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Abstract

The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally
believed that motivational salience increases decision speed, the quantitative relationship between motivational salience
and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of
motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise
decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting
response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience
signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making
process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially
augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a
causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative
relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship
between motivational salience and more precise RT. Our results further establish the existence of an early and previously
unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-
making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally,
our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia,
and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly
understood noncholinergic BF neurons.
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Introduction

The overall speed of information processing and decision-

making has been studied for more than a century by measuring

reaction time (RT) [1–3]. Significant increases in RT, reflecting a

slower decision speed, represents a key feature in several

conditions such as depression [4,5], dementia [6,7], schizophrenia

[8–10], and cognitive aging [11,12]. Therefore, it is important to

understand how decision speed is modulated by cognitive variables

and by underlying neural circuit mechanisms.

An important modulator of decision speed is motivational

salience [13–16]. Determining whether a stimulus is motivation-

ally salient—that is, whether the stimulus predicts important

behavioral outcomes such as reward or punishment—allows

humans and animals to select among incoming sensory informa-

tion the subset of stimuli that are behaviorally relevant. Thus,

motivational salience plays a key role in goal-directed decision-

making to prioritize behavioral responses. As a result, neural

correlates of motivational salience are commonly defined or

inferred through the modulation of RT [13–15]. However, this

logical interdependency poses a fundamental challenge in under-

standing the relationship between motivational salience and

decision speed.

The alternative approach we took to avoid this circular logic

was to investigate the relationship between RT and a neural

correlate of motivational salience defined independently of RT.

Recent studies identified a neural correlate of motivational

salience in the basal forebrain (BF) [16], where a distinct group

of BF neurons respond to motivationally salient stimuli that predict

either reward or punishment with similar and robust phasic

bursting responses [16–20]. The strength of the BF motivational

salience signal, reflected by the amplitude of bursting response, is

coupled with the overall response latency [16]. The same BF

neurons also respond to primary reward and punishment with

similar bursting response [16]. We hypothesize that the bursting

response of BF neurons can translate the motivational salience

signal into widespread modulation of cortical activity [21] and

therefore represents an ideal candidate mechanism to increase
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decision speed and reduce RT. In support of this hypothesis,

slowing of RT was observed following lesion [22–25] or

inactivation [26,27] of the BF.

Our approach to understand how BF motivational salience

signal modulates decision speed was to first determine the part of

RT variability that was correlated with, and likely modulated by,

BF motivational salience signal while rats responded to two

motivationally salient stimuli that predicted different amounts of

reward. Second, we sought to determine the part of RT variability

that was present in the face of constant BF bursting response,

which does not reflect the moment-to-moment fluctuation of

motivational salience and likely represents how RT is modulated

by the intrinsic noise in the decision-making process. By

partitioning RT variability into two distinct sources that were

either correlated with or independent of BF motivational salience

signal, we further investigated whether the strength of BF

motivational salience signal modulated the magnitude of RT

variability contributed by intrinsic noise. Finally, we tested

whether the observed functional coupling between BF bursting

response and RT represented a causal relationship using electrical

microstimulation of the BF.

Results

To investigate the relationship between motivational salience

and decision speed, we developed a reward-biased simple RT task

in rats that used differential reward expectations to modulate

motivational salience (Figure 1A, Figure S1). Specifically, each

trial started with a light signal that instructed rats to enter a

nosepoke fixation port where they maintained fixation until an

auditory stimulus instructed them to collect a water reward in the

adjacent reward port. In the fixation port, rats heard, with equal

probability and randomly across trials, either a sound predicting a

large reward (S-Large), a different sound predicting a small reward

(S-Small), or no sound and no reward (Catch). S-Large and S-

Small were chosen to be clearly discriminable (white noise versus

clicker) and presented at a suprathreshold level (80 dB for 2 s) to

minimize sensory detection and discrimination effort. After sound

onset, rats exited the fixation port quickly and moved to the

adjacent reward port in almost all S-Large (99.8%) and S-Small

(99.4%) trials, and only did so occasionally in Catch trials (3.8%).

This response pattern confirmed that rats treated both S-Large

and S-Small as motivationally salient stimuli. The latency between

sound onset to fixation port exit, defined as RT, reflected the speed

of the initial decision-making process in response to motivationally

salient sounds and is the focus of our study.

While both S-Large and S-Small predicted reward in the same

port and therefore commanded the same behavioral response

without the need of a choice, well-trained rats automatically

responded faster in S-Large than in S-Small trials (Figure 1B,

Figure S1), indicating that the stimulus paired with larger reward

was motivationally more salient. The modulation of RT between

S-Large and S-Small trials continued to grow and did not reach

asymptotic level after 10 training sessions (Figure 1C, Figure S1).

Following the reversal of sound-reward contingency, it took rats on

average three sessions to reverse their RT bias and began to show

faster RT toward the new S-Large (Figure 1C, Figure S1). Thus,

Figure 1. Reward-biased simple RT task. (A) Schematic of the reward-biased simple RT task. Rats initiated each trial by nosepoking in a fixation
port following a trial start light signal. Inside the fixation port, three trial types—S-Large, S-Small, and Catch—were presented with equal probability
and respectively associated with a large, small, or no reward in the adjacent port. RT was defined as the time between sound onset and fixation port
exit. (B) Scatter plot of the mean RT in S-Large versus S-Small trials. Each dot represents one session from one rat (n = 339, 16 rats). Inset shows the
overall mean 6 sem (paired t test). (C) RT modulation as a ratio of mean RT between S-Large versus S-Small trials in each session around the reversal
learning transition. Seventeen individual transition sequences (gray lines) with at least five sessions both before and after reversal learning were
plotted, with the overall mean 6 sem in black. In the first three sessions after the reversal learning transition, RT was faster toward S-Small, which
predicted the larger reward before reversal. The RT difference grew larger with more training, and did not reach asymptotic level after 10 sessions.
doi:10.1371/journal.pbio.1001811.g001

Author Summary

Humans and animals face the constant challenge of
identifying the subset of incoming sensory stimuli that
are most behaviorally relevant and prioritizing behavioral
responses accordingly. Critical to this decision is the ability
to determine whether a stimulus is motivationally sa-
lient—that is, whether the stimulus predicts important
behavioral outcomes such as reward or punishment. While
it is generally assumed that motivational salience is related
to faster decision speed and shorter reaction time, it
remains unclear how motivational salience actually mod-
ulates the decision-making process. This study investigates
how the motivational salience signal in the basal forebrain
controls the fundamental properties of the decision-
making process—decision speed and its variability. In rats
performing a reward-biased simple reaction time task, we
show that the basal forebrain motivational salience signal
is associated with a faster and also precise decision speed.
In support of a causal role for this association, artificially
augmenting this basal forebrain motivational salience
signal by electrical stimulation also leads to faster and
more precise reaction times. These results suggest that
decision speed and its variability are jointly determined by
an early and previously unrecognized step in the decision-
making process, dictated largely by the motivational
salience signal encoded by poorly understood noncholi-
nergic neurons in the basal forebrain.

Motivational Salience Modulates Decision Speed
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the reward-biased simple RT task provided a large dynamic range

of RT modulation between S-Large and S-Small trials.

The reward-biased simple RT task was designed to minimize

several variables that also affect RT: First, the influence of trial-by-

trial variation in motivational state such as fatigue and satiety was

minimized by requiring rats to initiate each trial with the same

nosepoke fixation response. Second, the influence of choice—that

is, choosing between different response options—on RT was

minimized because both S-Large and S-Small signaled reward in

the same port. Third, the influence of stimulus uncertainty and

sensory decision-making process on RT was minimized by using

sounds well above the detection threshold. Finally, this task design

ensured that any other variable that affects RT at the time of

sound onset, such as temporal expectation of stimulus onset or the

spontaneous activity state of the neural network, should similarly

affect both S-Large and S-Small trials. These behavioral and

neuronal variabilities not directly controlled by the experimenters

are collectively labeled as intrinsic noise of the decision-making

process in the current study and should be equivalent between

S-Large and S-Small trials. As a result, the RT difference between

S-Large and S-Small trials must arise from the difference in the

properties of the stimulus, such as the associated motivational

salience. Therefore, the reward-biased simple RT task serves to

provide the necessary simple behavioral context to reveal the

quantitative relationship between BF motivational salience signal

and RT, while minimizing the influence of other variables.

We first investigated whether BF motivational salience signal

occurred early enough to modulate RT and decision speed. In six

rats recorded over 40 sessions, we recorded 309 well-isolated single

units in the region of the BF where cortically projecting BF

neurons are located (Figure S2) [28–30]. Of these BF neurons,

47% (144/309) showed prominent bursting responses to sound

onset and were classified as BF bursting neurons (Figure 2B, Figure

S3). The same neurons also showed bursting responses to the trial

start light signal (Figure 2A) and reward delivery (Figure 2D),

consistent with the encoding of motivational salience as we

previously reported [16]. This bursting response began at 50 ms

after sound onset and peaked at 120 ms (Figure 2B), considerably

earlier than almost all RTs in all behavior sessions (Figure 1B), and

largely dissipated when rats exited the fixation port (Figure 2C).

Therefore, BF motivational salience signal occurred early enough

in the decision process to modulate the fixation port exit RT.

Next, we investigated whether the strength of motivational

salience, defined as the amplitude of the BF bursting response, was

correlated with decision speed. A typical example of salience-

encoding BF neuron is shown in Figure 3A, which illustrates how

these neurons respond to both S-Large and S-Small onset at a

fixed latency relative to stimulus onset and robustly in each trial in

well-trained animals. This example neuron also illustrates the

common finding that the strength of BF bursting response was

stronger toward S-Large than toward S-Small onset (Figure 3B,C).

This is consistent with the intuition that pairing with the larger

reward should endow a stronger motivational salience to S-Large

than to S-Small.

The critical comparison was whether the RT modulation

between S-Large and S-Small trials was correlated with the

modulation of BF bursting amplitude between these two trial

types. We found that the modulation of BF bursting amplitude at

both single neuron and population level were highly correlated

with the modulation of mean RT between S-Large and S-Small

trials in a session (Figure 3D, Figure S4). The modulation of BF

bursting tracked the modulation of mean RT even during the first

three sessions of reversal learning when the RT bias had not been

updated to reflect expected reward (red dots in Figure 3D). These

findings provide key support of our hypothesis that the difference

in decision speed between the two trials types was mostly driven by

the difference in their associated motivational salience, encoded in

the BF. Since S-Large, S-Small, and Catch trials were randomly

intermingled in a session, BF motivational salience signal is

coupled with RT on a single trial basis.

Having demonstrated the strong coupling between BF bursting

amplitude and RT modulation, we further investigated whether

this coupling was similarly present within, and not just between,

S-Large and S-Small trials. We reasoned that if BF bursting

amplitudes similarly predicted RT within the same trial type, the

largest difference in BF bursting amplitude should be observed

between the fastest and slowest trials. However, we found that

there was little modulation of BF bursting strength even between

these trials that had the largest RT difference within each trial type

(Figure 4A,B, Figures S5 and S6), and the modulation of BF

bursting amplitude did not correlate with RT modulation

(Figure 4C,D). These results suggest that the trial-by-trial RT

variability within each trial type was not correlated with the

moment-to-moment fluctuation of BF motivational salience signal

across trials. Instead, the within-trial-type RT variability likely

reflected the contribution from the intrinsic noise of decision-

making process in the presence of highly similar BF bursting

amplitude and behavioral states across trials.

To better understand the nature of the within-trial-type RT

variability, we noted its similarity with the considerable RT

variability in humans when sensory ambiguity is reduced to a

minimum, which has long been proposed to reflect the contribu-

tion of intrinsic noise in the decision-making process [31–33]. In

humans, RT variability to suprathreshold sensory stimuli like the

ones used in the current study, but not RT variability toward

ambiguous sensory inputs, is highly structured and best described

by the recinormal distribution [31,32,34]. Recinormal RT

distribution means that the reciprocal of RT (1/RT) is normally

distributed and that the RT distribution can be transformed into a

straight line by plotting 1/RT versus its z-score (Figure S7).

Therefore, we tested whether recinormality can be extended to the

rat and found that the within-trial-type RT variability was well-

described by the recinormal distribution (Figure 5A, Figure S7).

Figure 2. Phasic bursting response of BF neurons encodes
motivational salience and precedes RT. BF population PSTH to
trial start light signal (A), sound onset (B), fixation port exit (C), and the
first drop of water reward (D). The population PSTH (mean 6 sem) for
BF bursting neurons (red, n = 144) and all other BF neurons (blue,
n = 165) recorded from six rats in 40 sessions. The yellow shaded area
indicates the {50, 160} ms window used to calculate BF bursting
amplitude. BF bursting neurons also showed bursting responses to trial
start signal and reward. The bursting response to sound onset largely
dissipated before RT.
doi:10.1371/journal.pbio.1001811.g002

Motivational Salience Modulates Decision Speed
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This finding supports the universality of recinormal RT distribu-

tion across species and response modalities, and supports the

hypothesis that within-trial-type RT variability likely reflected the

contribution of intrinsic noise in the decision-making process.

The empirical observation that the within-trial-type RT

variability is well described by the recinormal distribution suggests

that the recinormal distribution provides an ideal quantitative

framework to understand the two sources of RT variability in our

study. Specifically, we hypothesize that the variability (s) of the

underlying normal distribution provides an estimate of the

influence from intrinsic noise on RT, whereas the mean speed

(m) of the normal distribution captures the between-trial-type RT

variability modulated by the BF motivational salience signal.

Therefore, the quantitative relationship between m and s
parameters of S-Large and S-Small RT distributions should

provide insights on the relationship between the two sources of RT

variability, and by extension the relationship between BF

motivational salience signal and intrinsic noise of the decision-

making process.

Interestingly, we observed that S-Large and S-Small RT

distributions in a session often intersected near their respective

fastest RT at a fixed time point around 160 ms (Figure 5B),

suggesting that all RT distributions swivel against a fixed time

point. To further investigate the consequences of swiveling against

a fixed time point, we solved the linear equations for the two RT

distributions with parameters (m1, s1) and (m2, s2) under the

constraint of a fixed intersection point (Figure 5C). The fixed

swivel point predicted two invariant relationships between

parameters (m1, s1) and (m2, s2), which revealed previously

unknown and exceedingly strong correlations between m and s
parameters of RT distributions (Figure 5D,E). These novel

correlations indicate that RT distributions with a larger mean

speed m (faster RTs) are associated with a shrinking variability s.

When m approaches the theoretical limit (vertical black dotted line

in Figure 5F), the mean RT approaches its fastest limit equivalent

to the swivel point ,160 ms while the RT variability (s) shrinks to

zero. This extreme scenario underscores the general finding that

the RT variability (s) does not scale proportionally with RT (1/m),

as would be expected from Weber’s law, but in fact shrinks much

faster. In the broader context of between- versus within-trial-type

RT variability, the novel correlations between m and s revealed

here suggest that these two sources of RT variability are tightly co-

regulated and not independent. The magnitude of within-trial-

type RT variability (s), reflecting the magnitude of contribution

from intrinsic noise, is actively suppressed in faster RT distribu-

tions with higher speed (m) and stronger BF motivational salience

signals.

The co-regulation of m and s parameters of RT distributions

further suggests that each RT distribution can be determined with

only one free parameter instead of two. From this perspective, the

organization of RTs in our study can be viewed as a family of RT

distributions swiveling against a fixed time point around 160 ms,

with only one degree of freedom (Figure 5F). As such, our analysis

predicts that this family of RT distribution can be generated by

one single neural mechanism with three predicted properties

essentially those of the BF motivational salience signal. First, this

neural mechanism should occur before the fixed swivel point

(,160 ms) like the BF bursting response (Figure 2). Second, the

activity of this neural mechanism should determine the speed (m)

and variability (s) parameters of RT distributions, similar to how

BF bursting amplitude is correlated with the mean RT (Figure 3).

Third, it predicts that the same speed (m) and variability (s)

parameters should be shared by all trials within a recinormal RT

distribution regardless of whether RT is fast or slow, similar to the

invariant BF bursting amplitude across all trials within a trial type

(Figure 4). Therefore, these results support that BF motivational

salience signal serves as a neural correlate of RT distribution

parameters.

Figure 3. BF bursting amplitude predicts RT modulation
between S-Large and S-Small trials. (A) Bursting responses of
one representative BF neuron to S-Large and S-Small onset. Individual
trials in raster plots were aligned to sound onset and sorted by RT
(blue). (B) Population PSTH (mean 6 sem) for BF bursting neurons
(n = 144) showed stronger bursting to S-Large than to S-Small. The
mean RTs for the corresponding trials were indicated in the inset (mean
6 std, n = 40 sessions). (C) Scatter plot of the mean bursting amplitude
for each BF bursting neuron in S-Large versus S-Small trials from one
session. Each dot represents one BF bursting neuron (n = 144), with red
dots representing neurons recorded during the first three sessions after
reversal (n = 14). (D) Correlation between BF bursting amplitude
modulation and mean RT modulation in one session, each calculated
as a ratio between S-Large and S-Small trials. Results plotted separately
for individual BF bursting neurons (gray), as well as for the entire
bursting population per session during the first three reversal sessions
(red) or afterwards (blue). Between S-Large and S-Small trials in a
session, BF bursting strength was strongly correlated with the
modulation of mean RT.
doi:10.1371/journal.pbio.1001811.g003

Motivational Salience Modulates Decision Speed
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Finally, to investigate whether the observed coupling between

the strength of BF motivational salience signal and the speed and

variability of a RT distribution represents a causal relationship, we

tested the prediction that augmenting the strength of BF

motivational salience signal via electrical stimulation should

produce faster and more precise RT distributions. The experi-

mental setting was the same as the reward-biased simple RT task,

except that S-Large and S-Small sounds were replaced by a

common 6 kHz tone in both trial types and either paired with or

without BF microstimulation (Figure 6A, Figure S8). The BF

electrical stimulation was precisely timed to coincide with the tone-

induced bursting response as a way to artificially augment the BF

bursting amplitude. Under this protocol, RTs in the stimulated

trials indeed became faster relative to nonstimulated control trials

(Figure 6B–D). This RT difference grew larger as the stimulation

current increased, consistent with the observation that greater

bursting amplitudes were associated with faster RT distributions.

Furthermore, BF electrical stimulation also produced more precise

RTs such that the coupling between m and s parameters of RT

distributions remained largely unchanged (Figure 6E and Figure

S9). This result therefore supports a causal role of the BF

motivational salience signal in determining both the speed and

variability of RT distributions.

Discussion

This study examined how motivational salience modulates

decision speed. Our results provide strong support that the

motivational salience signal in the BF, encoded by the phasic

bursting response [16], is a major determinant of decision speed.

We found that the BF bursting response took place early in the

decision-making process and occurred early enough to modulate

RT in the reward-biased simple RT task (Figure 2). RT variability

in this task can be partitioned into two distinct sources, with the

between-trial-type RT modulation tightly correlated with the

strength of BF motivational salience signal (Figure 3), whereas the

within-trial-type RT variability was unrelated to the BF motiva-

tional salience signal and likely reflected the intrinsic noise of the

decision-making process (Figure 4). Analysis of the organization of

RTs using recinormal distribution revealed that these two sources

of RT variability were highly coupled, where RT distributions

with fast mean RTs were associated with shrinking RT variability

(Figure 5). Artificially augmenting the BF bursting amplitude via

electrical stimulation increased decision speed as a function of

stimulation current amplitude and also reduced variability,

consistent with a causal relationship (Figure 6). Together, these

results support the hypothesis that the BF motivational salience

signal increases decision speed and also suppresses the contribu-

tion of intrinsic noise on RT variability.

Although the correlation between BF motivational salience

signal and RT was fully predicted based on the literature [13–16],

this is the first study, to our knowledge, to demonstrate the

quantitative relationship between RT and a neural correlate of

motivational salience defined independently of RT. BF bursting

amplitude and RT were correlated on a single trial basis because

the three trial types (S-Large, S-Small, and Catch) were

intermingled and randomly presented in the session. Therefore,

BF bursting amplitude fluctuated significantly across trials (of

different trial types) and provided a good predictor of the RT on

that trial. Within the same trial type, however, BF bursting

amplitude remained highly consistent across trials, reflecting the

highly similar behavioral and motivational states.

The reward-biased simple RT task was designed to minimize

the influence of other variables on RT such that RT variability

Figure 4. No modulation of BF bursting amplitude within a trial type. (A and B) Population PSTHs (mean 6 sem) and scatter plots of
bursting amplitude for all BF bursting neurons in faster (blue) and slower (cyan) RTs within S-Large (A) and S-Small (B) trials. Convention as in
Figure 3B–C. There was little modulation of BF bursting amplitude within a trial type. (C–D) Correlation between BF bursting amplitude modulation
and mean RT modulation between faster and slower RTs within S-Large (C) and S-Small (D) trials. Convention as in Figure 3D.
doi:10.1371/journal.pbio.1001811.g004

Motivational Salience Modulates Decision Speed
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was mainly driven by motivational salience and by the intrinsic

noise of the decision-making process. To determine the respective

contributions of BF motivational salience signal and intrinsic noise

on RT, our approach was to systemically vary the contribution

from these two sources of RT variability. When the BF bursting

amplitude was held constant within a trial type (Figure 4), the trial-

by-trial RT variability was unrelated to the moment-by-moment

fluctuation of BF motivational salience signal and therefore

reflected the contribution from intrinsic noise of decision-making.

When BF bursting amplitude was modulated between S-Large and

S-Small trials (Figure 3), BF motivational salience signal accounted

for most of the between-trial-type RT variability. The contribution

of BF bursting on RT was further supported by the responses to

the trial start light signal (Figure S10), in which the large

fluctuation of BF bursting amplitude across trials was the main

contributor to RT variability and was associated with clearly

visible trial-by-trial coupling between BF bursting amplitude and

overall response latency. Therefore, the lack of correlation

between BF bursting amplitude and RT within a trial type does

not mean that BF bursting is not correlated with RT. Rather, it

reflects a principled approach to estimate the contribution of

intrinsic noise on RT variability.

Our findings support that the recinormal distribution provides

a quantitative framework, across species and response modalities,

to describe the contribution of intrinsic noise on RT variability.

Although recinormal RT distributions have been described to

swivel against fix points under other behavioral contexts [35–38],

our finding is the first, to our knowledge, to describe that RT

distributions can swivel against a fixed time point near their

respective fastest RT (Figure 5). This novel swiveling pattern

revealed previously unknown correlations between the speed (m)

and variability (s) parameters of recinormal RT distributions,

and suggests that the contribution of intrinsic noise can be

actively suppressed to near zero RT variability in the presence of

a fast mean RT and strong BF motivational salience signal. This

analysis also suggests that RT in a single trial is jointly

determined by the parameters (m and s) of the recinormal

distribution, and by the stochastic intrinsic noise that randomly

draws from the recinormal RT distribution. Determining the

parameters of the recinormal distribution therefore represents a

previously unrecognized yet essential step in the decision-making

process, which determines both the decision speed and its

precision and is dictated largely by the BF motivational salience

signal.

Figure 5. RTs are organized as a family or recinormal distributions swiveling against a fix time point. (A) A representative session shows
that RTs in S-Large and S-Small trials were recinormally distributed and can be transformed into a straight line by plotting 1/RT versus its z-score. Each
dot represents RT from one trial. The intersection point of the two RT distributions is indicated by the blue circle. (B) 2-D histogram of the intersection
point across sessions shows that the two RT distributions typically intersected around 160 ms. (C) Schematic of the intersection point analysis.
Transforming the two RT distributions into straight lines by plotting 21/RT versus its z-score predicts novel invariant relationships between the
intersection point (x0, y0) and parameters (m1, s1) and (m2, s2). (D) The x-coordinate of the intersection point is expressed as (m2s12m1s2)/(s22s1).
The numerator and denominator are plotted on the y- and x-axis, respectively, along with the linear fit. Each dot is derived from RT distributions in
one session (n = 339, 16 rats). (E) The y-coordinate of the intersection point is expressed as (m22m1)/( s22s1). Convention as in (D). (F) These data
support the model that RT distributions swivel against a fixed time point, and predict that this family of RT distributions can be generated by a single
neural mechanism whose activation level sets the parameters of RT distributions.
doi:10.1371/journal.pbio.1001811.g005

Motivational Salience Modulates Decision Speed
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Our study is also the first, to our knowledge, to demonstrate that

artificially increasing BF bursting amplitude through BF electrical

stimulation was sufficient to produce faster and more precise RTs

(Figure 6). Because stimulated and nonstimulated trials (as well as

catch trials) were randomly intermingled in the session, our results

suggest that the effect of BF electrical stimulation was transient and

did not affect RT in subsequent trials. This is consistent with the

trial-by-trial coupling between BF bursting amplitude and RT

(Figure 3). We believe that this transient influence on RT by BF

electrical stimulation is more consistent with a transient increase of

the motivational salience associated with the stimulus, and less

consistent with an increase in general arousal, which should

fluctuate at a much slower time scale but not in single trials.

The current study replicated and extended our previous findings

linking BF bursting response to motivational salience. We found

that BF bursting neurons not only responded to multiple

motivationally salient stimuli in the reward-biased simple RT task

(Figure 2), their bursting response also reflected the influence of

other behavioral variables on motivational salience. For example,

when rats were not required to maintain fixation, BF bursting

amplitude in response to the trial-start light signal showed large

fluctuation across trials (Figure S10), presumably reflecting the

influence of fluctuations in arousal, fatigue, or satiety on

motivational salience. This fluctuation of BF bursting amplitude

was coupled with response latency on a trial-by-trial basis (Figure

S10). Furthermore, in the early sessions of reversal learning when

the RT bias had not been updated to reflect expected reward, BF

bursting remained tightly coupled with RT modulation

(Figure 3D). These data provide further support that BF bursting

amplitude reflects motivational salience and is tightly coupled with

decision speed. The role of BF motivational salience signal in the

learning process is an important question that needs further

investigation in future studies.

The widespread spatial distribution of BF bursting neurons is

consistent with the location of cortically projecting BF neurons as

revealed by placing retrograde tracers in the prefrontal cortex

(Figure S2) [28]. The cortically projecting BF neurons are not

restricted to a specific subregion in this area, but spread across

multiple subregions, including the ventral part of globus pallidus

(GP), ventral pallidum (VP), substantia innominata (SI), nucleus

basalis of Meynert (NBM, or B), magnocellular preoptic nucleus

(MCPO), and horizontal limb of the diagonal band (HDB), but not

in the adjacent hypothalamic region lateral preoptic area (LPO)

[28]. Furthermore, a recent study [39] shows that individual BF

neurons tend to project to multiple subregions in the frontal

cortex, unlike single neurons in other neuromodulatory systems,

which tend to project to one single subregion in the frontal cortex.

This finding suggests that the exact location of BF neurons, as well

as the location of BF stimulation electrode, is less critical because

the activity of any subset of cortically projecting BF neurons likely

provide similar modulation of the entire frontal cortex. Previous

studies have shown that the salience-encoding BF neurons

represent a physiologically homogeneous group of noncholinergic

BF neurons, which, unlike cholinergic BF neurons, do not change

their mean firing rates between awake and sleep states [16,21].

Given that the neurochemical identity of BF bursting neurons

remains to be determined, electrical stimulation is the best

available technique to ensure the activation of BF bursting

neurons for testing causality. One appealing possibility is that

salience-encoding BF neurons may correspond to the cortically

projecting GABAergic BF neurons, which represent an anatom-

ically prominent projection to the cerebral cortex [28–30] and

Figure 6. Augmenting BF bursting strength via BF electrical stimulation leads to faster and more precise RTs. (A) Schematic of the BF
stimulation task. An identical 6 kHz tone was presented either paired with or without BF electrical stimulation delivered during the BF bursting
window. Both trial types led to the same reward amount. (B) An example session shows that BF electrical stimulation led to a faster RT distribution
compared to nonstimulated tone-alone trials. Convention as in Figure 5A. (C) Increasing BF stimulation current led to faster RTs (mean 6 sem) in
stimulated trials but no change of RT in nonstimulated trials (linear mixed model, n = 7 rats, 44 sessions). (D) Stronger stimulation current led to
stronger RT modulation between stimulated and nonstimulated trials (linear mixed model). Data from individual animals plotted as gray lines, with
the population mean 6 sem in black. (E) BF stimulation also produced more precise RTs while largely preserving the coupling between m and s
parameters of RT distributions as seen in Figure 5D. The blue line represents the linear regression, whereas the black dotted line represents the linear
regression from Figure 5D for comparison. See Figure S9 for more details.
doi:10.1371/journal.pbio.1001811.g006
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primarily innervate on interneurons in the cortex [40,41]. The

activation of these long-range projecting GABAergic BF neurons

should transiently inhibit cortical interneurons, releasing cortical

pyramidal neurons from inhibition, leading to an increase in

response gain modulation and ultimately resulting in faster

decision speed.

The coupling with faster and more precise decision speed

demonstrated in this study adds to the functional significance of

this anatomically prominent [28–30] yet previously neglected

neuronal population in the BF [42,43]. Dissecting the neural

circuit-level mechanisms of the BF motivational salience signal will

have important translational implications. Dysregulation of

motivational salience coupled with decreased decision speed are

well documented in schizophrenia [8,9,44] and depression

[4,5,45]. Significant decreases in decision speed also represent a

key feature in dementia [6,7] and cognitive aging [11,12].

Although the dysregulation of motivational salience has tradition-

ally implicated dopamine neurons and the literature on dementia

and cognitive aging has largely focused on cholinergic BF neurons,

our study points to a novel and previously neglected candidate

mechanism in these conditions. We propose that the decline of

decision speed in some of these conditions may result from either

the functional impairment of the BF motivational salience system

or a disrupted cortical-BF interaction.

Materials and Methods

Ethics Statement
All experimental procedures were conducted in accordance

with the National Institutes of Health (NIH) Guide for Care and

Use of Laboratory Animals and approved by the National Institute

on Aging Animal Care and Use Committee.

Subjects
Twenty-two male Long Evans rats (Charles River, NC), aged 3–

6 mo and weighing 300–400 grams at the start of the experiment,

were used for this experiment. Sixteen of the 22 rats were trained

in the reward-biased simple RT task, with 6/16 of this group

undergoing surgery for chronic neuronal activity recording. Seven

rats were used in the electrical microstimulaiton experiment,

including one of the six rats used for neuronal activity recording,

and the other 6/22 rats were used exclusively for the electrical

stimulation experiment.

Rats were housed under 12/12 day/night cycle with ad libitum

access to rodent chow and water in environmentally controlled

conditions. During training and recording procedures, rats were

mildly water restricted to their 90% weight and were trained in a

daily session of 60–90 min in length, 5 d a week. Rats received

15 min water access at the end of each training day with free

access on weekends.

Apparatus
Twelve plexiglass operant chambers (110L68 J 0W6130H),

custom-built by Med Associates Inc. (St. Albans, VT), were

contained in sound-attenuating cubicles (ENV-018MD) each with

an exhaust fan that helped mask external noise. Each chamber was

equipped with one photo-beam lickometer reward port (CT-ENV-

251L-P) located in the center of the front panel, with its sipper

tube 7.5 cm above the grid floor. Two infrared (IR) sensors were

positioned to detect reward port entry and sipper tube licking,

respectively. Water reward was delivered through a custom-built

multibarrel sipper tube. The delivery system was controlled by

pressurized air and each solenoid opening (10 ms) was calibrated

to deliver a 10 ml drop of water. The reward port was flanked by

two nosepoke ports (ENV-114M), located 6.6 cm to each side and

5.9 cm above the grid floor. Each nosepoke port was equipped

with one IR sensor to detect port entry. Only the right nosepoke

port was used in behavioral training as the fixation port, while the

left nosepoke port was inactive.

Each chamber was equipped with two ceiling-mounted speakers

(ENV-224BM) to deliver auditory stimuli, and two stimulus lights

(ENV-221) positioned above the reward port in the front panel.

Behavior training protocols were controlled by Med-PC software

(Version IV), which stored all event timestamps at 2 ms resolution

and also sent out TTL signals to neurophysiology recording

systems to register event timestamps.

Behavioral Training
Shaping protocol. All rats (n = 22) were initially trained to

respond to 6 kHz tone (2 s, 80 dB) in the operant chamber to

receive three drops of water in the reward port, delivered starting

at the third lick. Only trials with the third lick completed within a

3 s reward window were defined as successful go response and

rewarded. Subsequently, rats were shaped to nosepoke in the

fixation port and maintain fixation until tone presentation. Four

different foreperiods (0.35, 0.5, 0.65, and 0.8 s) were used,

pseudorandomly across trials, to minimize temporal expectation

of stimulus onset. Tone was delivered in 2/3 of trials (rewarded),

whereas no sound was delivered in the other 1/3 trials (catch trials

with no reward). Early fixation port exit before the foreperiod

resulted in no reward delivery. The inclusion of catch trials

ensured that tone onset was the most reliable predictor of reward

and that rats did not employ a timing strategy for responding.

The intertrial interval (ITI) was 3–6 s, signaled by a white

stimulus light. The offset of the light thus served as the trial start

signal, indicating that fixation port entry could now lead to tone

presentation. Premature fixation port entry and premature licking

both resulted in resetting the ITI timer. After rats reached

asymptotic performance after 1–2 mo of training, 16 rats were

subsequently trained in the reward-biased simple RT task, whereas

the other six were used exclusively in the electrical microstimula-

tion experiment. Note that the shaping protocol was essentially the

same as the one used for electrical microstimulation (Figure 6A),

except that no BF electrical stimulation was delivered.

Reward-biased simple RT task. The reward-biased simple

RT task was the same as the shaping protocol except that rats were

presented with three different conditions with equal probability in

the fixation port: (1) white noise, (2) 100 Hz clicker sound, or (3)

catch trials (Figure 1A). The two auditory stimuli were chosen to

be clearly discriminable and presented at a suprathreshold level

(2 s, 80 dB) to minimize sensory detection and discrimination

effort. The two sounds were associated with either 1 versus 4 or 4

versus 1 drops of water in a session. Each rat was trained on a

particular reward amount schedule over several sessions until a

clear RT difference between S-Large and S-Small trials emerged.

The animals then underwent serial reversal learning where the

reward amount schedule was reversed, such that the sound

previously paired with a small reward was paired with a large

reward, and vice versa (Figure S1E–H). Behavior and neural data

were collected during both the initial learning as well as during

subsequent serial reversal learning of the sound-reward associa-

tion. Because the sound associated with large reward was

counterbalanced across animals and across serial reversal learning

phases, the sound predicting the larger reward will be referred to

as S-Large, whereas the sound predicting the smaller reward was

referred to as S-Small.

For the final behavior analysis, only sessions meeting the

following criteria were included: (1) the animal completed at least
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50 trials per trial type; (2) mean RT in both S-Large and S-Small

trials must be faster than 500 ms; and (3) the proportion of catch

trials with fast RT (less than 300 ms) must be less than 10%,

ensuring a low response propensity in the absence of sound. A total

of 431 sessions met these criteria. Of these sessions, 79% (339/431)

were well described by the recinormal distribution (Kolmogorov–

Smirnov, or K-S, test p value$0.6 for both S-Large and S-Small

trials in Figure S7) and were used for the final analysis. In these

sessions, rats completed on average 111646 (mean 6 std) trials

per trial type (on average 333 total trials in a session), with

227665 ms RT (mean 6 std) to S-Large, 260677 ms RT (mean

6 std) to S-Small, and had 4.3%62.7% (mean 6 std) catch trials

with fast RT (less than 300 ms).

The strategic positioning of three IR sensors partitioned the

entire response time (between sound onset to reward collection)

into four epochs: (1) sound onset to fixation port exit, (2) fixation

port exit to reward port entry, (3) reward port entry to the first lick,

and (4) first lick to the third lick (the first drop of water reward).

The RT measure, which corresponds to the first response time

epoch, was the segment of the entire response trajectory showing

the largest behavioral difference between S-Large and S-Small

trials (Figure S1). This indicates that rats were able to make rapid

behavioral discrimination between S-Large and S-Small trials.

Behavioral and neural data were analyzed using custom scripts

in Matlab 2012a (Mathworks, MA), and statistical tests were

analyzed using SPSS (Version 20, IBM Corp).

RT Analysis
Recinormal RT distribution. Previous studies have estab-

lished that RTs in response to noisy or ambiguous sensory

stimuli—that is, conditions that require considerable sensory

evidence accumulation—are well described by a random-walk

diffusion model [34]. On the other hand, simple RTs in response

to suprathreshold stimuli are best characterized by the recinormal

distribution [34]. This dichotomy likely represents two distinct

stages in the decision-making process [34].

The recinormal property of RT distributions means that the

reciprocal of RT (1/RT) is normally distributed, which can be

fully characterized by its mean (m) and standard deviation (s).

Because a normal distribution can be transformed into a straight

line when plotted against its z-score transformation, a recinormal

RT distribution can be transformed into a straight line by plotting

1/RT versus its z-score (Figure S7). As a convention to keep faster

RTs to the left of the plot, 21/RT was used instead of 1/RT as

the x-coordinate. K-S test was used to compare the empirical RT

distribution with the fitted recinormal RT distribution, and to

determine the best estimate of the m and s parameters that

produced the minimal p values for the K-S test (Figure 5A, Figure

S7).

The empirical observation of recinormal RT distributions has

led to the development of the Linear Approach to Threshold with

Ergodic Rate (LATER) model [31], which posits that recinormal

RT distributions can be generated by a simple stochastic neural

process that accumulates activity at a constant rate until reaching a

decision threshold. By arbitrarily setting the baseline neural

activity as 0 and the decision threshold as 1, the constant rate of

neural activity accumulation (or rise rate) corresponds to the

normally distributed 1/RT,N(m,s2).

Stereotaxic Surgery and Electrode
After reaching asymptotic behavioral performance, rats were

taken off water restriction for at least 3 d before undergoing

stereotaxic surgery for chronic electrode implants. Rats were

anesthetized with isoflurane (2%–4% isoflurane induction followed

with 1%–2% maintenance) and received atropine (0.02–0.05 mg/

kg, i.m.) to reduce respiratory secretion. The incision area was

shaved and cleaned with betadine, and injected first with local

anesthetic (1% mepivacaine HCl solution). Ophthalmic ointment

was applied to prevent corneal dehydration. A heating pad was

used to maintain body temperature at 37uC. Rats were placed in a

stereotaxic frame (David Kopf Instrument, CA) fitted with

atraumatic earbars.

Multiple skull screws were inserted first, with one screw over the

cerebellum serving as the common electrical reference and a

separate screw over the opposite cerebellum hemisphere serving as

the ground. A custom-built 32-wire multi-electrode moveable

bundle was implanted into bilateral BF. The electrode consisted of

two moveable bundles, each containing 16 polyimide-insulated

tungsten wires (California Fine Wire, CA) ensheathed in a 28-

gauge stainless steel cannula and controlled by a precision

microdrive. Eight of the wires in a bundle were 38 mm in diameter

and the other eight were 16 mm diameter, with 0.1–0.3 MV
impedance measured at 1 kHz (niPOD, NeuroNexusTech, MI).

The two cannulae of the electrode were precisely positioned to

target the BF on both hemispheres at AP –0.6 mm, ML

62.25 mm relative to Bregma [46]. During surgery, the cannulae

were lowered to DV 6–6.3 mm below cortical surface using a

micropositioner (Model 2662, David Kopf Instrument), and the

electrodes were advanced to 7 mm below the cortical surface.

After reaching target depth, the electrode and screws were covered

with dental cement (Hygenic Denture Resin). Rats received

acetaminophen (300 mg/kg, oral) and topical antibiotics after

surgery for pain relief and prevention of infection. Water

restriction and behavioral training resumed 7–10 d after surgery.

Cannulae and electrode tip locations were verified with cresyl

violet staining of histological sections at the end of the experiment

and compared with reference anatomical planes [46]. All

electrodes were found at expected positions (Figures S2 and S8).

Recording
Each recording session lasted 60–90 min. At the conclusion of

each recording session, BF electrodes were advanced at least

100 mm and 3–7 d elapsed before the next recording session. One

recording session at each electrode depth was included in the final

analysis and therefore sampled distinct BF single neuron

ensembles. A total of 309 BF single units were recorded from 40

sessions in six rats, at DV 7.1–8.3 mm below the cortical surface.

Electrical signals were referenced to a common skull screw

placed over the cerebellum. Electrical signals were filtered

(0.03 Hz–7.5 kHz) and amplified using Brighton Omnetics or

Cereplex M digital headstages and recorded using a Neural Signal

Processor (Blackrock Microsystems, UT). Single unit activity was

further filtered (250 Hz–5 kHz) and recorded at 30 kHz. Spike

waveforms were sorted offline using OfflineSorter (Plexon Inc,

TX). Only single units with clear separation from the noise cluster

and with minimal (,0.1%) spike collisions (spikes with less than

1.5 ms interspike interval) were used for further analyses.

Additional cross-correlation analysis was used to remove duplicate

units recorded simultaneously over multiple electrodes.

Identification of BF Bursting Neurons
Peri-stimulus time histograms (PSTHs) were generated for each

BF single neuron against each event using a 10 ms bin. To

determine whether each BF neuron significantly responded to

sound onset, we subtracted the neuronal response in catch trials

from the response in sound-present trials for each neuron. This

was necessary because many BF neurons changed their activity

during the foreperiod while waiting for sound onset inside the
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fixation port. This subtraction procedure removed the nonsta-

tionary baseline before sound onset (see Figure S5) and allowed us

to ask whether BF neurons truly responded to sounds. To

determine whether a significant response was present in the

subtracted PSTH, we used the method developed by Wiest et al.

[47]. Briefly, the statistical significance of PSTHs was determined

by comparing cumulative frequency histograms (CFHs) of PSTHs

after sound onsets against the cumulative sum distribution of

baseline PSTH before sound onsets ({21, 0}s), estimated based on

1,000 bootstrapped samples (with replacement). The response

onset latency was defined as the first bin in which postcue CFH

exceeded the cumulative sum distribution from the baseline PSTH

(p = 0.01, two-sided). A minimum response amplitude of 0.2 spike

(per response) was required to be considered a significant response.

Fifty-nine percent (181/309) of recorded BF neurons showed a

significant response within 200 ms of sound onset (Figure S3).

Based on our previous studies [16,21], we focused on BF neurons

with a short latency (40–200 ms) excitatory response, which

accounted for 162 of the 181 neurons. Furthermore, since the

mean firing rate of the 162 neurons were bimodally distributed

(Figure S3) and BF neurons encoding motivational salience have

firing rates #8 spikes/s [16,21], we included only the 144/162

neurons with firing rate #8 spikes/s as BF bursting neurons

encoding motivational salience in our analysis. These neurons

represented the most prominent neuronal response type in the BF.

Bursting amplitude was calculated as the mean firing rate within

the {50,160} ms window after sound onset. There was consider-

able variability in the bursting amplitude across BF neurons

(Figure 3C), even within the same recording session. In order to

address the sampling variability and compare across sessions, we

used the bursting amplitude ratio between S-Large and S-Small

trials, which measures the modulation of BF bursting strength

between the two conditions. By comparing this bursting modula-

tion against RT modulation, we quantified how neuronal response

modulations correlated with RT modulations between S-Large

and S-Small trials. The activity of the entire bursting population

(Figure 3D, Figure 4C and D) was calculated by pooling the

activity of all BF bursting neurons recorded in a session as a

multiunit.

Consistent with a decreasing baseline activity before sound

onset, we noted that longer foreperiods produced a stronger

activity decrease during the prestimulus period, accompanied by

faster RTs (Figure S5). Thus, in our analysis comparing faster and

slower trials within the same trial type (Figure 4), it was important

to properly control for the influence of foreperiod on neuronal

activity and on RT. We therefore first sorted trials associated with

each foreperiod and then median split the trials into faster and

slower halves (Figure S5). This procedure led to a proper matching

of the foreperiod activity between the faster and slower half of

trials.

Electrical Stimulation
The behavior protocol (Figure 6A) for electrical stimulation was

the same as the reward-biased simple RT task (Figure 1A) except

that both S-Large and S-Small sounds were replaced by the same

6 kHz 80 dB tone in both trial types, but followed with or without

a train of electrical stimulation delivered directly through the BF

electrodes. Water reward, on both trial types, was the same (three

drops of water). This design allowed us to assess whether the

addition of BF electrical stimulation—as a way of augmenting the

naturally occurring bursting response to the tone—could lead to

faster RT distributions compared to nonstimulated control trials.

The stimulation was delivered through all 32 electrodes in the

BF, the same electrode configuration as used in the recording

experiment. This was intended to mimic the widespread presence

of BF bursting neurons throughout the recording region,

representing an ensemble bursting event of the entire population

[16,21].

Individual stimulation pulse was a biphasic charge-balanced

pulse (0.1 ms each phase) delivered through a constant current

stimulator (stimulus isolator A365R, World Precision Instruments,

FL), driven by a Master-8-VP stimulator (A.M.P.I., Israel). Each

stimulation train consisted of 11 pulses delivered at 100 Hz (10 ms

interstimulus interval) and lasted a total of 100 ms. Stimulation

current level was set at 16 mA, 24 mA, 32 mA, or 48 mA per

electrode, resulting in a total of 0.5 mA to 1.5 mA over all

electrodes. The timing of the stimulation was given at either

{60,160} or {80,180} ms posttone onset to coincide with the BF

bursting peak. We also implemented two stimulation current

paths; one was a unipolar stimulation protocol with currents

flowing between all BF electrodes (bilateral BF) against the

reference skull screw over the cerebellum. In the second

stimulation current path configuration, currents were flowing

through all BF electrodes in one hemisphere against all BF

electrodes in the other hemisphere.

In total, 44 sessions were tested in seven rats and 15

configurations, with 2–3 current levels tested in each configura-

tion. One rat was first used for recording experiments in the

reward-biased simple RT task, while the other six rats were never

trained in the reward-biased simple RT task prior to the

stimulation protocol. In Figure 6D, each gray line represents data

collected from one rat, under one specific combination of current

path and timing window. Linear mixed models were used to

handle an unequal number of within-configuration observations in

order to determine the influence of microstimulation on RT and

RT modulation between stimulated and nonstimulated trials. The

electrical stimulation current level was modeled as a continuous

variable and its influence on RT modeled as a constant slope fixed

effect. The choice of either timing windows and the choice of

either current path configurations did not modulate RT differently

(linear mixed models estimating the fixed effect of timing window

on RT modulation, F(1,39) = 0.899, p = 0.349; and the fixed effect

of current paths on RT modulation, F(1,39) = 0.303, p = 0.585;

interaction term F(1,39) = 0.498, p = 0.485). Therefore, these

variables were not included in the final model, which only tested

whether the fixed effect of stimulation current level on RT was

significantly different from zero. Electrical stimulation significantly

decreased RT in stimulated trials as a function of stimulation

current level (F(1,42) = 17.856, p,0.001; Figure 6C), but had no

influence on RT in nonstimulated trials (F(1,42) = 0.235, p = 0.630;

Figure 6C). Stimulation also significantly increased RT modula-

tion (ratio of mean RT between nonstimulated and stimulated

trials) as a function of stimulation current level (F(1,42) = 18.922,

p,0.001; Figure 6D).

Supporting Information

Figure S1 Detailed behavioral characterization of RT
differences between S-Large and S-Small trials in the
reward-biased simple RT task. (A–B) The entire response

trajectory between sound onset to reward delivery was partitioned

into four epochs. The modulation of response latencies between S-

Large and S-Small trials in these four epochs were calculated as a

ratio (A) or their difference (B) (mean 6 sem, n = 16 rats, 339

sessions). The largest modulation was found in the earliest epoch

corresponding to RT—that is, the latency between sound onset

and fixation port exit. Repeated measure ANOVA and post hoc

pair-wise comparisons showed significant differences in the mean
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between all pairs (p,0.001). (C) The average RT in S-Large and

S-Small trials for each rat, averaged across all sessions per rat.

Most rats have faster RTs in S-Large trials. (D) Boxplot of per

session mean RT in S-Large trials for each rat. There exists a

significant intersubject variability in decision speed. Rats are

ranked by their mean RT in S-Large trials in both (C) and (D). (E–

F) The number of rats (E) and the average number of sessions

completed (F) at each reversal learning phase. Of the 16 total rats

that acquired the task, 11/16 received first reversal learning and

completed 19.1611.6 (mean 6 std) sessions of training (per rat)

during first reversal learning. Five of 11 rats continued onto second

reversal learning and completed 17.6620.4 sessions. In total, 16

rats completed 25 reversal training transitions. The maximum

number of contingency reversal was five (in two rats). (G–H) Mean

RT for S-Small (G) and S-Large (H) trials relative to reversal

learning transition. Convention as in Figure 1C. The red dotted

lines indicate the overall average RT for S-Large trials across

sessions. The mean RT for S-Large trials remains relatively stable

throughout all phases of reversal learning, while the mean RT for

S-Small trials shows significant modulation by reversal learning.

(TIF)

Figure S2 Histological reconstruction of BF recording
electrode locations. (A) For each animal, the Nissl stain shows

the most ventral location of the electrode bundle, indicated by the

arrow. The reconstructed location of the electrode bundle is

indicated by the red box. Because all 16 electrodes in one electrode

bundle were moved together by the same microdrive, the location of

individual recording electrode cannot be reconstructed. The spatial

spread of electrodes at a particular depth was conservatively

estimated to span no more than 1 mm (AP)61 mm (ML)60.5 mm

(DV). Therefore, the box in each histological reconstruction

represents the estimated spatial spread of electrodes throughout

the entire dorso-ventral recording depth. The box is 1 mm wide

(ML), and 0.25 mm was added to the most dorsal and most ventral

recording depth to reflect uncertainty in the DV axis. Only one

hemisphere is shown here for clarity. The zoom-in view shows the

dorso-ventral extent of the recording depth, with each horizontal

gray bar representing the estimated center location for one recording

session. BF bursting neurons were recorded in 35/40 sessions. The

locations of the five sessions in which no BF bursting neurons were

recorded are indicated by black horizontal bars. (B) Summary of the

histological reconstruction in the current study, with each color box

representing one rat. The reconstruction shows that most BF

bursting neurons were recorded from Rats 2–6, centered at Bregma

20.36 to 20.72 mm, throughout multiple subregions including the

ventral part of GP, VP, SI, NBM, or B, MCPO, and HDB, but not

in the adjacent hypothalamus region (LPO).

(TIF)

Figure S3 Identification of BF bursting neurons. (A)

PSTHs of all BF neurons (n = 309) aligned to sound onset (left) and

PSTHs in catch trials aligned to matching foreperiods when the

sound onset would have occurred (right). BF neurons were sorted by

their response onset latency, starting with excitatory responses and

followed by inhibitory responses. (B) PSTHs of all BF neurons with

the responses in catch trials subtracted. The red bar to the right

indicates the 162 neurons with short latency (,200 ms) excitatory

response to sound onset. Nineteen BF neurons showed short latency

(,200 ms) inhibitory response to sound onset. (C) The mean firing

rate of the 162 neurons with short latency excitatory response

plotted on log scale showed a bimodal distribution. The 144

neurons with mean firing rate ,8 spikes/s were identified as BF

bursting neurons and selected for further analysis.

(TIF)

Figure S4 Correlation between BF bursting amplitude
and absolute RT. (A–C) Correlation between the population

BF bursting amplitude and mean RT of S-Large trials (A), S-

Small trials (B), and both trial types combined (C), in each

session. Results plotted separately for individual BF bursting

neurons (gray), as well as for the entire bursting population

(red and green) per session. Linear regression was shown using

the population BF bursting amplitude per session. Unlike the

results in Figure 3D, there was very weak correlation between

the BF bursting amplitude and the absolute mean RT. The

weak correlations here likely reflect two factors: First, there

exists a substantial variability in the bursting amplitude among

salience-encoding BF neurons (Figure S3), and hence a

significant sampling variability of BF activity across sessions.

Second, there exists a significant intersubject variability in

decision speed (Figure S1D), which is determined by factors

other than the motivational salience of the sounds. The ratio

measures we used in Figure 3D provided an internal

normalization of these between-session variabilities and

isolated the contribution of BF motivational salience signal in

modulating decision speed.

(TIF)

Figure S5 The effect of foreperiod on BF activity. (A) The

population PSTHs of BF bursting neurons were plotted for S-

Large (top) and S-Small trials (bottom), calculated separately for

each foreperiod. FP1 was the shortest 0.35 s foreperiod, whereas

FP4 was the longest 0.80 s foreperiod. The mean RTs for the

corresponding trials are indicated in the inset (mean 6 std).

Longer foreperiod was associated with faster RTs, but did not

increase BF bursting amplitude, suggesting that faster RTs

associated with longer foreperiods were not mediated by

increased BF bursting amplitude. Instead, longer foreperiod was

associated with stronger prestimulus activity reduction. (B) An

example BF bursting neuron illustrating how faster and slower

trials were determined for each foreperiod. This procedure

controlled for the influence of foreperiod on BF activity and on

RT.

(TIF)

Figure S6 The difference in BF bursting amplitude
between faster and slower trials within a trial type. (A–

C) The difference (mean 6 sem) in BF bursting amplitude

between faster and slower RTs within S-Large (A) and S-Small

(B) trials, and between S-Large and S-Small trials (C) (paired t

test). The average bursting amplitude difference was indicated.

(D–F) The same BF bursting amplitude difference analysis as in

(A–C), except that the respective baseline firing rate at {2

100,0} ms window was first subtracted. Adjusting for the

baseline firing rate resulted in smaller and less significant BF

bursting amplitude difference, indicating that the small differ-

ence in BF bursting amplitude between faster and slower trials

within a trial type was partly contributed by the difference in

baseline activity.

(TIF)

Figure S7 Schematic of recinormal RT distribution and
K-S fit. Although a recinormal RT distribution (A) is skewed to

the right, the reciprocal of which (1/RT) is normally distributed,

with mean m and standard deviation s (B). Note that the x-axis in

(B) is reversed so that faster trials were plotted to the left of the

distribution. Plotting (21/RT) against its z-score (C) transforms

the RT distribution into a straight line, expressed by the equation

y = (x+m)/s. The LATER model is depicted in the bottom half of

(A), indicating that RTs can be generated by a stochastic neural

process that accumulates activity at a constant rise rate until
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reaching a decision threshold. The rise rate is randomly drawn

from the normal distribution (1/RT) in each trial. K-S test was

used to compare the empirical RT distribution with the fitted

recinormal RT distribution, and to determine the best estimate of

the m and s parameters that produced the minimal p values for the

K-S test. Scatter plot of the K-S test p values for the two RT

distributions in a session (D) shows that most RT distributions

were well described by recinormal distributions. A total of 339/

431 sessions had both p values$0.6 (red dashed lines) and were

selected for final behavioral analysis. Each dot represents data in

one session from one rat. (E) RT distributions in four example

sessions from one rat sampled at different sessions around reversal

learning transition are shown to better understand the relationship

between S-Large and S-Small recinormal RT distributions

throughout the course of reversal learning. In the last session

before reversal (left panel), the large RT modulation between two

trial types was reflected by the large separation between the two

RT distributions. After reversal learning transition (2nd–4th

panels), the separation between the two RT distributions

decreased and slowly reemerged after several sessions.

(TIF)

Figure S8 Histological reconstruction of the locations of
BF stimulation electrodes. Convention as in Figure S2.
Rats S1–S6 were used exclusively for BF electrical stimulation

experiment, and Rat 6 was used initially for BF recording in

the reward-biased simple RT task. The reconstructed locations

for all rats are overlaid on the same sections in the bottom

summary panel, with each color representing one rat. The

locations of BF electrical stimulation electrodes collectively

cover similar regions as the BF recording electrodes (Figure

S2), which is consistent with the location of cortically

projecting BF neurons as revealed by placing retrograde

tracers in the prefrontal cortex [28].

(TIF)

Figure S9 BF electrical stimulation preserves the cou-
pling between m and s parameters of RT distributions.
(A) Our model in Figure 5F predicts that manipulating the

amplitude of BF bursting should modulate both the speed and

variability parameters of the RT distribution while the intersec-

tion point should remain unchanged. To further investigate

whether BF electrical stimulation shifted the coupling between m
and s parameters of RT distributions and the estimated

intersection point shown in Figure 5D, we first reproduced

Figure 5D here for comparison. Each dot is derived from RT

distributions in one session of reward-biased simple RT task

(n = 339, 16 rats). The invariant intersection point is estimated to

be 21/26.33 = 158 ms (21/slope). (B) The same intersection

point analysis was applied to all 44 BF electrical stimulation

sessions, using the same method to estimate m and s parameters

(see the dotted green line in panel C for an example). The blue

line represents the significant linear regression, which had a much

lower slope (22.25) compared to the linear regression slope in

(A), shown here as the black dotted line for comparison. We note

that, however, most sessions are well described by the original

linear regression (black dotted line). (C) Another example session

shows the influence of BF stimulation on the RT distribution.

Convention as in Figure 6B. Closer examination of RT

distributions in BF stimulation sessions found that although

RTs in stimulated trials were faster compared to tone alone trials

(Figure 6C–D), RTs in stimulated trials slowed down significantly

after ,250 ms after tone onset (or 70–90 ms after the end of BF

electrical stimulation) like the example session shown here. RTs

longer than 250 ms were much slower than expected based on

the recinormal RT distribution constructed by RTs faster than

250 ms. The significant slowing of long latency RTs in BF-

stimulated trials likely resulted from an unintended consequence

of BF electrical stimulation, which induced a delayed-onset near-

complete inhibition of salience-encoding BF neurons starting at

60–80 ms after BF electrical stimulation (unpublished data). To

eliminate the confounding influence of delayed inhibition on RTs

and to appropriately assess how enhancing BF bursting amplitude

via BF electrical stimulation modulates RT, we modified our

estimation of the m and s parameters of RT distributions based only

on RTs faster than 250 ms (solid green line). (D) Using this revised

method, we re-estimated m and s parameters in 32/44 sessions that

included at least 10 stimulated trials with RT faster than 250 ms.

Most of the outlier sessions in (B) did not have enough trials and

were removed from the analysis, which suggests that RTs in those

sessions are likely driven by the unintended delayed inhibition of BF

neurons. Using the revised estimate of m and s parameters, we

found a much stronger linear regression and estimated the

intersection point to be 21/25.31 = 188 ms, comparable to what

we found in (A).

(TIF)

Figure S10 BF bursting response to trial start light
signal. (A) An example BF bursting neuron showing bursting

responses to the trial start light signal. Trials were aligned to

light offset and sorted based on the latency between light offset

to fixation port entry (green). The response latency to the trial

start signal provided a proxy for the initial RT, but was

confounded by the variable starting position of the animal at

the time of light offset. As commonly seen in BF bursting

neurons, stronger BF bursting response was associated with

shorter response latency on a trial-by-trial basis, which

supports the idea that stronger BF bursting leads to faster

decision speed and shorter RT. Unlike the similar BF bursting

amplitude between faster and slower trials within S-Large or S-

Small trials, BF bursting amplitude showed large fluctuation

across trials because rats were not required to maintain

fixation and their behavioral states at the time of light offset

were not constrained. Therefore, the fluctuation in BF bursting

amplitude likely reflected the influence of fluctuations in

arousal, fatigue, or satiety on motivational salience. (B)

Population PSTH to the trial start light signal (mean 6 sem,

n = 144) in trials with faster and slower response. BF bursting

amplitude was larger in trials with shorter response latency.

Furthermore, faster responses to the trial start light signal were

associated with lower prestimulus baseline firing rate at {2

300, 0} ms before the light signal. This pattern is similar to the

observation that longer foreperiods were associated with faster

RTs and stronger prestimulus activity reduction (Figure S5),

suggesting the possibility that lower prestimulus activity of

salience-encoding BF neurons may be associated with faster

RTs, and the reduction of prestimulus activity may be

modulated by a temporal expectation signal. The significant

difference in prestimulus activity also supports the idea that the

behavioral state of the animal at the time of light offset was

different between faster and slower trials to the trial start light

signal.

(TIF)
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