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A model for relative biological 
effectiveness of therapeutic proton 
beams based on a global fit of cell 
survival data
Ramin Abolfath1, Christopher R. Peeler1, Mark Newpower   1, Lawrence Bronk2, David 
Grosshans2 & Radhe Mohan1

We introduce an approach for global fitting of the recently published high-throughput and high 
accuracy clonogenic cell-survival data for therapeutic scanned proton beams. Our fitting procedure 
accounts for the correlation between the cell-survival, the absorbed (physical) dose and the proton 
linear energy transfer (LET). The fitting polynomials and constraints have been constructed upon 
generalization of the microdosimetric kinetic model (gMKM) adapted to account for the low energy and 
high lineal-energy spectrum of the beam where the current radiobiological models may underestimate 
the reported relative biological effectiveness (RBE). The parameters (α, β) of the linear-quadratic (LQ) 
model calculated by the presented method reveal a smooth transition from low to high LETs which 
is an advantage of the current method over methods previously employed to fit the same clonogenic 
data. Finally, the presented approach provides insight into underlying microscopic mechanisms which, 
with future study, may help to elucidate radiobiological responses along the Bragg curve and resolve 
discrepancies between experimental data and current RBE models.

One of the main advantages of using protons and other ions in radiation therapy is the Bragg peak and its sharp 
distal dose gradient. This enables high dose delivery to deep seated tumors1.

While biological optimization is used for heavy ion therapy, for proton therapy a constant relative biological 
effectiveness (RBE) value of 1.1 continues to be employed clinically, despite experimental evidence that indicates 
a non-static RBE. A complete and robust model describing the cellular response and the biological effectiveness of 
protons along the Bragg curve would facilitate the biologic optimization of proton plans. However, uncertainties 
in the biological data at locations at or just distal to the Bragg-peak, where the charged particle LET is the high-
est, represent a particular challenge for the biological measurements and dose calculation in treatment planning 
systems2–6.

In general, RBE depends on the radiation dose, the fractionation scheme, the biological endpoint, the radi-
ation quality, dose rate, and the tissue and cell-type. Radiation quality includes the type of radiation, the energy 
and the linear energy transfer (LET) that describes the energy deposited from the beam into the irradiated mate-
rial, per unit particle path length (in units of keV/μm). As a charged particle penetrates tissue, it slows down and 
its LET increases. Experimentally RBE reaches a maximum at a certain depth and then decreases7.

A constant RBE of 1.1 has been recommended for clinical proton therapy8–12, despite the fact that variable RBE 
values have long been found experimentally13–17. In vitro experimental data reveal that the RBE depends on dose 
and the proton energy spectrum at the point of measurement13, 14. On the other hand, in vivo biological responses 
present a more complex expression showing smaller variations in RBE values for shallow depths. More recent 
studies have shown a significant increase of RBE at the end of the proton range15–18.

Given these laboratory results, it is likely necessary to develop a method to predict the biological effects of 
proton beams for given physical and geometric characteristics. One of the first attempts at modeling RBE based 
on track structure theory of heavy ions and neutrons was proposed by Butts and Kraft19–21. Implementation of 
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such models in clinical applications requires physical input parameters such as, local particle energy spectrum 
and, biological input parameters, such as cell nuclear size, end damage response, etc. Currently, access to such 
parameters is lacking due to the computational complexities required to obtain them.

Scholz, Krämer, and Kraft22–25 implemented track structure models into particle radiation therapy that led to 
a model known as local effect model (LEM). Subsequently Paganetti26 studied amorphous track structure models 
in proton radiation therapy and showed that the model needed a critical adjustment of the parameters to improve 
prediction. Recently, Elsasser et al.27 proposed a modified local effect model which correlated spatial radiation 
damage and achieved good agreement with experimental data for different cell lines and several particle types, 
namely for protons and carbon ions.

First principle approaches have also been tried in many studies28–32. Neary discussed a linear dependence 
of chromosome aberrations with LET31. Hawkins derived a complex exponential relationship between α and 
lineal-energy and LET using microdosimetric kinetic modeling for several cell lines28, 29. The Wilkens and Oelfke 
linear model30 predicted the experimental data for LET values up to 30 keV/μm30 well but was unable to predict the 
decrease in RBE with further increases of LET. Subsequent refinements of this model were reported in refs 33, 34.  
The repair-misrepair fixation (RMF) model of chromosome aberration that is one of the bases of our present 
model and computational analysis was developed in refs 35–37.

The Particle Irradiation Data Ensemble (PIDE) is an effort by Gesellschaft für Schwerionenforschung (GSI) 
to organize hundreds of radiation biology experiments in one dataset to facilitate evaluation of RBE models38. 
Based on their analysis of over 800 cell survival experiments, they conclude that RBE depends on particle species 
and the α/β ratio and that using LET alone is insufficient to predict RBE. In agreement with this assessment, the 
experimental data gathered in PIDE is a good collection to examine the fitting method introduced in the current 
study. We postpone to present this study to our future works and publications. In addition, Mohan et al.39 recently 
provided a comparison of the RBE data from Guan et al. for H460 non-small cell lung cancer cells to the RBE pre-
dicted by a number of models, including those from Wilkens and Oelfke30, Wedenberg et al.34, Carabe-Fernandez 
et al.40, McNamara et al.41, Chen and Ahmad42, Carlson et al.35, 43, and Frese et al.37. All of the models predicted 
lower RBE for the higher LET values used in the experiments. In this work we therefore focus on constructing 
a model for experimental data recently published by Guan et al.32 as existing models do not adequately explain 
these data.

Our goal is to provide a theoretical framework in resolving the discrepancies between such experimental data 
and theoretical models. As detailed in ref. 32, the design of a graded solid water compensator (jig) allows irradia-
tion of cells by a mono-energetic scanning beam of protons at specific depths. The absorbed dose and the proton 
LET were calculated using the Geant4 Monte Carlo toolkit32. Subsequent high-throughput, automated clonogenic 
survival assays were performed to spatially map the biological effectiveness of scanned proton beams with high 
accuracy. This method aims to reduce uncertainties in the biological data.

In this study we developed an approach for global fitting of the recently published high-throughput and high 
accuracy clonogenic cell-survival data by Guan et al.32.

Methods
We start by describing our phenomenological model, which is based on an extension of the microdosimetric 
kinetic model (MKM) originally proposed by Hawkins28, 29. We refer to our extension as generalized MKM 
(gMKM). In the following we elucidate the basis of gMKM and discuss in detail the differences with MKM.

In gMKM we first incorporate the effects of particle energy deposition spatial patterns calculated for 
single-tracks with nanometer spatial resolution. The initial energy of the proton beam and the geometry were 
consistent with the experimental beam line used in ref. 32. The proton energy ranges from 80 MeV to as low as 
100 keV. The choice in low energy cut-off is based on the range of protons with 100 keV of energy, which is less 
than the diameter of a cell nucleus, e.g., 5 μm (typical diameter range is within 3–7 μm depending on several fac-
tors such as cell type, cell cycle, adherence, etc.). To this end, we used a combination of Geant4 and Geant4-DNA 
Monte Carlo toolkits (version 10.2) to simulate the track-structures in macroscopic and microscopic scales in 
water equivalent materials44.

We then analyzed the energy deposition distributions of protons and assessed if the Poisson distribution that 
is the central assumption in MKM effectively described the track structure. To this end, we randomly selected 
locations along the beam axis to score energy deposition in 5 μm-diameter spherical volumes representing cell 
nuclei. The dimensions of these volumes were consistent with the dimensions of the cell nucleus used in the clo-
nogenic assays in ref. 32.

With these two steps, we systematically obtained the distribution of ionizations in geometrical structures 
resembling the cell nucleus as a function of their position relative to the source, proton energy, and LET along the 
radiation track.

As shown in Fig. 1a, in locations near the beam entrance where the energy of the proton is relatively high, i.e. 
80 MeV, and therefore the LET is low, the local density of ionization within the cell nucleus is sparse and can be 
fitted by a Gaussian and/or Poisson distribution. The spectrum of energy loss and lineal-energies as a function 
of depth are plotted in Fig. 2. The Gaussian/Poissonian approximation of energy-loss spectral density holds for a 
wide range of depths, from the entrance to locations proximal to the Bragg peak where the protons slow down to 
energies of approximately 15 MeV and LET ≈ 10 keV/μm. This result can be seen in Fig. 1c where the calculated 
energy deposition and LET as a function of depth using Geant4 for a circular shape source of proton consists of 
a Gaussian energy broadening.

Beyond LET ≈ 10 keV/μm, as shown in Fig. 1b, the atomistic excitations and ionizations undergo a transition 
to a highly compact track structure. This transition in energy loss spectrum to a clearly visible Landau distribu-
tion45, 46 occurs around d = 52 mm for the 80 MeV beam as shown in Fig. 2. Therefore, above LET ≈ 10 keV/μm, 
the deviation from a Poisson distribution appears to be significant.
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In the Appendix we develop an analytical model based on Neyman’s distribution of type A (a compound 
Poisson distribution)47, 48 for illustration of the effects due to deviations from a Poisson distribution. In the follow-
ing sections, however, we present numerical results of more sophisticated Monte Carlo calculations. In particular 
in Fig. 2, we present a series of lineal energy spectra, fitted to the Landau distribution45, 46 for a beam of protons 
with 80 MeV of energy. The spectrum evolves as an increasing function of depth (depicted in clockwise order). An 
abrupt transition in the lineal energy spectrum is seen at 5.2 cm depth where the energy deposition coincides with 
the Bragg peak (see Fig. 1c) and LET ≈ 10 keV/μm. The transition in the lineal energy spectrum corresponds to a 
similar transition in biological responses. As previously demonstrated, over a wide range of depths (highlighted 
by a square in the energy deposition curve in the left) LET is low and the spectrum can be approximated by a 
sharp and symmetric Gaussian/Poissonian distribution. At high LET’s the Gaussian symmetry in lineal-energy 
distribution around its statistical mean value gradually breaks down. According to this analysis, the non-linearity 
in RBE stems from this symmetry breaking in the lineal energy spectrum. Moreover, we attribute a decrease in 

Figure 1.  Two ionization-tracks of 80 MeV (a) and 1 MeV (b) protons obtained from the Geant4-DNA Monte 
Carlo simulation in water with initial points at x = y = z = 0 and directions parallel to z axis. The number of 
events in 1 MeV proton is one order of magnitude greater than 80 MeV. Such compact ionization events in low 
energies clearly justify a deviation from Poisson distribution that may describe the ionization in 80 MeV. The 
relative energy deposition along Bragg curve and LET for a beam of proton with 80 MeV is shown in (c). The 
line indicates the position of Bragg peak at approximate 5.2 cm depth corresponding with LET ≈ 10 keV/μm.

Figure 2.  Series of the lineal energy spectrum and the fitting to Landau distribution is shown for a beam 
of proton with energy 80 MeV as an increasing function of depth in clockwise order. The x-axis and y-axis 
represent the lineal energy in keV/μm and the histogram of lineal energy in (keV/μm)−1. An abrupt transition 
in shape of the lineal energy distribution function from sharply symmetric to wide and asymmetric form is seen 
at 5.2 cm depth where LET ≈ 10 keV/μm (see Fig. 1c) and LET exceeds 10 keV/μm.
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RBE beyond very high LET’s, a phenomenon known as the over-kill effect in the literature7, to the widening and 
sparsity of the lineal energy distribution (see for example the spectrum at d = 55 mm) and lack of beam strength 
due to a sharp drop in total energy deposition and particle fluence. These observations have been transpired to 
our practical approach in the fitting procedure where two kinds of linear and non-linear polynomials were con-
verged and fitted to the cell survival data below and beyond LET ≈ 10 keV/μm.

We now turn to highlight the mathematical framework we employed in fitting the experimental data using 
LET power series in α and β. We refer the interested readers to the mathematical details in the Appendix.

The results obtained from experiments32 as well as simulations37 confirm that as LET increases, α and β evolve 
from linear to non-linear functions of LET. Similar to MKM, in gMKM we calculated the cell survival-fraction by 
integrating over the solutions of the repair-misrepair-fixation (RMF) model35, 49, 50. The RMF model links radia-
tion double strand break (DSB) induction and the processes that lead to exchange-type chromosome aberrations 
and cell death. The linear-quadratic (LQ) survival model has been shown to be an approximate time-integrated 
solution to the RMF model that accounts for incorrect chromosome end joining. More accurate consideration 
of the RMF model by perturbative linearization of the non-linear solutions leads to the cell survival-fraction, SF, 
represented as a power series of the statistical moments of the specific energy z in a cell-nucleus domain

− = + + + .SF a z a z a zln( ) (1)1 2
2

3
3

Note that the higher order terms beyond the MKM LQ-model in Eq. (1) are from a power expansion of RMF 
solutions. Such non-linearity in SF have been examined before to analyze lack of symmetry in split-dose survival 
of mouse jejunal crypt cells where total dose was fixed but asymmetric combinations of the dose were used, i.e., 
large following small vs. small following large dose fractions51. In Eq. (1), …a a, ,1 2  are expansion coefficients 
and …z z, ,2  are the ensemble averaged moments of the specific energy. Note that …a a, ,1 2  are combinations of 
the DNA-DSB induction strength constants in the RMF model and the pair-wise repair-misrepair chromosome 
end-joining rate coefficients.

To perform the averaging in Eq. (1) explicitly, the distribution function of these random variables must be 
known. In MKM, the Poisson distribution is assumed to govern the distribution of ionization events. Based on 
our analysis, this is a plausible assumption in the low LET limit, however, a correction to the Poisson distribution 
is warranted for high LETs. We therefore expand the non-Poissonian distribution function of ions in the vicinity 
of the Poisson distribution. Following algebraic manipulation, an expansion around the MKM mean specific 
energy zMKM in Eq. (1) can be found. Using the macroscopic dose ≡D z  and dose-averaged lineal-energy yd or 
equivalent L (simply LET that is a linear function of yd) as two independent variables in this equation, we find
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Recalling α and β in the LQ cell-survival model, α β− = +SF D Dln( ) 2, and truncating Eq. (2) up to the 
quadratic term in D gives
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with n ≥ 2. In Eqs (3 and 4) α and β are polynomials of LET with orders n − 1 and n − 2 respectively, thus the 
formula for SF contains 2n − 1 fitting parameters. For clarification of the compact notations used in Eqs (3 and 4), 
let us consider a class of polynomials truncated at n = 4, hence α = + + +b b L b L b L1,1 2,1 3,1

2
4,1

3 and 
β = + +b b L b L2,2 3,2 4,2

2. A similar approach with slightly different representation of the RMF model as intro-
duced by Carlson et al.35 provides a more elaborate interpretation of the polynomials in the above equations. 
According to our unpublished studies, = …n 2, 3, 4,  in α and β in Eqs (3 and 4) represent the levels of chromo-
somal aberration complexities such as the binary, ternary, quaternary, etc. chromosome recombination. We post-
pone the details of the higher order (beyond binary) chromosome recombination leading from Neyman’s 
distribution of type A47, 48 to our future publications.

In practice we aim to find an optimal n that allows the best fitting of the experimental data with minimal 
number of parameters. Thus, we need to calculate a minimal n. The lowest possible n in Eqs (3 and 4) corresponds 
to n = 2. This essentially corresponds to the linear α and constant β as function of LET in MKM. This model 
contains three fitting parameters.

We now turn to discuss the results of the fitting procedure for the clonogenic cell survival experimental data. 
We use global fitting of SF in a 3D parameter space using two independent variables D and L. Eq. (2) provides 
specific forms of polynomials that we may use to fit the data.
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Results and Discussion
In the current study we developed an approach for global fitting of the recently published high-throughput and 
high accuracy clonogenic cell-survival data.

A relation between cell survival and LET was extracted in a subsequent step after the calculation of the 
linear-quadratic cell survival parameters α, β, α/β and RBE. In ref. 32, and in all other RBE publications (to the 
best of our knowledge) the fitting was performed for each individual survival curve with a specific average LET. 
This method of fitting individually fits cell survival curves with measured data for each LET value separately, 
which would have led to high degree of variability in alpha and beta parameters of the LQ model. As a result, the 
dependence of cell-survival data on LET exhibits fluctuations, and it would be challenging to fit and quantitatively 
interpret the results into an RBE model. Instead, we carry out a “global” fit with the measured data. This process 
reduces the overall uncertainty. In addition to this systematic uncertainty, there is another source of numerical 
noise in fitted data, largely stems from uncertainties in collecting survival data. In practice, the extraction of LET 
and its poistion dependence in cell-survival data may vary among different fitting and experimental procedures.

The present data in ref. 32 shows that the measured biologic effects are substantially greater than in most 
previous reports. It is characterized by a non-linear RBE as a function of LET near and beyond the Bragg peak. 
The calculated RBE is characterized by high sensitivity to small variations in LET distal to the Bragg peak, where 
a small uncertainty in the position of the cells may result in significant change in LET.

It is therefore crucial to search for appropriate fitting procedures and algorithms to be able to enhance the 
quality of the calculated RBE and the interpretation of the data. There are several models in the literature pre-
dicting regular and smooth dependence of RBE parameters on LET including the microdosimetric kinetic model 
(MKM), local effect model (LEM), and Monte Carlo damage simulation (MCDS). In this work, we explore more 
reliable fitting procedures which take into account a correlation among the SF curves. Our method is based on 
a three-parameter global fitting. We develop an optimization procedure that allows fitting a 2D surface in a 3D 
parameter space spanned by dose, LET and cell surviving fraction (SF).

An extension of this approach for particles heavier than protons is currently under investigation and the goal 
for such studies is to generate data needed to optimize treatment plans incorporating variable RBE.

A comparison between two schemes in global fitting using non-linear and linear polynomials are shown in 
Figs 3 and 4. In the linear polynomials fitting procedure, shown in Fig. 4, we considered α α α β β= + =LET ;0 1 0 
and obtained an optimal surface in the three-dimensions spanned by dose, LET and SF that fit the experimental 
points whereas in the nonlinear approach shown in Fig. 3, we used Eqs (3 and 4). Clearly the linear fitting proce-
dure can not cover the high LET data points. This is in contrast with the non-linear fitting. The error bar shown 
in these figures is extracted from the experimentally reported values in ref. 32 and transformed to logarithmic 
scale using STD in log scale equivalent of STD/SF. Hence as we show the points with lower SF, the magnitude of 
error bars becomes more significant.

In the non-linear fitting procedure we further divided LET into two domains of high and low as discussed in 
the Methods section. For low LET, a linear α and constant β which corresponds to choosing n = 2 in Eq. (2) can 
satisfactorily fit the data. The result of fitting for low LETs are shown in the left panel of Fig. 5(a,c).

For the completeness of our discussion, we reemphasize the expected transition from linear to non-linear 
biological responses along the energy deposition curve where LET increases monotonically. To characterize the 
threshold between “low” and “high” LETs, we calculated the lineal energy distribution function and used it as a 
metric to quantify the boundary between these two limits. In Fig. 2 we summarized the evolution of the lineal 
energy spectrum for a proton pencil beam with initial energy 80 MeV as a function of depth and LET in water. 
As discussed earlier, a transition from sharply peaked and approximately symmetric distribution in low LETs to 
highly asymmetric Landau-type distribution takes place. This transition happens in the vicinity of the Bragg peak 
where LET is approximately 10 keV/μm (see also Fig. 1c). We therefore consider this value of LET as a border 
in fitting the cell survival data that divides the domains of the low and high LETs for protons. Thus we consider 
LET≈10 keV/μm in the global fitting of cell survival as the value below which a linear RBE model is used whereas 
above LET ≈ 10 keV/μm a non-linear RBE model is implemented.

It is important to mention an abrupt transition in the lineal energy distribution may be attributed to a similar 
characteristic transition in the measurable biological quantities. For example the measured α and β are the result 
of superposition-convolution of the corresponding parameters with spectrum of lineal energies, i.e., 

∫α α=
∞


L y S y dy( ) ( ) ( )
0

, ∫β β=
∞
L y S y dy( ) ( ) ( )

0
 where ∫ ∫=

∞ ∞L yS y dy S y dy( ) / ( )
0 0

, S(y) is the lineal energy dis-
tribution function, and α and β are theoretically defined for a single value of lineal energy, y.

The numerical values of the fitting parameters, presented in Table 1, were calculated within an in house devel-
oped Matlab code designed for an optimization algorithm in searching the best 2D surface fitted to a data set in 
3D space. An iterative procedure was employed to minimize the chi-square value to obtain the optimal parameter 
values and performing nonlinear curve fitting. The optimization core of our approach uses the implementation of 
Levenberg-Marquardt-Fletcher algorithm developed for nonlinear least squares fitting problems.

As seen in this table we obtain a satisfactory convergence with n = 5 and n = 6 for H460 and H1437 cell lines. 
The rationale for selecting large values of n stems from numerical methods in optimization and convergence of 
the self-consistent RBE solution in surface fitting procedure. The convergence of the power series can be seen 
from the numerical values presented in the table. By increasing the powers in the expansion, the numerical values 
of the coefficients will change, however, if the change in RBE resides within a convergence domain (chosen by the 
user) the optimization stops. Although in our approach we search for optimal surfaces to minimize chi-square 
values iteratively, it is known that additional metrics are needed to evaluate the goodness of the fit. We therefore 
report the calculated R-square, also known as coefficient of determination (COD) in Table 1. As shown in this 
table, the numerical values of R-square are close to 1. The closer the fit is to the data points, the closer R-square 
will be to the value of 1. It is also known that a larger value of R-square does not necessarily mean a better fit 



www.nature.com/scientificreports/

6Scientific Reports | 7: 8340  | DOI:10.1038/s41598-017-08622-6

because of the degrees of freedom that can also affect the values. Thus we report the adjusted R-square values to 
account for the degrees of freedom.

To determine an optimal polynomial in the fitting process, we consider a series of polynomials corresponding 
to = …n 2, 3, 4,  and perform optimization for each individual polynomial separately. A comparison based on 
chi-square and RBE is performed for polynomials with orders n to n + 1. If the difference between two chi-square’s 
(and RBE’s) in steps n and n + 1 is lower than a threshold value, e.g., χ χ δ+ − <n n( 1) ( )2 2 , the optimization 
stops and chi-square and RBE corresponding to step n + 1 is reported. In low LET’s this procedure converges to a 
linear polynomial (as the zeros in Table 1 shows the contribution of higher order power series are negligible).

To examine the stability of the converged solutions we consider an alternative approach in matching the low 
and high LET surfaces at the boundary where LET = 10 keV/μm. To handle the discontinuity and obtain poten-
tially smoother curves at the “transition point” where low LET data meet the high LET data, we include series 
of points below (and above) 10 keV/μm to high (and low) LET and perform the fitting procedure and calculate 
the optimum high (low) LET surfaces. We then remove these points located in the vicinity of the boundaries and 
compare the resulting surfaces with a simple piece-wise matching of low and high LET data at the boundaries 
as shown in Figs 7, 8 and 9. Comparison between RBE’s, alpha’s and beta’s resulted in no significant difference.

In Fig. 6 we show the same plots as in Fig. 5 except the 3D surface is projected onto the SF-dose plane. The first 
few curves from the top in Fig. 6 show the results of the n = 2 fitting for LETs less than µkeV m10 / . In Fig. 7, β, and 
RBE as a function of LET calculated from the fitted surfaces are plotted. For low LET, the linear dependence of α, 
β, and RBE is consistent with the fitting procedures introduced in other publications including Hawkins28, 29, 
Wilkens and Oelfke30 and Steinsträter et al.52 α.

Recently McNamara et al.41 fitted the present experimental data using a similar low-LET methodology25. The 
result of their calculation shows that present models may underestimate the high LET region of the LET-RBE 
relationship. This issue has been resolved within the presented methodology of gMKM. Using the fitting approach 

Figure 3.  Experimental data of clonogenic survival fraction (SF) corresponding to H460 (a,b) and H1437 (c,d) 
cells are shown in blue dots with experimental error bars in logarithmic scale. The surfaces are fitted to the 
experimental data using global 3D optimization using a non-linear LET model as presented in the text. The left 
and right figures show the views from low and high LETs.
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of the constructed framework, the last four red curves in Fig. 6 (left panel), as well as in Fig. 7, exhibit a reasonable 
fit to the high LET data. In this case, polynomials of order n = 6 re used for α and β.

In the right panel of Fig. 6 we show the result of similar 3D global fitting using linear MKM polynomials, e.g., 
α α α= + L0 1  and a constant β. As shown in this figure, the low LET data can be fitted well by a linear α and a 
constant β, same as the left panel of Fig. 6. However, for high LET the difference between the fitted curves and the 
experimental data is significant. Such difference can be reduced by using gMKM non-linear polynomials for α 
and β as we used for the fitting of high-LET data in the left panel for Fig. 6.

To illustrate the advantage of the present method, we compare the results from global 3D fitting with the 
conventional fitting procedure based on the same experimental data published recently by Guan et al.32. As men-
tioned before, in the conventional fitting procedure, each survival curve with a specific LET was fitted individually 
without considering correlations among them. Hence, it may lead to irregular forms of α and β as functions of 
LET. This method used to fit the data in ref. 32 is inconsistent with the experimental design that was intended to 
correlate the cell-survival data of different LETs along the Bragg curve. Figures 8 and 9 show comparison between 
the conventional and 3D global fitting methods.

The presented fitting approach prevents the data from uncharacteristic fluctuations as shown in Fig. 9 (circles). 
Instead it predicts a monotonic trend in α/β for all LETs50. Thus, the reported RBE’s in ref. 32 corresponding to 
fluctuations in α/β, as shown in Fig. 8, can be interpreted as an artifact associated with numerical instabilities in 
conventional fitting methods. This is consistent with a simplistic cell-inactivation target theory as single-track 
lethal events becomes more common due to increasing LET, thus the α/β ratio increases. 

Conclusion
We have developed an improved approach to fitting clonogenic survival data for therapeutic proton and ion 
beams. Our approach is based on three-parameter (3D) global fitting of the high-throughput, high accuracy 

Figure 4.  Shown same experimental data of clonogenic survival fraction (SF) for H460 (a,b) and H1437 (c and 
d) cells as in Fig. 3 with a difference that a linear LET model corresponding to α = α0 + α1L and β = β0 have 
been used to obtain a globally optimal surface fitted to the experimental data. Similar to Fig. 3, the left and right 
figures show the views from low and high LETs.
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Figure 5.  Shown H460 (a,b) and H1437 (c,d) cell survival surfaces in low (a,c) and high (b and d) LETs. As 
discussed in the text, LET ≈ 10 keV/μm separates the low LET from high LET domain for 80 MeV pencil beam 
of proton. The gMKM polynomials have been used in a 3D global fitting approach to obtain the best-fitted 
surface to the experimental data. The numerical values of the fitting parameters are in linear (a,c) and non-
linear (b,d) domains are presented in Table 1.

H460 H460 H1437 H1437

Low LET High LET Low LET High LET

b1,1 −0.21447 −0.12913 −0.05237 −0.12288

b2,1 −0.007 −6.733E-03 −0.0151 −0.00624

b3,1 0 −4.563E-04 0 −1.322E-06

b4,1 0 −3.37529E-05 0 −9.449E-07

b5,1 0 −8.16229E-06 0 −8.812E-07

b6,1 0 0 0 −7.725E-08

b2,2 −0.11061 −0.06864 −0.03265 −0.00382

b3,2 0 −0.00202 0 −0.0007821

b4,2 0 −1.36897E-04 0 −9.275E-05

b5,2 0 −3.63748E-05 0 −9.511E-07

b6,2 0 0 0 −1.68E-07

Reduced χ2 0.00487 0.07557 0.00541 0.05472

R2 (COD) 0.99496 0.98407 0.98233 0.96777

Adjusted R2 0.99481 0.92833 0.98233 0.93911

Table 1.  Numerical values of expansion coefficients in α and β given in Eqs (3 and 4) for H460 and H1437 
cell survivals. For a beam proton with energy 80 MeV the transition between low and high LETs occurs at 
LET ≈ 10 keV/μm. The reduced chi-square, χ2, the coefficients of determination (COD), R2, and adjusted R2 
have presented to illustrate the goodness of the fitting procedure.
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survival fraction data acquired after irradiation with mono-energetic proton beams. In our approach, the intrinsic 
correlations in cell survival data are incorporated into the fitting algorithm. As a result, background fluctuations 

Figure 7.  α, β, and RBE as a function of LET calculated analytically from SF equations obtained by the 3D 
global fitting of clonogenic cell-survival data as shown in Figs 2 and 3.

Figure 8.  α, β, and RBE as a function of LET calculated by the conventional method and the presented 3D 
global fitting method. Although the difference in RBE between the two methods is negligible, the α and β are 
significantly different (H460 cells).

Figure 6.  2D representation of the survival fraction shown in Fig. 3 (H460 cells) using non-linear gMKM 
fitting polynomials (left panel) and linear MKM polynomials in Fig. 4 (right panel). The black dotted lines 
represent the experimental data and the red lines are the fitted surfaces projected to the SF-Dose plane.
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of the extracted parameters α and β of the linear quadratic model due to uncertainties in the biological data are 
considerably reduced.

To demonstrate the reduction in numerical noise, we provided a comparison between traditional methods of 
post-processing of the clonogenic survival data and our approach. The numerical fluctuations in RBE parameters 
seen when an independent fitting of cell survival data is performed, can be suppressed by integrating the LET 
models including gMKM, LEM, and MCDS-RMF into 3D global fitting. The latter based on gMKM predicts a 
gradual increase in, α, β, and α/β as a function of LET, consistent qualitatively with the cell-inactivation target 
theory.

Further studies are on the way to implement other models such as multi-scale modeling53, 54 as well as 
MCDS-RMF into 3D global fitting of the current clonogenic survival data (that non-linear LET terms in α and 
β can be interpreted as higher order and more complex chromosome aberrations) as well as convolving the 
spectrum of lineal-energies, dε/dl, calculated by MC on α and β to take into account the effect of non-Poisson 
distribution. The latter is closely related to the ideas and approaches presented by Hawkins29 and Kase et al.55and 
other studies presented in refs 56–60.

References
	 1.	 Olsen, D. R., Bruland, O. S., Frykholm, G. & Nordergaug, I. N. Proton therapy-a systematic review of clinical effectiveness. Radiother. 

Oncol. 83, 123–132 (2007).
	 2.	 Tepper, J., Verhey, L. & Goieten, M. et al. In vivo determinations of RBE in a high energy modulated proton beam using normal 

tissue reactions and fractionated dose schedules. Int. J. Radiat. Oncol. Biol. Phys. 2, 1115–1122 (1977).
	 3.	 Urano, M., Verhey, L. J. & Goitein, M. et al. Relative biological effectiveness of modulated proton beams in various murine tissues. 

Int. J. Radiat. Oncol. Biol. Phys. 10, 509–514 (1984).
	 4.	 Gerweck, L. E. & Kozin, S. V. Relative biological effectiveness of proton beams in clinical therapy. Radiother. Oncol. 50, 135–142 

(1999).
	 5.	 Pagnetti, H., Niemierko, A. & Ancukiewitz, M. et al. Relative biological effectiveness (RBE) values for proton beam radiotherapy. Int. 

J. Radiat. Oncol. Biol. Phys. 53, 407–421 (2002).
	 6.	 MacDonald, S. M., Delaney, T. F. & Loefïer, J. S. Proton Beam Radiation Therapy. Cancer Investig. 24, 199–208 (2006).
	 7.	 Hall, E. J. Radiobiology of the Radiologist, 5fth edn. Lippincott (2000).
	 8.	 Paganetti, H. et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int. J. Radiat. Oncol. Biol. Phys. 53, 

407–421 (2002).
	 9.	 Ando, K. et al. Relative biological effectiveness of the 235 MeV proton beams at the National Cancer Center Hospital East. J. Radiat. 

Res. 42, 79–89 (2001).
	10.	 Tang, J. T. et al. Comparison of radiobiological effective depths in 65 MeV modulated proton beams. Br. J. Cancer 76, 220–225 

(1997).
	11.	 Tatsuzaki, H., Okumura, T., Tsuji, H. et al. An RBE study of a proton beam at the University of Tsukuba. The XXI PTCOG Meeting, 

Chiba, Japan (1994).
	12.	 Jilly, N. et al. The influ-ence of RBE variations in a clinical proton treatment plan for a hypopharynx cancer. Phys. Med. Biol. 50, 

2765–2777 (2005).
	13.	 Hall, E. J. The relative biological efficiency of X rays generated at 220 keV and gamma radiation from a Cobalt 60 therapy unit. Br. J. 

Radiol. 34, 313–317 (1961).
	14.	 Hering, E. R. An investigation of changes in relative biological effectiveness 100 and 250 kVp using the mouse foot as biological test 

system. Int. J. Radiat. Oncol. Biol. Phys. 12, 815–821 (1986).
	15.	 Blomquist, E. et al. Relative biological effectiveness of intermediate energy protons: comparisons with 60Co gamma-radiation using 

two cell lines. Radiother. Oncol. 28, 44–51 (1993).
	16.	 Wouters, B. G. et al. Measurement of relative biological effectiveness of the 70 MeV proton beam at TRIUMF using V79 cells and the 

high precision cell sorter assay. Radiat. Res. 146, 159–170 (1996).
	17.	 Coutrakon, G. et al. Microdosimetry spectra of the Loma Linda proton beam and relative biological effectiveness comparisons. Med. 

Phys. 24, 1499–1506 (1997).
	18.	 Slabbert, J., Martinez, J., De Coster, B. & Gueulette, J. Increased Proton Relative Biological Effectiveness at the Very End of a Spread-

Out Bragg Peak for Jejunum Irradiated Ex Vivo. Int. J. Particle Ther. 2, 37–43 (2015).
	19.	 Butts, J. J. & Katz, R. Theory of RBE for heavy ion bombardment of dry enzymes and viruses. Radiat. Res. 30, 855–871 (1967).

Figure 9.  Lack of correlation among LETs in fitted cell-survival data in the conventional fitting procedure leads 
to strong fluctuations in α/β as reported by Guan et al.32. In contrast, α/β increases with increasing LETd in 3D 
global fitting consistent with the cell inactivation target theory (H460 cells).



www.nature.com/scientificreports/

1 1Scientific Reports | 7: 8340  | DOI:10.1038/s41598-017-08622-6

	20.	 Katz, R., Ackerson, B., Homayoonfar, M. & Sharma, S. C. Inactivation of cells by heavy ion bom-bardment. Radiat. Res. 47, 402–425 
(1971).

	21.	 Kraft, G. Tumor therapy with heavy charged particles. Particle Nucl. Phys. 45, S473–S544 (2000).
	22.	 Krämer, M. et al. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys. Med. Biol. 45, 

3299–3317 (2000).
	23.	 Krämer, M. & Scholz, M. Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. 

Phys. Med. Biol. 45, 3319–3330 (2000).
	24.	 Scholz, M., Kellerer, A. M., Kraft-Weyrather, W. & Kraft, G. Computation of cell survival in heavy ion beams for therapy. The model 

and its approximation. Radiat. Environ. Biophys. 36, 59–66 (1997).
	25.	 Weyrather, W. K., Ritter, S., Scholz, M. & Kraft, G. RBE for carbon track-segment irradiation in cell lines of differing repair capacity. 

Int. J. Radiat. Biol. 75, 1357–1364 (1999).
	26.	 Paganetti, H. & Goitein, M. Biophysical modeling of proton radiation effects based on amorphous track models. Int. J. Radiat. Biol. 

77, 911–928 (2001).
	27.	 Elsasser, T. et al. Quantification of the relative biological effectiveness for ion beam radiotherapy: direct exper-imental comparison 

of proton and carbon ion beams and a novel approach for treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 78, 1177–1183 (2010).
	28.	 Hawkins, R. B. A microdosimetric-kinetic theory of the dependence of the RBE for cell death on LET. Med. Phys. 25, 1157–1170 

(1998).
	29.	 Hawkins, R. B. A microdosimetric-kinetic model for the effect of non-Poisson distribution of lethal lesions on the variation of RBE 

with LET. Radiat. Res. 160, 61–69 (2003).
	30.	 Wilkens, J. J. & Oelfke, U. A phenomenological model of the relative biological effectiveness in therapeutic proton beams. Phys. Med. 

Biol. 49, 2811–2825 (2004).
	31.	 Neary, G. J. Chromosome aberrations and the theory of RBE. Int. J. Radiat. Biol. 9, 477–502 (1965).
	32.	 Guan, F. et al. Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle 

therapy. Sci. Rep. 5, 1–10 (2015).
	33.	 Tilly, N. et al. The influence of RBE variations in a clinical proton treatment plan for a hypopharynx cancer. Phys. Med. Biol. 50, 2765 

(2005).
	34.	 Wedenberg, M., Lind, B. K. & Hårdemark, B. A model for the relative biological effectiveness of protons: The tissue specific 

parameter α/β of photons is a predictor for the sensitivity to LET changes. Acta. Oncol. 52, 580–588 (2013).
	35.	 Carlson, D. J., Stewart, R. D., Semenenko, V. A. & Sandison, G. A. Combined use of Monte Carlo DNA damage simulations and 

deterministic repair models to examine putative mechanisms of cell killing. Radiat. Res. 169, 447–59 (2008).
	36.	 Stewart, R. D. et al. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat. Res. 176, 587–602 

(2011).
	37.	 Frese, M. C., Yu, V. K., Stewart, R. D. & Carlson, D. J. A mechanism-based approach to predict the relative biological effectiveness of 

protons and carbon ions in radiation therapy. Int J Radiat Oncol Biol Phys. 83, 442–50 (2012).
	38.	 Friedrich, T., Scholz, U., Elsasser, T., Durante, M. & Scholz, M. Systematic analysis of RBE and related quantities using a database of 

cell survival experiments with ion beam irradiation. J Radiat Res 54(3), 494–514 (2013).
	39.	 Peeler, C. et al. Relative biological effectiveness of double-strand break induction for modeling cell survival in pristine proton beams 

of different dose-averaged linear energy transfers. Med. Phys. 42, 3529 (2015).
	40.	 Carabe-Fernandez, A., Dale, R. G., Hopewell, J. W., Jones, B. & Paganetti, H. Fractionation effects in particle radiotherapy: 

implications for hypo-fractionation regimes. Phys. Med. Biol. 55, 5685–5700 (2010).
	41.	 McNamara, A. L., Schuemann, J. & Paganetti, H. A phenomenological relative biological effectiveness (RBE) model for proton 

therapy based on all published in vitro cell survival data. Phys. Med. Biol. 60, 8399–8416 (2015).
	42.	 Chen, Y. & Ahmad, S. Empirical model estimation of relative biological effectiveness for proton beam therapy. Radiat. Prot. Dosim. 

149(2), 116–123 (2012).
	43.	 Polster, L. et al. Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. 

Phys. Med. Biol. 60, 5053 (2015).
	44.	 Abolfath, R. M., Carlson, D. J., Chen, Z. J., Nath, R. A molecular dynamics simulation of DNA damage induction by ionizing 

radiation. Phys. Med. Biol. 58, 7143–7157 See the real-time simulations and movies at: http://qmsimulator.wordpress.com/ (2013).
	45.	 Landau, L. D. J. On the Energy Loss of Fast Particles by Ionization. J. Phys. (USSR) 8, 482–490 (1944).
	46.	 Vavilov, P. V. Ionization Losses of High Energy Heavy Particles. Sov. Phys. JETP 5, 749–751 (1957).
	47.	 Virsik, R. P. & Harder, D. Statistical Interpretation of the Over dispersed Distribution of Radiation-Induced Dicentric Chromosome 

Aberrations at High LET. Radiat. Res. 85, 13–23 (1981).
	48.	 Gudowska-Nowak, E., Ritter, S., Taucher-Scholz, G. & Kraft, G. Compound Poisson Processes and Clustered Damage of Radiation 

Induced DNA Double Strand Breaks. Acta Physica Polonica B 31, 1109 (2000).
	49.	 Curtis, S. B. Lethal and potentially lethal lesions induced by radiation–a unified repair model. Radiat. Res. 106, 252–270 (1986).
	50.	 Sachs, R. K., Hahnfeldt, P. & Brenner, D. J. Review: The link between low-LET dose-response and the underlying kinetics of damage 

production/repair/misrepair. Int. Journal of Radiat. Biol. 72, 351–374 (1997).
	51.	 Sheua, T. et al. Use of the LQ model with large fraction sizes results in underestimation of isoeffect doses. Radiot. Onc. 109, 21–25 

(2013).
	52.	 Steinsträter, O. et al. Integration of a model-independent interface for RBE predictions in a treatment planning system for active 

particle beam scanning. Phys. Med. Biol. 60, 6811–6831 (2015).
	53.	 Abolfath, R. et al. Nano-Dosimetric Kinetic Model for Variable Relative Biological Effectiveness of Proton and Ion Beams. Med. 

Phys. 43, 3842 (2016).
	54.	 Verkhovtsev, A. et al. Multiscale approach predictions for biological outcomes in ion-beam cancer therapy. Sci. Rep. 6, 27654 (2016).
	55.	 Kase, Y. et al. Microdosimetric Measurements and Estimation of Human Cell Survival for Heavy-Ion Beams. Radiat. Res. 166, 

629–638 (2006).
	56.	 Frese, M. C., Yu, V. K., Stewart, R. D. & Carlson, D. J. A mechanism-based approach to predict the relative biological effectiveness of 

protons and carbon ions in radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 83, 442–50 (2012).
	57.	 Hawkins, R. B. A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental 

and clinical applications. Int. J. Radiat. Biol. 69, 739 (1996).
	58.	 Rossi, H. H., Zaider, M. Microdosimetry and Its Applications (Springer 1996).
	59.	 Kellerer, A. M. Fundamentals of microdosimetry The Dosimetry of Ionizing Radiation vol. 1 ed Kase, K. R. et al. (London: 

Academic) pp 77–161 (1985).
	60.	 Cortés-Giraldo, M. A. & Carabe, A. A critical study of different Monte Carlo scoring methods of dose average linear-energy transfer 

maps calculated in voxelized geometries irradiated with clinical proton beams. Phys. Med. Biol. 60, 2645–2669 (2015).

Acknowledgements
The authors would like to acknowledge useful discussion and scientific exchange with Drs., Jacek Capala, 
Alejandro Carabe, David Carlson, Fada Guan, Yusuf Helo, Armin Lühr, Dragan Mirkovic, Harald Paganetti, 
Darshana Patel, George Sandison, Jan Schuemann, Robert Stewart, Reza Taleei, Uwe Titt and Howard Thames. 

http://qmsimulator.wordpress.com/


www.nature.com/scientificreports/

1 2Scientific Reports | 7: 8340  | DOI:10.1038/s41598-017-08622-6

The work at the University of Texas, MD Anderson Cancer Center was supported by the NIH/NCI under Grant 
No. 2U19CA021239.

Author Contributions
R.A.: wrote the main manuscript, appendix, prepared figures, performed mathematical derivations and 
computational steps including Geant4 and Geant4-DNA Monte Carlo simulations and three dimensional surface 
fitting to the experimental data. C.R.P. and M.N.: wrote the manuscript and assisted with data analysis L.B.: 
provided experimental clonogenic cell survival data, aided in its interpretation and wrote the manuscript, D.G. 
and R.M.: wrote the main manuscript, proposed scientific problem and co-supervised the project.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-08622-6
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-08622-6
http://creativecommons.org/licenses/by/4.0/

	A model for relative biological effectiveness of therapeutic proton beams based on a global fit of cell survival data

	Methods

	Results and Discussion

	Conclusion

	Acknowledgements

	Figure 1 Two ionization-tracks of 80 MeV (a) and 1 MeV (b) protons obtained from the Geant4-DNA Monte Carlo simulation in water with initial points at x = y = z = 0 and directions parallel to z axis.
	Figure 2 Series of the lineal energy spectrum and the fitting to Landau distribution is shown for a beam of proton with energy 80 MeV as an increasing function of depth in clockwise order.
	Figure 3 Experimental data of clonogenic survival fraction (SF) corresponding to H460 (a,b) and H1437 (c,d) cells are shown in blue dots with experimental error bars in logarithmic scale.
	Figure 4 Shown same experimental data of clonogenic survival fraction (SF) for H460 (a,b) and H1437 (c and d) cells as in Fig.
	Figure 5 Shown H460 (a,b) and H1437 (c,d) cell survival surfaces in low (a,c) and high (b and d) LETs.
	Figure 6 2D representation of the survival fraction shown in Fig.
	Figure 7 α, β, and RBE as a function of LET calculated analytically from SF equations obtained by the 3D global fitting of clonogenic cell-survival data as shown in Figs 2 and 3.
	Figure 8 α, β, and RBE as a function of LET calculated by the conventional method and the presented 3D global fitting method.
	Figure 9 Lack of correlation among LETs in fitted cell-survival data in the conventional fitting procedure leads to strong fluctuations in α/β as reported by Guan et al.
	Table 1 Numerical values of expansion coefficients in α and β given in Eqs (3 and 4) for H460 and H1437 cell survivals.




