
RESEARCH ARTICLE

Gene expression signature predicts human

islet integrity and transplant functionality in

diabetic mice

Sunil M. Kurian1☯, Kevin Ferreri2☯, Chia-Hao Wang2, Ivan Todorov2, Ismail H. Al-

Abdullah2, Jeffrey Rawson2, Yoko Mullen2, Daniel R. Salomon1, Fouad Kandeel2*

1 Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California,

United States of America, 2 Department of Translational Research and Cellular Therapeutics, Diabetes, and

Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States of

America

☯ These authors contributed equally to this work.

* fkandeel@coh.org

Abstract

There is growing evidence that transplantation of cadaveric human islets is an effective ther-

apy for type 1 diabetes. However, gauging the suitability of islet samples for clinical use

remains a challenge. We hypothesized that islet quality is reflected in the expression of spe-

cific genes. Therefore, gene expression in 59 human islet preparations was analyzed and

correlated with diabetes reversal after transplantation in diabetic mice. Analysis yielded 262

differentially expressed probesets, which together predict islet quality with 83% accuracy.

Pathway analysis revealed that failing islet preparations activated inflammatory pathways,

while functional islets showed increased regeneration pathway gene expression. Gene

expression associated with apoptosis and oxygen consumption showed little overlap with

each other or with the 262 probeset classifier, indicating that the three tests are measuring

different aspects of islet cell biology. A subset of 36 probesets surpassed the predictive

accuracy of the entire set for reversal of diabetes, and was further reduced by logistic

regression to sets of 14 and 5 without losing accuracy. These genes were further validated

with an independent cohort of 16 samples. We believe this limited number of gene classifiers

in combination with other tests may provide complementary verification of islet quality prior

to their clinical use.

Introduction

The pathophysiology of Type 1 Diabetes Mellitus (T1DM) is the result of autoimmune

destruction of insulin-producing beta cells in the pancreas. Several immunotherapy strategies

are suggested in order to reduce the immune mediated destruction of the insulin producing

cell [1,2]. In addition, a promising treatment paradigm for T1DM is replacement of the miss-

ing beta cells with islet cells isolated from allogeneic donor organs [3,4]. Successful islet trans-
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plantation has been shown to improve glycemic control, induce insulin independence or sig-

nificantly reduce insulin requirements and, most importantly, provide several years of

freedom from life-threatening hypoglycemic episodes [5–7]. Although concerted efforts from

several groups have resulted in progress in the field over the last decade, transplantation out-

comes have not been consistent between the various transplant centers [8]. In addition to

problems with alloimmune rejection and residual auto-immunity directed against the islet

graft, the ability of human islet isolation centers to consistently provide viable and functional

islet cells varies widely within and especially between transplant centers [8,9]. This is con-

founded by the lack of robust, reproducible and standardized methods for gauging the suitabil-

ity of specific islet preparations for clinical transplantation [10–12].

Consequently, a major effort in the field has been the development of methods for evaluat-

ing islets prior to clinical transplantation which are predictive of outcomes in the patients.

Currently, the best evidence of islet function is reversal of diabetes by transplantation of

human islets into diabetic immunocompromised mice [13]. However, the assay requires sev-

eral weeks to obtain results and is therefore not suitable for assessment of the cells prior to

transplantation, which typically occurs within three days post-isolation. As a result, research

efforts have focused on the identification of surrogate parameters that are predictive of islet

graft function and which can be evaluated within the relatively short time between islet isola-

tion and infusion into the patient.

Our group has investigated the use of percent beta cell apoptosis (BAP) and glucose-respon-

sive oxygen consumption rates (OCR) as predictors of islet graft function. Each of these

approaches independently predicts reversal of diabetes in mice with reasonable accuracy

(0.856 for BAP [14] and 0.793 for OCR [15]). Furthermore, these methods are rapid enough to

obtain results prior to clinical use of the islet preparations. We also demonstrated that OCR

provides identical results independent of the institute performing the assay. However, these

widely used in vitro approaches focus solely on the immediate integrity of the islet preparation

without regard to potential for in vivo islet function or graft-host interaction, elements more

likely to be important for long-term efficacy following transplantation.

In considering the factors that make an islet preparation “good” for clinical use, we specu-

lated that both the function of the islet preparation and the interaction with the recipient

would be governed by the expression of specific islet genes. Therefore good islet preparations

would have a distinctive “gene signature”. To test this hypothesis, whole genome RNA expres-

sion analysis using microarrays was performed on 59 human islet preparations in parallel with

assessment of islet function by transplantation into diabetic mice. Using this approach, a set of

262 microarray probesets representing 199 human genes was associated with the ability of

islets to reverse diabetes in mice. These probesets were able to predict the outcome of trans-

plantation studies with an accuracy of over 83%, suggesting that a “gene signature” could be

associated with islet quality.

Importantly, the gene classifiers were functionally associated with islet biology and were

predominantly associated with inflammation and repair mechanisms rather than metabolic

function. Interestingly, the gene signature showed little overlap with gene expression profiles

associated with our other measures of islet quality, BAP and OCR, suggesting these islet quality

tests measure different aspects of islet biology. Finally, we demonstrate that the microarray-

based gene signature assessment is readily adaptable to rapid evaluation of islet preparations

using a PCR based methodology. In summary, our data demonstrate the feasibility of using

islet gene expression as a metric for functional islet quality assessment in the context of clinical

cell therapy programs.

Gene expression predicts islet transplant function
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Results

Islet gene signature correlated with reversal of diabetes

To identify a gene signature associated with islet quality, each islet preparation was assigned to

one of two classes based on their ability to reverse diabetes, namely good islets, which resulted

in reversal of diabetes after transplantation into diabetic mice, and bad islets, those which

failed to reverse diabetes (see Materials and methods for criteria). To minimize bias in the

analysis, the 59 samples were randomly assigned three times into two groups, a training set

(Group 1) and a validation set (Group 2), while maintaining approximately equal numbers of

good and bad samples in each group. In each iteration Group 1 was used to identify microar-

ray probesets representing individual genes that were associated with either good or bad islet

preparations, then Group 2 was used to test each of the resultant probesets for the ability to

correctly predict the category (good or bad) of each islet preparation (see Materials and meth-

ods for a detailed description). Probesets that had 100% cross-validation efficiency (%CV; i.e.

effectiveness at classifying the samples correctly) were collected as a Predictor Classifiers list.

The combined Predictor Classifiers from the three randomizations yielded a total of 262

unique probeset classifiers for islet quality representing 199 genes that had 100% predictive

accuracy (Table 1). The data showed that 135 of the 262 probesets (51.5%) exhibited higher

expression levels in bad islet preparations, and 127 probesets had higher expression in good
islet preparations.

The predictive value of the combined 262 probeset was then tested by supervised clustering

of the 59 islet preparations. Cluster analysis generated two distinct clusters (Fig 1A) with the

majority of bad islet preparations in Cluster 1 and majority of good preparations in Cluster 2.

Only three bad islet preparations were misclassified resulting in an 89% predictive accuracy

for the good preparations. However, ten of the total 36 good samples were misclassified as bad
(27%). Notably, seven of these ten misclassified good preparations were in a small sub-cluster

adjacent to another sub-cluster containing 2 of the 3 misclassified bad preparations, suggesting

the possibility that these smaller clusters on both sides of the line of separation represent a

class of intermediate quality islets. Overall however, these data demonstrate that using the con-

sensus set of 262 probesets as a predictor would result in the transplantation of very few bad
islet preparations.

Nevertheless, expression analysis of such a large number of genes may be difficult to imple-

ment in a clinical transplantation program on a routine basis, therefore we investigated ways

to reduce the number of classifiers without losing predictive power. The Predictor Classifier

lists from the three randomizations were compared and it was observed that they shared 36

“core” classifiers. The 36 classifiers clustered the samples into two groups with a distinct gene

expression pattern for each class of samples (Fig 1A). The clusters predicted by the 36 probeset

list were identical to the groups predicted by the 262 probeset list and also had an overall pre-

dictive value of 83%. Receiver operating characteristic analysis showed that the curves of two

classifier sets (Fig 1B) were nearly identical, indicating that the reduced set of classifiers had

equivalent predictive accuracy to the larger set, and that it correctly identified 79% of the good
islet preparations (PPV; positive predictive value) and 86% of the bad preparations (NPV; neg-

ative predictive value).

Further analysis of the 36 probeset classifier was done using ANOVA gene expression

model (Partek Genomics Suite) to classify each sample in each of six randomized sample

groups using the probesets to determine its ability to predict islet function in vivo. The correct

classification (good or bad) of each of the six random groups of samples ranged from 82% to

90.5% with an average of 85.3% correct prediction of the outcome in mice. In summary, both

Gene expression predicts islet transplant function
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Table 1. Probeset classifiers for reversal of diabetes arranged by p-value. The 36 classifier subset is highlighted in BOLD. P-values are the Parametric

P-values obtained during the analyses of all the microarray datasets. Fold-change is the ratio of average expression (intensity level) in the Bad samples

divided by average expression in the Good samples. Probes are the identification numbers of the Affymetrix U133 Plus 2.0 GeneChip probesets.

# P-value Fold-change Symbol Probe # P-value Fold-change Symbol Probe

1 0.0001 1.54 MYOF 211864_s_at 132 0.0025 0.68 ABHD6 45288_at

2 0.0002 0.66 MAPT 203929_s_at 133 0.0025 0.73 UCHL1 201387_s_at

3 0.0002 0.74 CCDC108 239508_x_at 134 0.0026 1.3 FBLIM1 1555480_a_at

4 0.0002 1.24 SLC44A1 224595_at 135 0.0026 1.23 RASSF9 210335_at

5 0.0002 1.63 - - 235144_at 136 0.0026 0.78 TSHZ3 223393_s_at

6 0.0002 0.77 USP30 227572_at 137 0.0027 0.76 DENND5B 228551_at

7 0.0002 1.46 - - 232478_at 138 0.0027 1.42 - - 236114_at

8 0.0003 1.43 NOTCH2 212377_s_at 139 0.0027 1.34 PYGL 202990_at

9 0.0003 0.7 N4BP2L2 214748_at 140 0.0027 0.7 - - 1558170_at

10 0.0003 0.81 - - 227547_at 141 0.0027 0.85 ZYG11B 225338_at

11 0.0003 0.66 TBC1D4 203386_at 142 0.0027 1.53 ZFP36L1 211962_s_at

12 0.0003 2.03 ITGB6 208083_s_at 143 0.0028 1.26 PGM2L1 235149_at

13 0.0004 0.75 RNF187 229207_x_at 144 0.0028 1.47 LPAR6 218589_at

14 0.0004 0.78 TSHZ1 223282_at 145 0.0028 0.68 SRD5A1 204675_at

15 0.0004 0.64 FBXL14 1553683_s_at 146 0.0028 0.82 CSRP2BP 225432_s_at

16 0.0004 0.8 ARPP19 221482_s_at 147 0.0029 1.64 OSMR 205729_at

17 0.0005 1.47 - - 216565_x_at 148 0.0029 1.25 - - 237310_at

18 0.0005 0.76 ZC3H6 227809_at 149 0.0029 0.8 FAM55C 243606_at

19 0.0006 1.29 GRHL2 219388_at 150 0.0029 1.17 BAT1 200041_s_at

20 0.0006 1.43 FAM186A 216595_at 151 0.0030 0.85 FLJ35390 1569090_x_at

21 0.0006 1.46 CASP4 209310_s_at 152 0.0030 0.8 LOC284440 1555363_s_at

22 0.0006 0.77 NEBL 203961_at 153 0.0030 0.74 FLJ35390 1569089_a_at

23 0.0006 0.75 LONRF2 225996_at 154 0.0030 1.42 FOSL2 225262_at

24 0.0006 0.75 - - 242651_at 155 0.0030 0.77 CADPS 204814_at

25 0.0007 1.25 FRMD4A 208476_s_at 156 0.0030 0.8 C15orf61 229742_at

26 0.0007 0.8 SALL2 213283_s_at 157 0.0030 1.52 OPN3 224392_s_at

27 0.0007 0.85 NGRN 217722_s_at 158 0.0030 1.35 SEPT9 208657_s_at

28 0.0007 1.28 EXT1 201995_at 159 0.0030 1.31 KIAA1949 224927_at

29 0.0007 0.82 - - 1569478_s_at 160 0.0031 0.8 USP2 229337_at

30 0.0008 1.43 CPM 241765_at 161 0.0031 0.83 FAM111B 1557128_at

31 0.0008 2.17 ITGB6 226535_at 162 0.0031 1.32 NOTCH2 210756_s_at

32 0.0008 0.57 VAT1L 226415_at 163 0.0031 0.81 ATP1B2 204311_at

33 0.0008 0.66 HADH 201035_s_at 164 0.0031 0.79 GPRIN1 227975_at

34 0.0008 0.67 CYP2U1 226393_at 165 0.0031 0.7 SGSM1 230287_at

35 0.0009 0.58 - - 236660_at 166 0.0031 0.76 DLEU1 205677_s_at

36 0.0010 0.61 KCNMA1 228414_at 167 0.0031 1.2 ABCC1 202805_s_at

37 0.0011 1.35 DSC2 204751_x_at 168 0.0031 1.72 PMEPA1 222450_at

38 0.0011 1.72 PMEPA1 222449_at 169 0.0032 1.43 - - 214803_at

39 0.0011 1.57 CD44 217523_at 170 0.0032 1.51 PDGFC 222719_s_at

40 0.0011 1.28 PEX11A 205161_s_at 171 0.0032 1.42 FLRT3 222853_at

41 0.0011 1.74 - - 232277_at 172 0.0033 1.72 TGFB2 228121_at

42 0.0012 1.26 EHD4 209536_s_at 173 0.0033 0.55 - - 1559111_a_at

43 0.0012 1.32 TYMP 217497_at 174 0.0033 0.72 GPR44 206361_at

44 0.0012 1.37 - - 232174_at 175 0.0033 1.39 TPBG 203476_at

45 0.0012 0.78 DENND5B 215058_at 176 0.0033 0.8 DGKE 238694_at

46 0.0012 0.63 - - 230932_at 177 0.0033 0.7 HADH 211569_s_at

(Continued )
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Table 1. (Continued)

# P-value Fold-change Symbol Probe # P-value Fold-change Symbol Probe

47 0.0013 1.38 PLSCR1 202430_s_at 178 0.0033 0.67 TBC1D4 203387_s_at

48 0.0013 0.79 HIPK2 225368_at 179 0.0033 0.81 GABRB3 227830_at

49 0.0013 0.7 MAPT 225379_at 180 0.0034 0.76 RRAGD 221523_s_at

50 0.0013 1.23 ETS2 241193_at 181 0.0034 0.7 - - 1559110_at

51 0.0014 1.29 - - 226756_at 182 0.0035 0.85 - - 239122_at

52 0.0014 1.32 MPZL2 203779_s_at 183 0.0035 1.51 NRP1 212298_at

53 0.0014 1.27 - - 227184_at 184 0.0035 1.27 - - 227167_s_at

54 0.0014 1.43 IFI44 214453_s_at 185 0.0035 1.89 C3 217767_at

55 0.0015 1.17 RYK 214172_x_at 186 0.0035 0.63 PPM1E 236302_at

56 0.0015 0.69 G12 231296_at 187 0.0035 1.44 NOTCH2 202443_x_at

57 0.0015 0.76 STXBP5L 240236_at 188 0.0035 0.82 CCDC109B 218802_at

58 0.0015 0.82 ZNF791 1553703_at 189 0.0035 1.74 SERPI3 202376_at

59 0.0015 0.68 RAB39B 230075_at 190 0.0035 1.38 CSRP2 207030_s_at

60 0.0015 1.34 LITAF 200706_s_at 191 0.0036 0.91 C1orf43 223034_s_at

61 0.0016 0.81 ZNF791 1553704_x_at 192 0.0036 1.35 - - 232925_at

62 0.0016 0.77 - - 231331_at 193 0.0036 0.85 LOC401913 244176_at

63 0.0016 1.23 ARHGAP18 225171_at 194 0.0036 1.36 PLSCR1 202446_s_at

64 0.0016 1.38 FCER1G 204232_at 195 0.0036 1.29 - - 243252_at

65 0.0016 0.72 C6orf174 233050_at 196 0.0036 0.73 KIF5C 203129_s_at

66 0.0016 0.72 NKX6-1 221366_at 197 0.0036 1.54 ANGPTL4 221009_s_at

67 0.0016 0.7 ASCL2 229215_at 198 0.0037 0.85 FANCD2 1568889_at

68 0.0016 1.44 YAP1 224895_at 199 0.0037 1.7 LGALS1 201105_at

69 0.0016 0.74 PTPN3 227944_at 200 0.0037 1.31 FAM102B 226568_at

70 0.0017 0.83 PNMA1 218224_at 201 0.0037 0.76 SOBP 218974_at

71 0.0017 1.63 FGG 226621_at 202 0.0037 1.39 LTF 202018_s_at

72 0.0017 1.34 NFIB 211467_s_at 203 0.0037 0.81 ANKH 223092_at

73 0.0017 0.64 CYP2U1 226402_at 204 0.0037 0.79 ROBO2 240425_x_at

74 0.0017 0.82 CGRRF1 204605_at 205 0.0037 0.62 - - 231040_at

75 0.0017 1.23 ELF1 212420_at 206 0.0038 0.67 PPM1H 212686_at

76 0.0017 1.55 - - 224999_at 207 0.0038 0.72 CASR 211384_s_at

77 0.0018 1.44 IFITM3 212203_x_at 208 0.0038 1.2 CNN2 201605_x_at

78 0.0018 1.4 B4GALT1 238987_at 209 0.0038 0.67 PKIB 223551_at

79 0.0018 1.35 SPRED1 226837_at 210 0.0038 0.65 RAB39B 238695_s_at

80 0.0018 0.82 SVIP 226278_at 211 0.0038 0.73 WFS1 202908_at

81 0.0018 1.47 IFITM2 201315_x_at 212 0.0039 0.62 NR0B1 206645_s_at

82 0.0019 1.4 CARD6 224414_s_at 213 0.0039 1.31 FLT3 206674_at

83 0.0019 0.74 - - 210674_s_at 214 0.0039 0.85 LOC100132767 1569522_at

84 0.0019 1.38 CNN3 201445_at 215 0.0039 1.37 NFIB 209290_s_at

85 0.0019 1.44 FST 226847_at 216 0.0040 1.35 PAG1 227354_at

86 0.0019 0.73 UBE2QL1 226612_at 217 0.0040 1.38 TANC1 225308_s_at

87 0.0019 0.75 PNMA2 209598_at 218 0.0040 0.87 TERF2IP 201174_s_at

88 0.0019 0.87 - - 244505_at 219 0.0041 1.89 CCL2 216598_s_at

89 0.0019 0.81 - - 230039_at 220 0.0041 0.72 SRD5A1 211056_s_at

90 0.0020 0.75 SEPT3 223362_s_at 221 0.0041 1.39 LAPTM5 201721_s_at

91 0.0020 1.47 EFEMP1 201842_s_at 222 0.0041 1.37 MARCKS 225897_at

92 0.0020 1.33 - - 1557543_at 223 0.0041 0.81 ELMO2 55692_at

93 0.0020 0.78 SIPA1L2 225056_at 224 0.0042 0.83 - - 240455_at

(Continued )
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the 262 probeset classifier and the reduced list of 36 probesets, representing just 25 genes, pre-

dicted post-transplantation islet function with comparable and high accuracy.

Refinement of predictor list by logistic regression

To further assess redundancy in the 36 probeset above that is necessary for the successful clas-

sification of islets into good and bad preparations, logistic regression analyses were conducted.

The results showed considerable redundancy even among the 36 probesets, with fourteen

Table 1. (Continued)

# P-value Fold-change Symbol Probe # P-value Fold-change Symbol Probe

94 0.0021 1.55 PLIN2 209122_at 225 0.0042 0.74 MNX1 214614_at

95 0.0021 1.26 ITGB1 1553678_a_at 226 0.0042 0.85 DJC24 213853_at

96 0.0021 0.74 PTCH1 209815_at 227 0.0042 0.75 NEBL 203962_s_at

97 0.0021 1.24 SLC43A3 213113_s_at 228 0.0042 0.78 ZNF91 206059_at

98 0.0021 1.38 CSRP2 211126_s_at 229 0.0042 1.36 MAP3K13 1562440_at

99 0.0021 1.23 BAIAP2L1 222675_s_at 230 0.0044 1.41 REST 212920_at

100 0.0021 1.21 - - 238973_s_at 231 0.0044 1.49 ABCC3 208161_s_at

101 0.0021 0.62 INSM1 206502_s_at 232 0.0044 0.85 LOC84989 1552665_at

102 0.0021 0.78 STXBP1 202260_s_at 233 0.0044 0.75 DOCK3 213482_at

103 0.0021 1.73 TLR3 206271_at 234 0.0045 1.42 RND3 212724_at

104 0.0021 0.72 SLC2A13 227176_at 235 0.0045 0.82 CLIP3 212358_at

105 0.0021 0.83 SLC7A14 232904_at 236 0.0045 1.46 - - 239519_at

106 0.0021 1.57 CPM 235706_at 237 0.0045 0.74 BTBD3 202946_s_at

107 0.0022 1.44 NFIB 213033_s_at 238 0.0045 1.27 NMI 203964_at

108 0.0022 1.5 C1RL 218983_at 239 0.0046 0.79 FAM117A 221249_s_at

109 0.0022 0.72 - - 1556160_a_at 240 0.0046 0.7 EFHD1 209343_at

110 0.0022 0.77 SYBU 218692_at 241 0.0046 0.7 KIAA2022 244370_at

111 0.0023 0.78 - - 226964_at 242 0.0046 1.46 RBPMS 207836_s_at

112 0.0023 1.73 PMEPA1 217875_s_at 243 0.0046 1.29 GALNT2 217788_s_at

113 0.0023 1.49 GBP1 202269_x_at 244 0.0046 1.51 ABCC3 209641_s_at

114 0.0023 1.4 ONECUT1 210745_at 245 0.0047 1.22 - - 1560230_at

115 0.0023 0.82 CRMP1 202517_at 246 0.0047 0.81 RNF180 242985_x_at

116 0.0023 1.35 MAP3K5 203836_s_at 247 0.0047 0.81 TMCC2 213096_at

117 0.0024 1.21 TGFBR1 236561_at 248 0.0047 1.24 RHOV 241990_at

118 0.0024 1.32 TNFRSF10B 209295_at 249 0.0048 1.42 F3 204363_at

119 0.0024 0.88 PAX1 1553492_a_at 250 0.0048 0.65 OLFM1 213131_at

120 0.0024 0.75 FOXE1 206912_at 251 0.0048 1.24 ANK3 207950_s_at

121 0.0024 0.71 MAPT 203930_s_at 252 0.0048 0.65 DACH2 239738_at

122 0.0024 0.82 FOXA2 40284_at 253 0.0048 1.24 - - 220990_s_at

123 0.0024 0.86 ASB1 212818_s_at 254 0.0048 1.29 FRMD4A 225163_at

124 0.0024 1.38 IVNS1ABP 206245_s_at 255 0.0049 0.71 NKX2-2 206915_at

125 0.0024 1.52 NTN4 223315_at 256 0.0049 0.82 MAP1B 226084_at

126 0.0024 0.86 TPRG1L 224871_at 257 0.0049 0.77 BSN 204586_at

127 0.0024 0.62 LOC283454 229552_at 258 0.0049 1.36 SEMA4B 234725_s_at

128 0.0025 1.42 ITGB6 208084_at 259 0.0049 0.88 HERPUD2 222751_at

129 0.0025 1.45 FOSL2 218880_at 260 0.0049 1.34 LOC100128501 229296_at

130 0.0025 0.77 ARPP19 214553_s_at 261 0.0050 0.77 - - 225685_at

131 0.0025 1.25 MYO1B 212365_at 262 0.0050 0.78 ICA1L 230454_at

https://doi.org/10.1371/journal.pone.0185331.t001
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Fig 1. The 262 and 36 probeset lists predict islet quality. (A) 59 human islet preparations were clustered

using the 262 probeset classifier. Eighty-nine percent (25 of 28 samples) of the good islets (green) clustered

within the same quality class, and 68% (21 of 31 samples) of bad preparations (red) clustered together. The

overall predictive accuracy of this classifier set was 83%. The heat map depicts expression level of the 36

probesets in each sample; Red: probeset with higher expression in bad islets; Green: probeset with higher

expression in good islets; the intensity corresponds to the fold-difference in gene expression. (B) The 262

classifier set (diamonds) and the 36 classifier (squares) were analyzed by ROC curve analysis for their ability

to discriminate between the good and bad classes of islet preparations. Both classifiers perform better at

identifying poor islet preparations (NPV) than effective preparations (PPV).

https://doi.org/10.1371/journal.pone.0185331.g001
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probesets in the initial full model (EST2, KCNMA1, EST5, PKIB, EHD4, SEPT9, MIR181A2,

RND3, PMEPA1, IFITM2, CARD6, MNX1, RNF187, MAPT) showing excellent separation

between good and bad islets, with a maximum 0.96 true positive rate and a zero false positive

rate (Fig 2A and 2B). Interestingly, using further step-wise model simplification, the number

of gene probes can be reduced down to five (EST2, KCNMA1, RND3, PMEPA1, CARD6)

while maintaining a maximum true positive rate of 0.93 and a false positive rate of zero

(Fig 2C and 2D).

Fig 2. Reduction to 14 and 5 probeset lists by logistic regression. (A) Boxplot and (B) ROC curve for the fourteen

probesets model. The fourteen probesets are EST2, KCNMA1, EST5, PKIB, EHD4, SEPT9, MIR181A2, RND3, PMEPA1,

IFITM2, CARD6, MNX1, RNF187, MAPT. The model achieves a 0.96 true positive rate and a zero false positive rate at

score threshold value of 0.5. (C) Boxplot and (D) ROC curve for the five probesets model. The five probesets are EST2,

KCNMA1, RND3, PMEPA1, CARD6. The model achieves a 0.93 true positive rate and a zero false positive rate at score

threshold value of 1.2.

https://doi.org/10.1371/journal.pone.0185331.g002
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Classifier gene function

Examination of the 262 probesets (Table 1) revealed that approximately half (135 of 262) were

more highly expressed in bad islet preparations while the other half were higher in good islet

preparations, suggesting that the difference observed in in vivo function was not solely due to

up-regulation of deleterious molecules, but also to the preservation or up-regulation of benefi-

cial molecules. Further investigation of gene function by Ingenuity Pathway Analysis revealed

that two apparent processes were competing in the islets to affect their in vivo function (Fig

3A). The most significant functional network was Endocrine System Development, which

along with certain less significant networks (Cancer, Organ Development, Cellular Growth

and Proliferation, Cardiovascular System Development, and Tissue Development), indicates

an increase in tissue repair mechanisms such as cell proliferation and cell differentiation. Of

the genes associated with endocrine development, 73% exhibit higher expression in good islet

preparations, and together these genes form a pathway associated with beta cell development

(Fig 3B). Increased expression of cell growth and differentiation pathways implies that ongoing

islet repair is associated with better in vivo function.

The second most significant functional network was Inflammatory Disease (Fig 3A).

Along with other networks (Hepatic System Disease, Gastrointestinal Disease, Neurologic

Disease, and Inflammatory Response), these classifiers form an interconnected network of

molecules associated with the innate immune system and the inflammatory response (Fig

3C). Importantly, 69% of the genes in Inflammatory Disease have higher expression in bad
islets, suggesting that beta cells may participate in their own dysfunction by up-regulation of

pro-inflammatory molecules even prior to transplantation. Some of these, such as CCL2 (also

known as MCP1), have been previously reported to have a negative effect on islet function

[16–19]. However, most of the genes in these pathways have not been studied in relation to

islet biology or diabetes.

Gene signatures associated with oxygen consumption rates and

apoptosis

We previously reported that both the percentage of apoptotic beta cells (BAP) [14] and glu-

cose-responsive oxygen consumption rates (OCR) [15] individually provided reasonable pre-

dictive accuracies of subsequent islet graft function of 0.86 (95% confidence interval: 0.75–

0.96) and 0.79 (95% confidence interval: 0.61–0.97), respectively. OCR and BAP results repre-

sent different aspects of the islet preparation, with OCR reflecting the metabolic responsive-

ness of the islets and BAP the viability of the beta cell population. To determine the extent to

which genes responsible for these characteristics were shared with each other and with the 262

probeset classifier, islet gene expression data was analyzed to identify genes associated with

OCR and BAP results. To obtain an accurate gene expression profile for these characteristics

using the current microarray datasets, transplantation results of current samples were used to

set the thresholds of each method. For this sample set, the thresholds for OCR good and bad
islets were OCR>0.191 and<0.085 nmol O2/min/100 islets, respectively. Similarly, good and

bad islets had BAP <1.91% and>4.30%, respectively.

The gene expression data were analyzed by class comparison based on these thresholds to

define good and bad classes of islet preparations. This yielded a set of 985 probesets, represent-

ing 736 genes, that discriminated between high and low OCR, and a set of 1056 probesets, rep-

resenting 790 genes that differed between high and low BAP. Pathway analysis revealed the

OCR and BAP gene sets represented two strikingly different classes of genes functionally.

Good islets, as defined by OCR, showed 16 significant pathways (p<0.005), a majority (65%) of

which were associated with metabolism (Fig 4A). By contrast, the 44 significant pathways
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Fig 3. Functional pathways of the 262 classifier set. (A) Ingenuity Pathway Analysis was used to group the classifiers for reversal of diabetes into

functional pathways. The twelve most significant functional pathways are listed in order of–log(p-value) with the most significant pathway (Endocrine

System Development; p = 2.60 x 10−9) at the top. The number of probesets associated with each pathway is also listed. (B) Pancreatic endocrine cell

development and regeneration pathway showing genes identified in the 262 classifier list (colored). (C) The network of inflammatory and immune

related molecules predominantly expressed in non-functional islets prior to transplantation. Green means higher expression in good preparations, Red

means higher expression in bad preparations, and the intensity corresponds to the fold-difference in gene expression. The pathway figures are adapted

from Ingenuity Pathway analysis and the KEGG pathway database.

https://doi.org/10.1371/journal.pone.0185331.g003
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Fig 4. Canonical pathways of the OCR and BAP classifier sets. The results of Ingenuity Pathway Analysis

of the probeset classifier lists associated with OCR and BAP. The top ten pathways associated with OCR

(green) and BAP (red) are listed in order of the level of statistical significance (-log(p-value)). Pathways

associated with OCR are mostly metabolic, whereas those associated with BAP are various signaling

pathways. B. Venn diagram of the probeset classifier lists from diabetic mouse data (Transplant), OCR

results, and BAP shows that there is overlap of only 9 probesets. This indicates that the three parameters are

measuring distinct characteristics of islet function, which is supported by the diversity of functional pathways

associated with each parameter. The diagram was created using the VENNY website tool [20].

https://doi.org/10.1371/journal.pone.0185331.g004

Gene expression predicts islet transplant function

PLOS ONE | https://doi.org/10.1371/journal.pone.0185331 October 2, 2017 11 / 22

https://doi.org/10.1371/journal.pone.0185331.g004
https://doi.org/10.1371/journal.pone.0185331


representative of good islets classified by BAP expressed greater association with signaling

pathways, including key pathways related to islet biology, such as mTOR and AMPK signaling,

and only two metabolic pathways (5%). These results suggest that OCR and BAP measured

two distinct aspects of islet biology, as represented by transcriptional profiling. Moreover,

comparison of the probeset classifiers derived from all three functional assays (reversal of dia-

betes in mice, OCR, and BAP) showed that the majority of genes associated with each metric

was unique (Fig 4B).

Development and verification of a diagnostic test for islet quality

Implementation of a “gene signature” for gauging islet quality within a clinical islet transplan-

tation program requires a rapid, inexpensive, and reproducible method of measuring differen-

tial gene expression such as quantitative RT-PCR (qRT-PCR). To test this approach, an

independent cohort of 16 new islet preparations comprising 8 good samples and 8 bad were

analyzed by qRT-PCR for differential expression of a subset of the 36 probeset classifier for

reversal of diabetes. The 36 classifiers represent 25 known genes, and of these there were

twenty expression assays readily available on the qRT-PCR-based OpenArray TaqMan plat-

form. These twenty genes represent 25 (69%) of the 36 probesets. The results show that expres-

sion of 10 of the 20 genes are significantly different (p<0.05) between islets that reverse

diabetes and those that do not (Table 2). Analysis of these 10 significant genes as a single met-

ric by two-way ANOVA proves highly significant (p<0.0001) for islet quality, and together

have a predictive accuracy for reversal of diabetes of 86% (ROC analysis; Area Under the

Curve = 0.8640 ± 0.0285). These results demonstrate that qRT-PCR can be a useful method for

Table 2. Analysis of a subset of genes by QRT-PCR.

Gene classifier avg Good avg Bad Fold-differenceǂ p-value

NOTCH2 0.480 1.087 2.27 0.00006

MAP3K5 0.325 0.618 1.90 0.00034

RND3 0.479 0.898 1.87 0.00526

CARD6 0.038 0.062 1.64 0.00791

ITGB6 0.148 0.337 2.27 0.00936

IFITM2 1.730 2.767 1.60 0.01448

KCNMA1 2.016 1.357 (1.48) 0.02373

MPZL2 0.257 0.428 1.66 0.02898

MYOF 0.521 0.963 1.85 0.03750

SEPT9 2.722 3.760 1.38 0.04863

PLSCR1 1.162 1.955 1.68 0.06242

FRMD4A 0.043 0.064 1.50 0.06996

PMEPA1 0.331 0.572 1.73 0.08153

DENND5B 0.866 1.132 (0.77) 0.10952

PTPN3 0.852 1.123 1.32 0.24673

MNX1 0.892 0.769 (1.16) 0.30835

MAPT 0.678 0.583 (1.16) 0.48698

PKIB 3.227 3.455 1.07 0.75409

TSHZ1 1.874 1.927 (0.97) 0.80347

ZC3H6 0.612 0.602 (1.02) 0.90909

ǂ Ratio of expression in bad divided by good samples. Parentheses indicate the reverse ratio.

https://doi.org/10.1371/journal.pone.0185331.t002

Gene expression predicts islet transplant function

PLOS ONE | https://doi.org/10.1371/journal.pone.0185331 October 2, 2017 12 / 22

https://doi.org/10.1371/journal.pone.0185331.t002
https://doi.org/10.1371/journal.pone.0185331


assessing expression levels of the gene classifiers and that the expression levels of this subset of

10 genes successfully predicts in vivo outcome in the diabetic mouse model.

Comparing the results of the limited 14 probeset with those of the qRT-PCR revealed that 5

(KCNMA1, SEPT9, RND3, IFITM2, CARD6) out of 9 shared gene probes are among the 10

significant gene probes that can identify good from bad islets based on the qRT-PCR analysis.

However, the other 5 gene probes (EST2, EST5, EHD4, MIR181A2, RNF187) in the 14 probe-

set were not among those included in the qRT-PCR study. Similarly, 3 (KCNMA1, RND3,

CARD6) out of 4 shared gene probes in the further reduced 5 probeset were also among the

same 10 significant qRT-PCR gene probes. One other shared probe had a p value of 0.08

(PMEPA1) in the qRT-PCR and the fifth (EST2) was not represented.

Discussion

Transplantation of insulin-producing islet cells has been shown to be an effective treatment for

severe type 1 diabetic patients. However, the effectiveness of the therapy varies greatly between

islet transplantation centers [8,21]. It is widely accepted that this is predominantly due to the

variability in islet preparation quality. And yet, effective and sensitive methods of gauging islet

quality have been slow to develop. In this study, we hypothesized that the effectiveness of the

islet graft depends both on beta cell function as well as the interaction between the graft and

the host, and that these are governed by the expression of specific islet genes. Consequently,

we examined the gene expression profiles of 59 human islet preparations using oligonucleotide

arrays. 262 probesets, representing 199 individual genes, were identified that were differen-

tially expressed between human islet preparations that were effective (good) or ineffective

(bad) at reversing diabetes after transplantation in mice. The 262 probe classifier set predicted

the ability of a specific preparation to reverse diabetes with 83% accuracy. A subset of 36 pro-

besets had a similar predictive value, and 10 of the twenty-five genes represented in this subset

were independently validated with a new set of samples by qRT-PCR.

A common theme from pathway analysis of the 262 classifier set was that a large number of

significant classifiers were found to be associated with inflammation and other immune

responses (Fig 3), some of which been reported to have roles in islet function and diabetes. For

example, components of specific cytokine pathways are upregulated in bad islets, including

tumor necrosis factor (TNF) machinery such as the TRAIL receptor TNFRSF10B, which is

directly involved in T cell-induced beta cell death [22,23]. Also, both FAS and its ligand, FASL,

which are associated with induction of beta cell apoptosis [24,25], are at higher levels in bad
islets, suggesting that islet death-related pathways are already activated in these preparations

even before transplantation. In addition to apoptosis, these pathways activate NFκB and AP-1

transcription factors, resulting in upregulation of inflammatory cytokine expression [26]. One

of these, CCL2 (MCP1), is documented to promote a local proinflammatory environment

associated with islet death and diabetes [16–19]. Bad islets also have a higher expression of the

pattern recognition receptor TLR3, which is coupled to islet dysfunction and increased cyto-

kine expression [27]. The elevated tissue factor (F3) expression is pro-inflammatory as well

and inhibits islet graft function [16,28]. Other chemokine systems are also increased, such as

TGFB2 and its receptor TGFBR1 and the IL13 receptor, OSMR, but these may initiate protec-

tive signals for islet cells [29–31]. Likewise, SERPINA3, also known as alpha-1-antichymotryp-

sin, is upregulated and in other systems is involved in wound healing [32,33]. So it appears

that the pathways leading to islet dysfunction are already triggered before transplantation, but

that there is also the initiation of some counteractive measures.

Conversely, a large number of genes that were preferentially upregulated in good islet prep-

arations were associated with pancreas development and regeneration, suggesting that if
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repair/regeneration pathways were already initiated in damaged islets that they would be more

likely to be effective after transplantation. Some of these genes include ONECUT1 (HNF6)

[34,35], MNX1 (HB9) [36,37], NKX2-2 [38,39], INSM1 [40,41], NKX6-1 [38,42], FOXA2 [43–

45], and PTCH1 [46,47] that interact in regulatory networks (Fig 3B) guiding embryonic pan-

creas development and regeneration following injury. Interestingly, another molecule impli-

cated in this process, NOTCH2, is preferentially expressed in the bad islet preparations. A

possible explanation lies in the importance of NOTCH2 in expansion of the progenitor cell

population by suppression of neurogenin3-dependent endocrine cell differentiation [48–51].

To reduce the number of classifiers to a manageable level the 36 probeset list was subjected

to logistic regression analysis with backward step-wise selection. The results indicate that the

number of genes can be reduced to 14 or even 5 without loss of predictive power, though this

of course must be evaluated experimentally. It is interesting to note, however, that the second

highest scoring gene in this analysis was the rectifying potassium channel KCNMA1 which is

upregulated in good islets and has been shown to be important for repolarization of the mem-

brane following insulin secretion. Loss of KCNMA1 suppresses insulin secretion and increases

susceptibility to oxidative stress and apoptosis [52]. Conversely, the sixth highest, SEPT9, is

upregulated in bad islets and has recently been shown to be upregulated in islets of type 2 dia-

betics [53].

Due to the method by which the U133 Plus 2.0 GeneChips were developed, some of the

best classifiers (6 of the 36 probeset list) were expressed sequence tags (ESTs) which were not

mapped to coding regions. One of these, EST4, was subsequently mapped to microRNA

MIR181A2, while the others appear to be in the 3’ untranslated regions of specific genes (EST1

in EGFR, EST2 in TRAPPC9, and EST3 in FOXE1). Two classifiers, EST5 and EST6, appear to

be potential new genes, wojo and kyber respectively, of unknown function which were pre-

dicted by computational methods along with some expression evidence. One of these, wojo,

was previously reported in a human islet cDNA screen (Melton et al, Endocrine Pancreas Con-

sortium, unpublished).

The goal of the present study was to develop a diagnostic for assessment of the quality of

cell preparations prior to use in clinical islet transplantation therapy for type 1 diabetes. After

isolation, islets are typically infused into the patient within 24h-48h, and so methods of assess-

ment must be rapid. For application of a “gene signature” of islet quality there are several

methods for quantifying gene expression, and in this case we evaluated qRT-PCR analysis with

a subset of 20 genes. Expression levels of half of these were significantly associated with reversal

of diabetes in mice (Table 2) and together showed an 86% predictive accuracy for the outcome.

Using the logistic regression model and step-wise simplification also suggest that use of as little

as 5 gene probes (three of which are also represented in the 10 gene probes found significant in

the qRT-PCR) could separate good from bad islet preparations with a maximum true positive

predictive rate of>90% while maintaining a false positive rate of zero. Further studies will be

required to determine whether this is the optimal set of classifiers for clinical application and

whether qRT-PCR is the best method for utilization of this approach. For example, a limited

evaluation of a bead-based RNA hybridization assay (Panomics Quantigene) with a small set

of these genes provided similar discrimination between islet quality classes (data not shown).

However, no matter the method of quantification it is our opinion that due to the heteroge-

neous nature of islet preparations that an effective diagnostic will require a set of genes and a

strategy for combining the data into a meaningful metric. Logistic regression is one possible

way to combine expression levels of several classifiers, such as in Fig 2 in which islet prepara-

tions that exceed a specified threshold would be considered transplantation quality.

We also investigated genes that correlated with two other standard measures of islet quality,

namely glucose-responsive oxygen consumption rates (OCR) and beta cell apoptosis (BAP), in
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the hope of identifying one universal set of classifiers that could alone be used for preclinical

islet assessment. However, it appears that each of these three parameters (reversal of diabetes

in mice, OCR, and BAP) were correlated with different gene classifiers with overlap of only 9

probesets (Fig 4B). It is interesting that the genes associated with these different assays also

reflect distinct biology with OCR associated with metabolism, BAP associated with various

signaling pathways, and reversal of diabetes with inflammation and regeneration which

require interactions within the organism. We are now of the opinion that all three of these

islet assessments provide important complementary data for assessing islet function prior to

transplantation.

A potentially confounding aspect of the current study is that islets contain several different

cell types, each with unique gene expression profiles. This is especially true of human islet

preparations, which have been shown to vary in the percentage of individual cell types by

more than 300% [54]. Further complications are introduced by the effects of pancreas diges-

tion and islet purification methods [55], as well as the islet restructuring that occurs during the

unavoidable step of short-term post-isolation culture [56]. In the face of such complexity, we

chose to implement an unbiased approach by profiling samples in parallel with transplantation

into diabetic mice, i.e. without “islet picking”. We felt this would allow us to identify molecules

that potentially affected engraftment in our islet recipients, without the bias of focusing on

molecules from the insulin-producing beta cells. We are currently investigating the expression

of several of the gene products in both human pancreata and the resultant islet preparations to

identify the cell-type specificity of these molecules.

Another question which arises from this study is whether the gene classifiers were originally

expressed in the donor organ or were expressed as a consequence of the islet isolation process.

Islet isolation from human pancreata is a rigorous process involving both enzymatic and

mechanical dissociation of the tissue followed by gradient separation of the cell clusters. It has

been reported that this process, especially the gradient isolation, harms islets and makes them

less suitable for cell therapy, although the specifics of the damage are still unknown [57].

Another recent study has shown significant changes in human islet gene expression in

response to inflammatory cytokines [58]. We investigated our list of candidate molecules and

found that some are present in the donor organ prior to processing and may correlate with

certain islet characteristics; however, their ability to predict islet quality has yet to be

determined.

An important aspect for the field of transplantation is the effective transfer of standardized

diagnostic measures to other transplantation centers. This has been especially true in islet cell

transplantation where the standard measures for islet assessment are known to be inadequate,

but validation of new assays across centers has been difficult. We previously addressed this

problem in the development of the glucose-responsive oxygen consumption assay which was

validated in two centers simultaneously [15], but as far as we know this is the only new assay

that has been compared in more than one center. By contrast, gene expression analysis is read-

ily available at most research centers, and so the current approach to islet assessment may be

evaluated at other centers.

In conclusion, our microarray-based analysis of 59 human islet preparations has identified

a set of 262 probesets whose expression constitutes a “gene signature” of islet quality as it

relates to cell therapy for diabetes. This gene set is being incorporated as part of the pre-trans-

plant assessment of human islets for clinical transplantation therapy in our islet transplanta-

tion program. Further investigation of the role of these molecules in islet cell biology is

ongoing. Moreover, the expression of the identified gene set is being determined in parallel to

the OCR and BAP assays in prospective clinical trials in order to determine the relevance of
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each parameter and its influence on short and long term islet survival and function post-trans-

plantation in humans.

Materials and methods

Human islet isolation and processing

Human islets were provided by the Southern California Islet Cell Resources Center (SC-ICRC)

at City of Hope (Duarte, CA). The study was approved by the City of Hope Institutional

Review Board and with the written informed consent from each organ donor for research use.

Pancreata were digested by a modified Ricordi method [59] using Liberase-HI collagenase

(Roche Molecular Biochemicals, Indianapolis, IN), then purified on a continuous Biocoll (Bio-

chrom, Berlin, Germany) gradient in a cooled COBE 2991 Cell Processor (Gambro BCT, Lake-

wood, CO). Islet fractions collected from the COBE that had a purity >70% were pooled and

cultured (1–2 days) in Miami Media #1 (Mediatech Inc., Herndon, VA) prior to RNA isolation

and in vitro and in vivo analyses. Human islets were processed under strict GMP-compliant

conditions, suitable for human clinical transplantation, using the same islet isolation protocol,

facility and isolation team for each preparation. To obtain a true gene expression signature of

the cell preparations used for islet cell therapy, human islet preparations were analyzed as they

were received from the transplantation center, without manual selection of islets or other

manipulations. Islet gene expression was analyzed using 59 individual human islet prepara-

tions. The average donor age was 44.0 ± 113.1 years (mean ± standard deviation; range 15–68

years) and 33 of the 59 (56%) pancreas donors were male. The average purity of the islet prepa-

rations was 73.6 ± 12.0% (mean ± standard deviation; range: 30–90%). Aliquots of these prepa-

rations were assessed (see below) for glucose-responsive oxygen consumption rates, beta cell

apoptosis, and by transplantation into diabetic mice concomitant to RNA extraction to avoid

potential bias in the gene expression introduced by differences in cell culture times.

Measurement of glucose-responsive oxygen consumption rates (OCR)

The islet flow culture system has been described in detail previously [60]. Briefly, 750 unsorted

cell clusters from each islet preparation were loaded in duplicate into the inverted perfusion

system and absolute levels of OCR were calculated as the flow rate times the difference between

inflow and outflow oxygen tension measured by the phosphorescence lifetime of an oxygen-

sensitive dye that was painted inside the perifusion chamber [15]. Inflow oxygen tension

remained constant during the course of the experiment [15], and was determined at the con-

clusion of each experiment after inhibiting cellular respiration by the addition of antimycin A

[15]. The changes in OCR in response to glucose were calculated as the difference in OCR

averaged from 30 to 45 min following the change to 20 mM glucose, and the 15 min prior to

the change.

Measurement of percent beta cell-apoptosis (BAP) by laser scanning

cytometry

Laser scanning cytometry was performed as previously described [14]. Briefly, 500–1000 IEQ

were fixed in 10% formalin, embedded in paraffin and sectioned at the City of Hope Anatomi-

cal Pathology Core or SC-ICRC facilities. Slides were immunostained for terminal deoxynu-

cleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) using the ApopTag1

Plus Fluorescein In Situ Apoptosis Detection Kit (Millipore/Chemicon, Temecula, CA), fol-

lowing manufacturer recommendations, and for insulin using guinea pig anti-human insulin

antibody as primary antibody (Linco Research/Millipore, St Charles, MO) and a Cy5

Gene expression predicts islet transplant function

PLOS ONE | https://doi.org/10.1371/journal.pone.0185331 October 2, 2017 16 / 22

https://doi.org/10.1371/journal.pone.0185331


conjugated secondary antibody (Jackson Immuno-Research, West Grove, PA). Slides were

scanned using a iCys laser scanning cytometer (40x objective, Compucyte, Woodbridge, MA.

U.S.A.) and iCys 3.2.5 software. Cells staining for insulin were defined as beta cells; cells that

co-stained for insulin and TUNEL were defined as apoptotic beta cells.

Diabetes induction, islet transplantation and blood glucose monitoring

Mice were housed in specific pathogen free (SPF) conditions at the Animal Resources Center

(ARC) of the Beckman Research Institute of City of Hope. NOD.SCID mice were obtained

from the ARC Breeding colony at City of Hope, which were derived from breeder animals

received from Jackson Laboratories (Bar Harbor, ME). The use of animals and the animal pro-

cedures were approved by the City of Hope Research Animal Care Committee. Diabetes was

induced by intraperitoneal injection of streptozotocin (50 mg/kg, daily for 3 days, Sigma-

Aldrich) freshly dissolved in citrate buffer. Blood samples were taken from the tail and glucose

levels were measured using the One-Touch Ultra Blood Glucose Monitoring System (Lifescan

Inc., Milpitas, CA). Animals were considered diabetic following two consecutive blood glucose

measurements >400 mg/dL. The transplantation of 1000–2000 IEQ under the renal capsule of

one kidney was performed as described previously [13,61]. Post transplant blood glucose mea-

surements were taken two to three times per week. Islets were considered functional if the

average blood glucose levels remained below 200 mg/dL, 3–4 weeks after transplantation. Islet

preparations were tested in three or more animals; if the transplant successfully reversed diabe-

tes for 3–4 weeks, the engrafted kidney was removed to ensure that glycemic reduction was

dependent on the islet grafts. No reversal of diabetes was observed that was not graft-

dependent.

Gene expression profiling and analysis

RNA was extracted from islet preparations using Trizol (Invitrogen). Biotinylated cRNA was

prepared using the Ambion MessageAmp Biotin II kit (Ambion) and hybridized to Affymetrix

Human Genome U133 Plus 2.0 GeneChips which profiles the whole known human genome

representing about 47,000 transcripts. Normalized signals were generated using quantile nor-

malization (RMAExpress[62]). Batch effects were removed using ComBat [63] and the results

were used for Class Comparisons (ANOVA) and Class Predictions (BRB Array Tools; http://

linus.nci.nih.gov/BRB-ArrayTools.html). The 59 microarray datasets (data uploaded to GEO,

GSE75062) were randomly assigned to two groups, the first was used to identify differentially

expressed genes by Class Comparison and the second for testing the predictive power of each

classifier by Class Prediction, and this randomization was repeated three times and the results

pooled. Class predictions were performed using the Diagonal Linear Discriminant Analysis

(DLDA) method, which is based on maximum likelihood discriminant rules that give consis-

tently good results with our data set and others[64]. In addition to the above analysis, an inde-

pendent analysis was done using the Partek Genomics Suite (Partek Inc.) to determine if the

classifiers identified using BRB-Array Tools were reproducible. An ANOVA for differential

expression was performed and the results compared to the genelists obtained using BRB-Array

Tools. An identical approach to the BRB-Array Tools methodology was used to refine the gene

signatures using 3 algorithms (DLDA, Random Forest and Linear Regression) in the Partek

software. For analysis of genes associated with beta cell apoptosis and oxygen consumption

rates the Class Comparison and Class Prediction each utilized the entire set of samples. Func-

tional analysis was performed using Gene Ontology (GO) (http://www.geneontology.org/)

and Ingenuity Pathway Analysis (IPA). Receiver Operating Characteristics (ROC) analysis was
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done using JROCFIT (http://www.rad.jhmi.edu/jeng/javarad/roc/JROCFITi.html). All the

microarray data for this study are available for review at the NIH GEO accession site.

QRT-PCR using OpenArray TaqMan arrays

Custom OpenArray plates were designed by comparing the available TaqMan assays from

Applied Biosystems with the 36 gene classifier set obtained from the microarray analyses. The

36 Probesets represented 25 genes, and twenty of these had assays available (Table 2). Five ref-

erence genes were also chosen (HPRT1, GUSB, PPIB, ACTB and GAPDH) and post-analysis

indicated that GUSB exhibited the most stable expression and so it was used for normalization

of the results. Total RNA was isolated from sixteen new human islet preparations representing

eight that reversed diabetes and eight that failed. The RNA samples were reverse transcribed

using Superscript II (Life Technologies) and relative gene expression measured by PCR on an

OpenArray NT using OpenArray Master Mix according to manufacturer instructions

(Applied Biosystems). Assays were performed in duplicate for each sample on three separate

days for a total of six technical replicates for each sample for each gene. The expression was

quantified with the R program qpcR package[65] using the cm3 model[66]. Some of the sam-

ple wells (756 of 24192 total or 3.1%) failed amplification due to robot filling errors and the

results were removed as outliers by ROUT analysis[67]. Expression values were normalized

with the GUSB reference gene and technical replicates were averaged for each sample. The

averages for each gene were used to assess significant differences in expression associated with

islet quality.

Statistical analysis

BRB ArrayTools and Partek Genomics Suite were used for analysis of gene expression data

and the internal statistical procedures were utilized with alpha and beta set to 0.05 and fold-dif-

ference set to 1.5. Analysis of qRTPCR data was done using GraphPad Prism with a p-value <

0.05 considered significant. To narrow the focus of probesets that were found to successfully

classify islets into good and bad preparations, the logistic regression analyses were performed

using the microarray data. Treating islet quality indicator as the dependent variable, the pre-

dicted log odds of being classified as a good islet as opposed to being a bad islet are defined as

scores. The probesets were individually screened for their ability to predict the genomic profile

classification, their p-values were ranked and the maximum possible subset of the classifying

probes were included in a multivariate model (full model). A backward step-wise model selec-

tion procedure was then used to reduce the number of classifiers. Boxplots and ROC curves

(ROCR package [68]) were used to illustrate the classification performance of the selected

models. Specifically, boxplots were used to demonstrate the separation between good and bad

islet groups, and the ROC curves were used to evaluate the logit model in terms of the trade-

off between true positive and false positive rates. The logistic regression analyses were per-

formed using R statistical software (version 3.1.2).
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