowdsourcing task. The terms in blue are biomedical entities, and terms in purple are the predicates describing
the relations

biomedical entities and a predicate, as “biomedical entity
1 — relation —- biomedical entity 2”, extracted from the
sentence.Workers were asked to select the most appropri-
ate triples statements that they thought were part of the
sentence.
After the pilot study, in October 2017, we launched a

bigger experiment with a data set of 82 abstracts from
PubMed based on the same search keywords “obesity” and
“cancer”. Two additional criteria were used to select the
82 abstracts: (1) articles that were review articles; and (2)
articles that were published in reputable journals based on
their impact factors published by Thomson Reuters. The
82 abstracts generated 671 sentences and 9,406 candidate
triples. This data set is publicly available at https://github.
com/bianjiang/BioText-2-KB/.
Based on experience from the pilot study, each MTurk

HIT only contained 25 sentences. For each sentence, only
at most the top 4 entities and top 3 predicates were
extracted based on the LIDF-value [52] measure. We then
used all possible combinations of the extracted entities
and predicates as choices (i.e., candidate triples) to be val-
idated by the workers. In sum, we created 27 HITs. Each
question could be answered by 5 workers at most.

Evaluations
We performed several experiments to (1) evaluate the
crowdsourcing results, (2) used the crowdsourced triples
to retrain the machine learning models considering a vari-
ety of crowdsourcing parameters (e.g., the number of
times each triple was validated and how long workers
spent on the HITs), and (3) evaluate the KBs created with-
and without- the crowdsourcing feedback.

Results
The crowdsourcing experiments
The pilot study
The pilot study was carried out in eight days, from August
31, 2017 to September 7, 2017. We created only one HIT
that contained 10 sentences, and the 10 sentences were
annotated by two members of the study team. The num-
ber of assignments for the HIT was set to be 400 on
MTurk, i.e., 400 workers could participate at most. The
reward per assignment was set to be $0.15. The allotted
time for the assignment was 900 s (i.e., the worker can
hold to the task for a maximum of 900 s). A total of 193
workers participated in the pilot study. Table 1 shows the

configuration and cost of the MTurk HIT for the pilot
study.
We also evaluated the time spent by the workers on the

HIT, as shown in Table 2. We then evaluated worker per-
formance in comparison to the gold-standard annotated
by the experts, varying the amount of time spent by the
workers. Table 3 shows the F-measure of each sentence.
Table 4 illustrates the overall worker performance in

the pilot study (i.e., the average F-measure (F) of 10 sen-
tences), varying by the time spent on the task. The best
overall F-measure was 76.17%, when we accepted only
answerers from workers that spent at least 300 seconds in
the HIT.

The final study
For the final study, we made our HITs available on MTurk
for ten days, from October 12, 2017 to October 22, 2017.
Our data set was 82 abstracts extracted from PubMed.
These abstracts generated 671 sentences. The maximum
number of entities and predicates extracted per sentence
were 21 and 11, respectively. The maximum number of
possible triples was 840 (i.e., obtained from a sentence
with 16 entities and 7 predicates). As crowdsourcing tasks
are typically micro-tasks [61], we selected the 4 most
important entities and the 3 most important predicates
for each sentence according to the LIDF-value [52], which
yielded at most 18 triples per sentence. There were a total
of 9406 possible triples extracted from the 671 sentences.
We then created 27 MTurk HITs, where 26 HITs con-
tained 25 sentences and 1 HIT contained 21 sentences
(a total of 671 sentences). Each HIT was set to be com-
pleted by 5 workers at most (5 assignments). The reward
per assignment was $0.5. The maximal allotted time for

Table 1 Configurations of the pilot crowdsourcing study

Data
Number of assignments per HIT 400

Reward per assignment $0.15

Estimated Total reward $60.0 (= 400 × $0.15)

Fees to Mechanical Turk $24.0 (= 400 × $0.6)

Total cost $84.0

Actual Cost Assignments done and approved 193

Total reward $28.95

Fees to Mechanical Turk $11.58

Total cost $40.53

https://github.com/bianjiang/BioText-2-KB/
https://github.com/bianjiang/BioText-2-KB/
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Table 2 The time spent by the workers on the HIT

Time spent on the HIT

Time ≥ 0 s ≥ 120 s ≥ 300 s

Minimum (min) 38 127 302

Maximum (max) 889 889 889

Average (x) 358.47 372.62 466.59

Standard Deviation (σ ) 176.13 167.93 140.73

each assignment was 35 min (2100 s). Table 5 shows the
configuration and cost of the 27 MTurk HITs. A total
of 101 unique workers participated and completed 135
assignments (27 HITs × 5 assignments). As shown in
Table 6, 89 workers completed only one HIT, while there
is one worker completed 8 HITs.
We also evaluated the time spent by the workers, as

shown in Table 7.
In addition to consider the different amount of time

spent by the workers, we also considered the number of
workers whomade the same choices. Out of the 9406 pos-
sible triples, 3672 triples were not selected by any workers
(i.e., none of the work who worked on the corresponding
HIT considered the triple as valid). Table 8 presents the
number of triples validated by more than 3, 4, and 5 work-
ers (times) considering the different amount of time spent
by the workers. Figure 3 shows an example of triples vali-
dated by different number of workers (i.e., more than 1, 2,
3, 4, and 5 times).
We also used the baseline OC-2-KB system (i.e., where

the relation detectionmachine learningmodel was trained
using the initial 23 annotated abstracts) to extract triples
from the 82 abstracts (note that the baseline OC-2-KB
system extracted 765 from the 23 abstracts and 4,391 from
the 82 abstracts for which only 29% of the initial facts over-
lapped). We considered different confidence scores (i.e.,

Table 3 Worker performance (F-measures) on the 10 sentences
of the HIT

Time spent on the HIT

Sentences ≥ 0 s ≥ 120 s ≥ 300 s

Sentence 1 59.33% 60.24% 65.43%

Sentence 2 73.63% 75.03% 79.62%

Sentence 3 63.86% 65.30% 67.10%

Sentence 4 84.97% 84.78% 87.83%

Sentence 5 79.79% 80.62% 83.04%

Sentence 6 98.45% 98.37% 100.00%

Sentence 7 72.99% 74.02% 76.82%

Sentence 8 70.99% 72.67% 76.99%

Sentence 9 43.10% 43.30% 47.31%

Sentence 10 72.11% 73.54% 77.60%

Table 4 Overall worker performance in the pilot study

Time spent Number of workers F

≥ 0 s (0 s per sentence) 193 71.92%

≥ 120 s (12 s per sentence) 184 72.79%

≥ 300 s (30 s per sentence) 115 76.17 %

the probability that a triple is predicted to be true by the
model). Figure 4 shows the number of triples extracted
by the baseline OC-2-KB system varying the confidence
score (threshold λ from 0.80 to 1.00) of the relation detec-
tion machine learning model.
We compared the predicted results obtained from the

baseline OC-2-KB system with the crowdsourcing results
for the same 82 abstracts, as shown in Fig. 5. In this com-
parison, we took into account the 918 triples that were
validated by at least 3 workers without the time spent
constraint. Table 9 shows the number of common triples
between the baseline OC-2-KB system and the crowd-
sourcing results (B ∩ C), as well as the number of triples
missed by the baseline OC-2-KB (C − B). The lowest
rate of triples missed by the baseline system was 75.4%( = 692

918
)
with a low threshold (λ = 0.80), while the high-

est rate of missed triples was 92.3% with a λ = 1.00.
As shown in Table 9, the baseline system missed a large
number of triples, proving the necessity to augment the
baseline model with human feedback.

Retraining of the relation detection model with
crowdsourcing feedback
Leveraging the human feedback, we used the crowd-
sourced annotations to improve the machine learning
models in the baseline OC-2-KB system. We considered
the different combinations of the crowdsourcing parame-
ters (i.e., considering the different number of times each
triple was validated, and the different amount of time
spent by the workers) to extract the positive samples
as shown in Table 8, and trained 9 relation detection
models with the Random Forest algorithm. The random

Table 5 Configuration and price information of the final study

Data Number of HITs 27

Number of assignments per HIT 5

Reward per assignment $0.5

Estimated Cost Total reward per HIT $2.5 (= 5 × $0.5)

Fees to Mechanical Turk per HIT $0.5 (= 5 × $0.1)

Total cost per HIT $3.0 (= $2.5 + $0.5)

Total cost for 27 HITs $81.0 (= $27 × $3.0)

Actual Cost Assignments done and approved 135 (= 27 HITS ×
5 assignments)

Total cost $81.0



Lossio-Ventura et al. BMCMedical Informatics and DecisionMaking 2018, 18(Suppl 2):55 Page 121 of 157

Table 6 The number of HITs completed by the workers

Number of HITs Number of workers that completed

1 HIT 89 workers

2 HITs 5 workers

3 HITs 1 worker

4 HITs 3 workers

5 HITs 0 worker

6 HITs 1 worker

7 HITs 1 worker

8 HITs 1 worker

forest models achieved the best performance in our pre-
vious study for the same tasks [51]. We considered the
triples that were not validated by any worker (i.e., 3672) as
negative samples.
Our dataset was imbalanced, since we had significant

more negative samples (i.e., 3672) than positive samples
(i.e., ranging from 15 to 918, as shown in Table 8). Thus,
we used weighted performance metrics to evaluate the
trained machine learning models. Table 10 presents the
weighted F-measures of the retrained RF models for rela-
tion detection considering the different crowdsourcing
parameters.

Evaluations of the knowledge bases created by theOC-2-KB
systemwith and without the crowdsourcing feedback
To further assess the improvement of the retrained OC-2-
KB system, we compared the KBs curated with the base-
line OC-2-KB and retrained OC-2-KB (with the retrained
model considering triples validated by more than
3 workers).
We assessed the content of the KBs (baseline OC-2-KB

vs. retrained OC-2-KB) through evaluating whether the
KB can answer specific competency questions. The com-
petency questions were expressed in SPARQL queries.
Note that the dataset in our original 23 abstracts was
a balanced dataset (343 positive samples and 343 nega-

Table 7 Time spent by the workers over the 27 HITs

Time spent on HITs

Time ≥ 0 s ≥ 300 s ≥ 750 s

min 43 332 761

max 2095 2095 2095

x 1,001.21 1,255.35 1,421.11

σ 638.27 495.58 382.54

Number of assignments completed∗ 5734 4413 3770

*The number assignments completed within the time range. Note that, there were
27 HITs, and each HIT was completed by 5 workers. Thus, there are a total of 135
assignments (27 HITs times 5 workers)

Table 8 Number of triples validated more than 3, 4, and 5 times
varying by the workers’ time spent on the HITs

Time spent on HITs

The number of times validated ≥ 0 s ≥ 300 s ≥ 750 s

Validated = 5 times 37 19 15

Validated ≥ 4 times 258 109 68

Validated ≥ 3 times 918 506 320

tive samples). To make a fair comparison, we randomly
selected 918 negative samples from the 3672 triples
that were not selected by any workers in the crowd-
sourcing experiment. In short, our training data for this
part of the study were 1265 (347 + 918) positive sam-
ples and 1265 negative samples. The F-measure of the
retrained relation detection model was 86.2% (ROCAUC:
0.935). For both the baseline and retrained OC-2-KB
systems, we considered a threshold confidence score
of 0.94.
Figure 7 shows an example of all the entities related

to “breast cancer risk” (i.e., entities that can form the
following assertions: <oc:breast cancer risk-?predicate-
?object> or<?subject-?predicate-oc:breast cancer risk>).
Note that in SPARQL, a query variable is marked by
the use of “?”. Figure 7 (1) shows the associated query.
Figure 7 (2) shows the query results from the KB created
with the baseline OC-2-KB system. Figure 7 (3) illustrates
the query results from the KB created with the retrained
OC-2-KB system. Even though the results from the base-
line contains more entities, the results from the retrained
OC-2-KB are more accurate.
Figure 6 shows the receiver operating characteristic

(ROC) curves of the retrained models.

Discussion
Feasibility and benefits of crowdsourcing
The non-expert crowdsourcing workers in the pilot study
produced annotations comparable to the experts (i.e., an
F-measure of 76.17%, which demonstrated the feasibility
to use the crowd in annotation tasks. More importantly,
even though our corpus was highly technical abstracts col-
lected from scientific biomedical literature, with a careful
design, cross-validated collective wisdom from laypeople
can lead to quality knowledge collections. Thus, we used
crowdsourcing to validate extractions that the machine
identified as likely candidates. Further, validated extrac-
tions were then re-introduced into the training set for
the machine learning models. As shown in Table 10 and
Fig. 6, incorporating the crowdsourcing feedback signifi-
cantly improved the performance of our machine learning
models. Our approach is similar to the concept of active
learning [62], a special case of semi-supervised machine
learning where a learning algorithm is able to query the
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Fig. 3 An example of triples validated through crowdsourcing

Fig. 4 The number of triples created with the baseline OC-2-KB system varying the threshold λ from 0.80 to 1.00
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Fig. 5 A Venn diagram of comparing the number of triples extracted
with the baseline system (B) and validated through crowdsourcing
(C), where the number of common triples between B and C is B ∩ C

user to annotate new data points and incorporate the
human feedback back into the machine learning model
to improve its performance. However, as a pilot study, we
selected new data to be labeled manually, while in a true
active learning system, the system will be able to select
unlabeled data and query the humans intelligently. This
is indeed one of our future directions to create a more
scalable KB construction framework.
Further, the costs of crowdsourcing studies are rather

inexpensive, which is one of the other advantages of using
crowd wisdom. Our pilot study received feedback from
193 workers and the cost was merely $40.53. Even if we
only considered high quality responses (i.e., only accept
answers from workers who spent more than 30 seconds
on each sentence), 115 fell into this category. Further, the
performance of these laypeople workers was compara-
ble to expert annotators (i.e., an F-measure of 76.17%).
In the final study, 89 workers completed 135 assignments
(671 sentences) in 10 days, with a cost of $81. The low
costs of crowdsourcing allowed us to collect redundant

Table 9 The number of common triples between the baseline
OC-2-KB system and the crowdsourcing (B ∩ C), and the number
of triples missed by the baseline OC-2-KB (C − B)

OC-2-KBλ B ∩ C C − B

λ = 0.80 226 692

λ = 0.82 222 696

λ = 0.84 216 702

λ = 0.86 215 703

λ = 0.88 208 710

λ = 0.90 198 720

λ = 0.92 185 733

λ = 0.94 171 749

λ = 0.96 154 764

λ = 0.98 119 799

λ = 1.00 71 847

Table 10 F-measures of the retrained random forest models
varying the crowdsourcing parameters

Workers’ time spent on HITs

Number of times validated ≥ 0 s ≥ 300 s ≥ 750 s

Validated = 5 times 98.5% 98.8% 99.8%

Validated ≥ 4 times 90.3% 97.0% 97.2%

Validated ≥ 3 times 79.1% 85.1% 91.4%

responses (i.e., each sentence was validated by 5 workers),
which were then used to ensure the quality of the validated
triples. Considering the majority rule, in our experiment,
918 triples were confirmed by at least 3 out of the 5
workers who worked on the same sentences.
The total cost of both studies on Amazon MTurk was

$121.53. Amazon MTurk is proved to be an inexpen-
sive way of gathering labeled annotations with human
judgments.

The quality of the created obesity and cancer knowledge
base
There is a growing body of work on automated KB con-
struction and knowledge extraction from text. Neverthe-
less, the value of these KBs lies in their ability to answer
users’ questions (i.e., queries to the KBs). We thus evalu-
ated the query results obtained from the OC-2-KB system
with and without incorporating the crowdsourcing feed-
back. As shown in Fig. 7, the baseline OC-2-KB contained
more but low-quality or unclear triples. For example, as
shown in Fig. 7, the baseline OC-2-KB system incorrectly
asserted a relation between “contrast” and “breast can-
cer risk”. On the other hand, the triples extracted by the
retrained OC-2-KB system were of higher quality. How-
ever, it is also clear that the retrained OC-2-KB system
missed some of the valid triples (e.g., the relation between
“family history” and “breast cancer risks”), while eliminat-
ing more false positives.
There were also triples identified by the retrained OC-

2-KB system, but not by the baseline OC-2-KB sys-
tem. Figure 8 shows a SPARQL query to extract any
objects related to “interleukin 6”. The baseline OC-2-KB
system did not return any results, while the retrained
OC-2-KB extracted the assertion that <“interleukin 6”-
“oc:associated with”-“prostate cancer risk”>.
We also assessed the predicates of triples from both

KBs (baseline vs retrained). We found that in most cases
the KB created with the baseline OC-2-KB extracted
either incorrect predicates or semantically similar but syn-
tactically different predicates for the same two entities.
For example, Fig. 9 shows a SPARQL query to identify
all relations between “progesterone levels” and “risk of
endometrial cancer”. The baseline OC-2-KB contained
3 predicates: “oc:associated with”, “oc:is a”, and “oc:other
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Fig. 6 The receiver operating characteristic (ROC) curves of the retrained relation detection models

Fig. 7 A SPARQL query for extracting all the entities related to “breast cancer risk” in (1). The results from the baseline OC-2-KB system are shown in
(2), and the results from the retrained system are in (3)
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Fig. 8 A SPARQL query for extracting entities related to “interleukin 6”

(increased)”, while the retrained OC-2-KB only contained
one predicate “oc:associated with” between the same two
entities.
The curated KBs, although improved with crowd-

sourcing feedback, still contained invalid or not mean-
ingful triples. This is because that the accuracy of
our automated relation extraction methods although
achieved state-of-the-art performance is still suboptimal.
Figure 10 shows an example of invalid triples related
to “prostate cancer risk in men’. From the original sen-
tence, (“Similarly , a case-control study found obesity
was inversely associated with prostate cancer risk in
men aged 40-64 years.”), OC-2-KB extracted <“case-
control study” oc:was inversely associated “prostate
cancer risk in men”>, which is incorrect. This empha-
sizes the needs to consider humans in the loop and to

use crowd wisdom to validate triples identified by the
machine.

Conclusions
We presented a new version of OC-2-KB, a system that
automatically builds an evidence-based obesity and can-
cer KB from scientific literature. We developed a scalable
framework for the construction of the KB by integrat-
ing automatic information extraction with crowdsourcing
techniques to verify the extracted knowledge.
Crowdsourcing platforms such as AmazonMTurk offers

a low-cost mechanism to collect more labeled data from
the crowd with non-expert laypeople. Even though indi-
vidual layperson might not offer reliable answers, the
collective wisdom of the crowd is comparable to expert
opinions.
However, further studies are still warranted, as the per-

formance of the underlying information extraction sys-
tem in OC-2-KB is still suboptimal, possibly due to the
noisy nature of free-text data (e.g., inconsistent format-
ting, alternative spellings, and misspells). We shall further
investigate how to better leverage the crowdsourcing plat-
forms. For example, we shall further explore the active
learning concept, where 1) the triples that need to be vali-
dated by the crowd are identified by the machine learning
model, and 2) both the precision and recall of the machine
learning model will be improved with the crowdsourcing
feedback, without losing existing valid triples.
The ultimate goal of this project is a paradigm shift

in how the general public access, read, digest, and use
online health information. Rather than requiring the
laypeople find and read static documents on the Internet
via regular searches, we propose a dynamic knowledge
acquisition model, where the content is routinely mined

Fig. 9 Results of all predicates existing between “progesterone levels” and “risk of endometrial cancer”
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Fig. 10 Example of invalid triples associated with “prostate cancer risk
in men”

from the scientific literature and vetted, users interact
via semantic queries instead of regular searches, and
consumers navigate the network of knowledge through
interactive visualizations.
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20. Vrandečić D, Krötzsch M. Wikidata: a free collaborative knowledgebase.
Commun ACM. 2014;57(10):78–85.

21. Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T,
Sun S, Zhang W. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’14. New
York: ACM; 2014. p. 601–10.

22. Darwell B. Facebook builds knowledge graph with info modules on
community pages. 2013. http://www.adweek.com/digital/facebook-
builds-knowledge-graph-with-info-modules-on-community-pages/.
Accessed 14 Jan 2013.

23. Giaretta P, Guarino N. Ontologies and knowledge bases towards a
terminological clarification. Towards Very Large Knowl Bases: Knowl Build
Knowl Shar. 1995;25(32):307–17.

24. Hayes-Roth F, Waterman DA, Lenat DB. Building Expert Systems. Boston:
Addison-Wesley Longman Publishing Co., Inc.; 1983.

25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the
unification of biology. Nat Genet. 2000;25(1):25.

26. Consortium TGO. Expansion of the gene ontology knowledgebase and
resources. Nucleic Acids Res. 2017;45(D1):331–8. https://doi.org/10.1093/
nar/gkw1108.

27. Consortium U. Uniprot: a hub for protein information. Nucleic Acids Res.
2014;43(D1):204–12.

28. Poon H, Quirk C, DeZiel C, Heckerman D. Literome: Pubmed-scale genomic
knowledge base in the cloud. Bioinformatics. 2014;30(19):2840–2.

29. Movshovitz-Attias D, Cohen W. Bootstrapping biomedical ontologies for
scientific text using nell. In: Proceedings of the 2012 Workshop on
Biomedical Natural Language Processing. BioNLP ’12. Stroudsburg:
Association for Computational Linguistics; 2012. p. 11–9.

30. Kilicoglu H, Shin D, Fiszman M, Rosemblat G, Rindflesch TC. Semmeddb:
a pubmed-scale repository of biomedical semantic predications.
Bioinformatics. 2012;28(23):3158–60.

31. Rindflesch TC, Fiszman M. The interaction of domain knowledge and
linguistic structure in natural language processing: interpreting
hypernymic propositions in biomedical text. J Biomed Inform.
2003;36(6):462–77.

32. Cameron D, Kavuluru R, Rindflesch TC, Sheth AP, Thirunarayan K,
Bodenreider O. Context-driven automatic subgraph creation for
literature-based discovery. J Biomed Inform. 2015;54:141–57.

33. Ayvaz S, Horn J, Hassanzadeh O, Zhu Q, Stan J, Tatonetti NP, Vilar S,
Brochhausen M, Samwald M, Rastegar-Mojarad M, et al. Toward a
complete dataset of drug–drug interaction information from publicly
available sources. J Biomed Inform. 2015;55:206–17.

34. Shi B, Weninger T. ProjE: Embedding projection for knowledge graph
completion. In: Thirty-First AAAI Conference on Artificial Intelligence. Palo
Alto: AAAI Press; 2017. p. 1236–1242.

35. Zhang R, Cairelli MJ, Fiszman M, Rosemblat G, Kilicoglu H, Rindflesch
TC, Pakhomov SV, Melton GB. Using semantic predications to uncover
drug–drug interactions in clinical data. J Biomed Inform. 2014;49:134–47.

36. Pujara J, Miao H, Getoor L, Cohen W. Knowledge graph identification. In:
Proceedings of the 12th International Semantic Web Conference - Part I.
ISWC ’13. New York: Springer; 2013. p. 542–57.

37. McCoy A, Wright A, Rogith D, Fathiamini S, Ottenbacher AJ, Sittig D.
Development of a clinician reputation metric to identify appropriate
problem-medication pairs in a crowdsourced knowledge base. J Biomed
Inform. 2014;48:66–72.

38. Doan A, Ramakrishnan R, Halevy AY. Crowdsourcing systems on the
world-wide web. Commun ACM. 2011;54(4):86–96. https://doi.org/10.
1145/1924421.1924442.

39. Good BM, Su AI. Crowdsourcing for bioinformatics. Bioinformatics.
2013;29(16):1925–33.

40. Markoff J. Start-up aims for database to automate web searching: New
York Times; 2007. http://www.nytimes.com/2007/03/09/technology/
09data.html.
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