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Quantum mechanical semiempirical comparative binding energy analysis calculations have been carried
out for a series of protein kinase B (PKB) inhibitors derived from fragment- and structure-based drug design.
These protein-ligand complexes were selected because they represent a consistent set of experimental data
that includes both crystal structures and affinities. Seven scoring functions were evaluated based on both
the PM3 and the AM1 Hamiltonians. The optimal models obtained by partial least-squares analysis of the
aligned poses are predictive as measured by a number of standard statistical criteria and by validation with
an external data set. An algorithm has been developed that provides residue-based contributions to the overall
binding affinity. These residue-based binding contributions can be plotted in heat maps so as to highlight
the most important residues for ligand binding. In the case of these PKB inhibitors, the maps show that
Met166, Thr97, Gly43, Glu114, Ala116, and Val50, among other residues, play an important role in
determining binding affinity. The interaction energy map makes it easy to identify the residues that have the
largest absolute effect on ligand binding. The structure-activity relationship (SAR) map highlights residues
that are most critical to discriminating between more and less potent ligands. Taken together the interaction
energy and the SAR maps provide useful insights into drug design that would be difficult to garner in any
other way.

INTRODUCTION

Structure-based drug design (SBDD) and fragment-based
drug design (FBDD) play increasingly important roles in drug
discovery,1 as more protein structures become available and
as the computational tools for exploiting those structures
become more capable. Ultimately, the success or failure of
these efforts rests on the ability to accurately compute
protein-ligand interaction energies. This is a difficult
problem because of the complexity of the molecular struc-
tures involved and the very significant challenge of comput-
ing energy differences to sufficient accuracy to provide useful
predicted binding affinities. There are many approaches to
this problem that vary greatly in terms of their accuracy,
generality, and efficiency. At one extreme are simulation-
based approaches, such as free energy perturbation (FEP).2

FEP provides a theoretically rigorous estimate of the free
energy change for permuting one ligand into another. In
particular, FEP addresses the problems of sufficient sampling
and the computation of true free energies.3,4 Even so, this
approach is limited by the quality of the force field and by
other limitations inherent in classical molecular models. At
the other extreme are highly empirical scoring functions, such

asarecommonlyemployedindockingandscoringprograms.5-9

These models are designed to be fast and, therefore,
inevitably sacrifice theoretical rigor and accuracy.

In recent years, there has been significant progress in the
development of fast quantum mechanical methods for
computing protein-size molecular systems.10,11 These linear-
scaling approaches have made quantum calculations for
protein-ligand complexes tractable, and they have provided
an important new tool for computing protein-ligand interac-
tion energies. In particular, quantum methods offer the
prospect of a much more accurate representation of electronic
effects in proteins and ligands.12-14 Indeed, previous work
has shown that there are significant charge transfer and
polarization effects in protein-ligand complexes that are not
captured in classical models.15 In addition, methods have
long been available for partitioning quantum energies into
pairwise contributions.16,17 The pairwise decomposition
(PWD) method divides the electrostatic interaction energy
into self- and cross-components between atoms. PWD has
successfully been applied to the investigation of the effect
of binding in a series of fluorine-substituted ligands to human
carbonic anhydrase II.17

A receptor-based QSAR method, comparative binding
energy analysis (COMBINE) formalism, was proposed by
by Ortiz and co-workers.18,19 COMBINE obtains descriptors
from the intermolecular interactions between the receptor and
the ligand, which are calculated by using a pairwise
molecular mechanics (MM) potential energy function. Based
on the MM descriptors, QSAR models were built by
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multivariate statistical tools, such as partial least-squares
(PLS).20,21 Semiempirical pairwise decomposition, along
with COMBINE, have been integrated into a new approach
for computing protein-ligand interaction energies (SE-
COMBINE) on a residue-by-residue basis.22 This SE-
COMBINE approach offers the potential to provide new
mechanistic insight into the factors governing these interac-
tions as well as to improve overall accuracy.

A series of 45 inhibitors (Table 1) for protein kinase B
(PKB) were selected to test the SE-COMBINE method.23-27

These compounds were chosen for two reasons: First, both
structures and affinities are available for many of these
ligands. This provides a unique opportunity to compare our
computational results to high-quality experimental data for
both structure and activity. Second, the ligands can be
grouped into structurally related classes, in many cases being
the product of a fragment-based design. This simplifies
interpretation and validation of individual ligand-residue
interactions computed by SE-COMBINE. QM-PWD was
used to compute all of the pairwise ligand-residue interac-
tions between the 45 ligands and the protein kinase A
(PKA)-PKB chimera. These computed interaction energies
were converted to heat map representations using SE-
COMBINE. Analysis of the interaction energies, heat maps,
and structures show that SE-COMBINE provides a predictive
model for affinity, a clear indication of the most critical
residues for binding, and a meaningful indication of the many
structural trade-offs necessary to design potent ligands for
PKB.

METHODS

Ligand Selection. In a series of papers, Astex Pharma-
ceuticals has reported 16 X-ray structures of PKA-PKB
chimera complexes as well as the binding affinity data for
more than 60 additional ligands (see PDB ID in Figure 1).
We aligned these sequences using ClustalX (Figure 1).28 This
alignment shows that the 16 X-ray sequences are fully
conserved except at the N-terminus regions that vary in
length and at position 47 of one chimera (2UW4). For this
paper, residue numbers were assigned according to the
sequential number label beneath the aligned sequences in
Figure 1. This facilitates comparison of residues across
structures. All of the active site residues fall within the
conserved range so that the active sites for all 16 X-ray
structures are identical, at least with regard to sequence.
These 16 well-defined protein-ligand complexes were
selected as the training set for model building.

The other ligands with reported affinities were reserved
for the prediction set.23-27 Of the 76 ligands considered, 30
contain hypervalent sulfurs (e.g., sulfonamides). Since the
semiempirical Hamiltonians employed in this study are not
suitable for computing hypervalent species, these compounds
were removed from consideration. This left 30 ligands (Table
1) for the prediction set and 15 protein-ligand complexes
for the training set. A histogram of ligand binding affinities
is provided for the training and test data sets in Figure 2.
This histogram shows that the log(IC50)s exhibit a wide range
of values (from -9 to -3) and importantly that both the
training and test data sets contain members spanning this
range of potencies. It should be noted that for this model,
the training set is smaller than the prediction set. This size

distribution closely mimics the situation often experienced
in drug discovery where one may have access to a small
representative sample of experimental structures.

It is important to demonstrate that the affinities are not
highly correlated with molecular size. The number of heavy
atoms range from 7 to 30 atoms, and the molecular weights
are spread over 300 amu. The potency shows a poor
correlation (Figure 3) with the number of heavy atoms (R2

) 0.1843) and with the molecular weight (R2 ) 0.1458).
The ligand efficiencies (i.e., LE ) pIC50/HA) and fit quality
(FQ) scores were also evaluated. The FQ concept was first
introduced by Reynolds et al.29,30 The FQ is a scaled ligand
efficiency that takes ligand size into account. These values
are also reported in Figure 3. FQ scores near 1.0 (scores
can exceed 1) indicate near optimal ligand binding, while
low scores are indicative of suboptimal binding. The values
of FQ for the combined training and prediction sets range
from 0.4 to 1.0, regardless of size.

Structure Preparation. X-ray Structure Preparation. The
15 X-ray structures, corresponding to the 15 ligands in the
training set, were downloaded from the PDB. The PDB
identifications are given in Figure 1. The Reduce program31

was employed to protonate the X-ray structures using the
definitions in the het dictionary provided by the PDB. This
het dictionary was edited to account for correct, bidentate
protonation of the ligand pyrazoles. The generalized AMBER
force field (GAFF)32 was used to represent the ligands, while
the standard amino acids were treated using the parm99 force
field.33 Upon protonation, all protons were minimized, while
restraining the heavy atoms, using 500 steps of steepest
descent followed by 1000 steps of conjugate gradient
minimization using the Sander module of AMBER 8.34 Once
this initial minimization was complete, all atoms in the
complex were subjected to limited minimization with a
constraint weight of 10.0 on heavy atoms (500 steps of
steepest descent followed by 1000 conjugate gradient steps).

Protein Complex Structure Preparation. Since the predic-
tion set ligands have no X-ray structures available, it was
necessary to build models for them. These models were built
using an in-house flexible three-dimensional structure align-
ment program that utilizes the MTK++ library,35 along with
a number of additional routines in order align a ligand to a
structurally similar template ligand. The 15 ligand poses
extracted from the X-ray structures served as templates for
this process. Each test-set ligand was assigned to one of the
15 ligand templates for alignment, according to maximum
similarity. After alignment, the ligands were fitted into the
active site of the PKA-PKB chimera in the same way as
their templates. The templates for each of the model-built
complexes were shown in Table 1 by square brackets with
PDB identifications of the templates inside. Due to structural
variations among ligands, it was expected that some bad
contacts would be introduced during model building. These
“hot spots” were allowed to relax in the active site using a
restrained AMBER minimization of 1500 steps (500 steepest
descent followed by 1000 conjugate gradient) followed by
a full minimization of all atoms in the system (500 steepest
descent followed by 1000 conjugate gradient steps).

SE-COMBINE Calculations. Linear scaling, semiem-
pirical divide and conquer (D&C) single-point calculations10

were carried out on each PKA-PKB complex using the
PM336 and AM113 Hamiltonians, as implemented in the
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Table 1. PKB Inhibitors and Affinitiesa

a Class refers to the particular scaffold, or chemotype family, to which each compound belongs. The class numbers define groups of ligands
that share common structural features. Although compound 40 does not contain a pyrazole, it is included with class 6 compounds as it was
originally synthesized with them. Compounds with Protein Data Bank (PDB) identifications (protein databank accession number) are members
of the training set. In column with title of “PDB ID”, all 15 X-ray structures give their PDB identifications, while the rest of the 30 model-built
complexes are labeled by their templates PDB identifications with square brackets.
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DivCon 5.x program.37 DivCon calculates the quantum
mechanical atom-to-atom, pairwise energy decomposition
(QM-PWD)16 and the overall QMScore15 for each complex.
A CUTOFF for the Fock matrix of 20 Å and a D&C
buffering scheme of 4.2/2 Å was employed throughout the
simulation. The D&C atom-to-atom pairwise interaction
energies were calculated and then converted to residue-based
pairwise interaction energies (i.e., pairwise interactions
between each protein residue and the complete ligand
structure). In addition to the QM calculations, DivCon was
used to assign a generalized AMBER force field (GAFF) or

a parm99 atom-type to each atom and to calculate the
molecular mechanical atom-by-atom, pairwise energy de-
composition (MM-PWD) terms.

Seven scoring functions (from SF-1 to SF-7) using various
combinations of the QM-PWD, the QMScore, and the MM-
PWD energy terms were evaluated using PLS (Table 2).38

The QM-PWD energy terms consist of EAB, EAB′ , and EAB
core

energy terms.22 EAB contains the exchange between atoms
and makes a small negative contribution to the total energy.
EAB′ represents electron-electron repulsion and contributes
positively to the total energy. Finally, EAB

core is the core-core
repulsion between atoms. The computed molecular mechan-
ics (MM) energy terms include dispersion, van der Waals
(summation of dispersion and repulsion terms), and electro-
statics. The composition of each scoring function is listed
in the Table 2. SF-1 includes only the pairwise energies of
the complex in vacuum and is a close approximation to the
original version of SE-COMBINE,22 while SF-2, -3, -4, -6,
and -7 are extensions of the original SE-COMBINE. SF-5
only contains MM energy terms and is analogous to the
conventional implementation of COMBINE.39 SF-2 contains
pairwise energies of the complex in solvent. SF-3 and -4
include both QM pairwise energies of complex and disper-
sion energy, while SF-6 and -7 include both QM pairwise
energies of complex and van der Waals energy terms. The

Figure 1. Sequence alignment of the PKA-PKB X-ray structures. Sequences are labeled by the PDB identification. The total number of
residues in the sequence are labeled in the last column. Residues are colored according to amino acid type. The histogram (colored in gray)
below the ruler indicates the degree of similarity. The * character indicates positions that have been fully conserved.

Figure 2. Histogram of inhibitor binding affinity for the training
set (blue; 15 ligands from the X-ray structures) and test set (red;
30 ligands).

654 J. Chem. Inf. Model., Vol. 50, No. 4, 2010 ZHANG ET AL.



∆∆Gsolv energy term was originally evaluated via QMScore
but was dropped since it was found to contribute little.

Statistical/Chemometric Analysis. The R program was
used for all statistical analysis of the energy terms. A
descriptor matrix was built where each descriptor contains
one column of data from the matrix. Descriptors were pruned
initially by removing those with near zero values or with
standard deviations less than 0.05. The descriptors were
autoscaled (i.e., each value was subtracted by the average
and divided by the standard deviation for that descriptor).
After scaling, each set of descriptors has a mean of zero
and a standard deviation of one. This scaling ensures that
certain descriptors do not dominate due to their magnitude.

PLS38 models were built to describe the structure-activity
relationship of the inhibitors. Internal validation was carried
out using leave-one-out (LOO) cross-validation for the
training set, and the optimal dimensionality of each model
was assigned from its cross-validated predictive ability.
External validations were also carried out with the prediction

set. The models were evaluated for their predictive quality
using a range of standard statistical measures, such as the
correlation (R2) and cross-validated correlation (Q2) coef-
ficients, the standard deviation of error of calculations
(SDEC), and the standard deviation of error prediction
(SDEP). SDEP was defined as the root-mean-squared error
of the dependent variables in a LOO scheme. Similarly,
SDEC is calculated for those variables used to build the
model or training set. The optimal PLS model was deter-
mined by the Q2 values. The PLS model associated with
biggest Q2 is the optimal model.

Residue-Based Interactions. Two distinctly different heat
maps have been constructed. The first map is based on the
absolute EAB terms from PWD and is referred to as an
interaction map. In this heat map, all of the interaction terms
are negative, since the repulsive energy terms are excluded.
The second map consists of the most important residue-ligand
interaction terms derived from the PLS analysis of all the
interaction terms (attractive and repulsive). This is called a
structure-activity (SAR) map. These quantities can be either
positive or negative. In both maps, the key protein residues,
as defined below, are given on the x-axis, and the ligands
are given on the y-axis.

The interaction map highlights residues that have favorable
interactions with the ligand. This is useful when trying to
identify common critical residues across a series of ligands.
An example of this type of interaction is the hydrogen-
bonding network between residues Glu114 and Ala116 and
the heterocycles found in almost all of the ligands examined
in this study. The SAR map is scaled based on the variance
across the series of ligands and tends to highlight protein
residues that are responsible for the changes in potency across
a series of ligands. For example, Met166 varies greatly

Figure 3. Ligand properties. (a) Plot of pIC50 versus the number of heavy atom (HA). (b) The original ligand efficiency as a function of
HA. (c) Fit quality scores as a function of HA. (d) Log(IC50) versus molecular weight.

Table 2. Scoring Functions Used in SE-COMBINEa

QM energy terms MM energy terms

scoring
function

QM-PWD
in vacuum

QM-PWD
in solvent dispersion VDW ele

SF-1 + - - - -
SF-2 - + - - -
SF-3 + - + - -
SF-4 - + + - -
SF-5 - - - + +
SF-6 + - - + -
SF-7 - + - + -

a The “+” sign designates that the energy term is included in the
scoring function, while the “-” sign indicates the energy is not
included.
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between the most potent ligand (30) and one of the weakest
ligands (40). Compound 40 also has a very poor (red)
interaction relative to any of the other ligands with the hinge
residues mentioned above (Glu114 and Ala116).The hinge
is located between the N- and C-terminal lobes of the kinase
domain.40 It is the canonical catalytic site of phosphorylation
by ATP. A quick look at 40 explains this result, since it is
essentially the only ligand in the series that lacks any
hydrogen-bonding partners for these two residues. Ligand
10 on the other hand has a SAR map value of 0.0. This does
not mean that there is no favorable interaction; it only means
that 10 has an average interaction energy (relative to the
series) for residues Glu114 and Ala116.

Although the interaction map is good at characterizing
attractive interaction energy terms, it does not take into
account repulsive energy terms. An algorithm derived from
the PLS method has been developed by QuantumBio to
address this. A PLS-based score function was defined as:

where xlk represents a element from the descriptor matrix,
xj

mean is the column average, xj
std is the column standard

deviation, and bij is the associated PLS coefficient. Thus the
activity, yi, can be rewritten as:

Therefore, the scores Resl
(i) are exactly the contribution

of each residue to the binding affinity. The more negative
the value of log(IC50), the stronger the binding. A negative
Resl

(i) value means the residue contributes favorably to the
binding affinity, while a positive value of Resl

(i) suggests it
reduces affinity.

RESULTS AND DISCUSSION

QMScore Results. QMScore calculations were performed
with the PM3 Hamiltonian on the modeled (aligned) and
X-ray structures. A plot of experimental log(IC50), as a
function of QMScore, is shown in Figure 4. The QMScore
values for all 45 ligands range from -833 to -307 kcal/
mol. The regression line for the QMScores from the training
set is plotted as a blue solid line in the Figure 3. The
QMScores achieve good agreement with the experimental
log(IC50) values of the training set, and the R2 is high at
0.84. The R2 for the prediction set is also statistically
significant at 0.68. Data for the prediction set distribute
themselves evenly along the regression line of the training
set. These results demonstrate that the PM3 calculations can
reproduce the overall trends in affinity even without any
complex statistical analysis or descriptor selection. The
QMScore is composed of gas-phase heat of formation,
electrostatic solvation, attractive Lennard-Jones, solvation
entropy, and vibrational entropy energy terms. A multiple
linear regression analysis has been performed on these five
energy terms in order to “tune up” the QMScore. The R2

values of the model-fitting QMScore and the experimental
log(IC50) for the training set and all 45 ligands are 0.90 and
0.82, which are improved from that of the directly calculated

QMScore (R2 ) 0.84 for training set and R2 ) 0.76 for all
45 ligands).

Data Preparation. The descriptor matrices associated with
different scoring functions were obtained from the SE-
COMBINE calculations. The descriptor matrices were pruned
and scaled. For example, the scoring function SF-1 consisted
only of QM-PWD energy terms, EAB, EAB′ , and EAB

core. There
are 355 residues in the descriptor matrix, and each residue
contributes three descriptors, EAB, EAB′ , and EAB

core terms. Thus
SF-1, has a total of 1065 descriptors derived from the
ligand-receptor interaction energies. As mentioned above,
near zero descriptors were eliminated, as were descriptors
with a standard deviation of less than 0.05. The number of
descriptors was reduced to 732 after pruning, and the
remaining descriptors were autoscaled because the EAB, EAB′,

and EABcore terms span different ranges.
PLS Analysis Results. PLS models were constructed for

each of the scoring functions SF-1 through SF-7. In each
case, the R2 values gradually increase with every additional
latent variable. The Q2 behaves differently, reaching a peak
at the optimal number of latent variables. Thus, the optimal
PLS model is determined by the standard deviation of
prediction (SDEP) and by Q2. The optimal PLS models are
outlined in Table 3. The number of latent variables range
from 2 to 6. Values higher than 0.5 for R2 were considered
statistically significant. Values greater than 0.4 for Q2 were
viewed as significant. All of the QM-based PLS models
explain 97-100% of the variance, while the pure MM (SF-
5) model explains only 79% variance. The QM models have
universally higher Q2 values (as high as 0.81) relative to the
MM Q2 of only 0.33. Likewise, SDEP values from the QM
models are significantly lower than that of the MM model.
Overall, the pure-QM and mixed-QM/MM optimal models
characterize the training set better than the pure-MM model.
Evaluating two different semiempirical QM Hamiltonians
reveals the training set of PLS results from PM3 are
comparable to those of AM1.

As an example, the log(IC50) values were modeled using
SF-1. The plot of computed and experimental affinities for
this model are given in Figure 5. The correlation for the
training set (R2 ) 0.92) and the external test data set (R2ext

Resl
(i) ) ∑ blk(xlk - xk

mean

xk
std )

yi ) ∑ Resl
(i)

Figure 4. QMScore versus log(IC50) plot. The QMScores of the
training set (X-ray structures) are labeled as blue diamonds, and
the prediction set are red squares. Unit for QMScore is in kcal/
mol. The regression lines were plotted for the training/prediction
sets, and their associated R2 values are included.
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) 0.71) are good. Most of the data points in Figure 5 fall
between the two yellow-dashed lines, indicating errors of
less than 1 order of magnitude. There are two ligands, 6 and
11, that lie far off the line. A careful examination of these
structures suggests that the large deviations may be partly
due to errors in building the protein-ligand complexes. If
these two compounds were omitted, then the R2 increases
from 0.71 to 0.83.

Key Residues. The relative contribution of descriptors to
the optimal PLS model can be determined from the PLS
coefficients. A PLS coefficient plot for SF-1, using the PM3
Hamiltonian, is shown in Figure 6. These residues are defined
as key residues, all of which are in the active site of the
receptor. This analysis reveals that the model is dominated
by the EAB terms. In particular, the EAB energy terms for
Glu114, Ala116, Val50, and other residues highlighted in
Figure 6 contribute heavily to the best PLS model. These
key active site residues were used to construct the interaction
map in Figure 7.

Interaction Map. After the determination of key active
site residues, an intermolecular interaction map is generated
based on the interaction energies (Figure 7). The ligands on
the y-axis of Figure 7 are ordered from most to least potent
(based on IC50’s) with the most potent at the top of the map.
The interaction map in Figure 7 highlights the dominant EAB

terms between the ligands and the receptors. The EAB

interactions are always attractive, and therefore, must be
negative or zero. Of course, the more negative values indicate
stronger attractive interactions between the residue and the
ligand. The interaction maps allow one to easily identify the
most attractive and important residue-ligand interactions.
For example, the strong interaction between 30 and Lys65
stands out by virtue of the negative interaction energy and
the corresponding dark blue color.

The interaction map in Figure 7 shows two columns of
consistently dark-blue data points corresponding to Glu114
and Ala116. These residues have very favorable interactions
with all but one ligand. This is presumably an important and
highly conserved interaction across the series. Examination
of the complex structures shows that there are multiple
cooperative hydrogen bonds between these residues and the
heterocyclic moieties found in most of the ligands (Figure
8a). Of course, this is a well-known, and important, interac-
tion for kinase inhibitors that target the adenosine triphos-
phate (ATP) domain. Thus, it is reassuring, and validates
the methodology, to see that this critical interaction is starkly

Table 3. PLS Results for the Astex Seta

method SF descriptors LV X-var. explained (%) R2 Q2 SDEC SDEP SDEPext R2ext

PM3 SF-1 732 2 96 0.92 0.79 0.44 0.67 0.77 0.71
PM3 SF-2 732 2 97 0.92 0.79 0.45 0.75 0.78 0.71
PM3 SF-3 765 2 96 0.93 0.77 0.44 0.78 0.78 0.70
PM3 SF-4 765 2 96 0.93 0.78 0.44 0.77 0.78 0.70
PM3 SF-6 790 5 96 1.00 0.80 0.11 0.73 0.98 0.50
PM3 SF-7 790 5 96 1.00 0.80 0.11 0.73 0.98 0.50
AM1 SF-1 723 2 98 0.92 0.81 0.47 0.72 0.80 0.70
AM1 SF-2 723 2 98 0.92 0.81 0.47 0.72 0.80 0.69
AM1 SF-3 756 2 96 0.92 0.78 0.45 0.77 0.79 0.69
AM1 SF-4 756 2 96 0.92 0.78 0.45 0.77 0.79 0.69
AM1 SF-6 781 6 97 1.00 0.81 0.06 0.72 1.00 0.49
AM1 SF-7 781 6 97 1.00 0.81 0.06 0.72 1.00 0.49
MM SF-5 337 3 79 0.99 0.42 0.14 1.25 1.15 0.64

a SF represents different scoring functions. The total number of descriptors in each model is presented. LV designates the number of latent
variables in the model. The optimal number of LVs is given. R2 and Q2 represent the correlation coefficient of the training set and the LOO
validation. SDEC and SDEP are the standard deviation of the calculated and predicted values for the internal validation. SDEPext and R2ext are
similar definitions, while applied to the external set.

Figure 5. Plot of calculated versus experimental Log(IC50) values
from the training (blue) and prediction (red) sets. The blue and red
lines are trend lines for the training and prediction sets, respectively
and, their corresponding R2 values are labeled. Three dashed lines
define the regions of the plot: the yellow line is the diagonal line
and the two red lines are (1 offsets to the diagonal line.

Figure 6. PLS coefficient plot for optimal model (LV ) 2) of
scoring function SF-1. Key residues are labeled.
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visible in the interaction map. The exception to this trend in
Figure 7 is compound 40 (white cells). This is reasonable
since 40, unlike the other ligands, has no such hydrogen-
bonding functionality (Figure 8b). A look at the structure of
40, and its complex, shows that 40 is not capable of acting
as a hydrogen-bond partner to either Glu114 or Ala116. This
stands out in the interaction map (white cells) and clearly
identifies 40 as being structurally unique relative to the other
ligands.

The interaction map shows a favorable interaction between
30 and residues Asp177 and Asn164. This interaction is due
to the basic nitrogen in 30 that forms a series of hydrogen
bonds with the carboxylate in Asp177 and the backbone
carbonyl of Asn164 (Figure 8c). This type of interaction is
present in most of the more active ligands but does not appear
to be as dominant as might appear, if we were using classical
point charges.

Since the semiempirical Hamiltonians utilized in the
present study are known to have limitations concerning the
treatment of dispersion and other nonbonding interactions41

relative to higher level QM methods, one might be concerned
that only purely electrostatic interactions would be seen in
the interaction map. But there are examples of favorable
interactions that are consistent across the series and would
not be expected to be strictly electrostatic. One example is
the negative interaction, likely hydrophobic, between Val50
and the majority of ligands in this study. The EAB values for
Val50 range from -0.1 to -0.8 eV across all 45 ligands
(Figure 7). As can be seen in (Figure 7), there are 9 nonpolar
residues (Leu42, Gly43, Gly45, Phe47, Val50, Met113,
Ala116, Met166, and Phe320) in a total of 21 key residues.
Most of these nonpolar key residues show consistent negative
EAB values for each ligand. While in some cases the
interactions with these nonpolar residues may be due to polar

backbone atoms, such as is the case with Ala116, many of
these interactions are primarily nonpolar. Taking Val50 as
a specific example, three ligand complexes (31, 43, and 28)
are shown in Figure 9 (the binding affinities increase from
a to c). As can be seen in Figure 9, the potency increases as
the number of nonpolar interactions between the ligand and
Val50 increases. Thus, EAB becomes more negative going
from 31 to 28 due to these nonpolar interactions.

SAR Map. The PLS-based Resl
(i) values for SF-1 (PM3

Hamiltonian) are plotted as an SAR map in Figure 10. This
SAR map is distinct from the interaction map in Figure 7,
in that, the PLS coefficients are not driven by the absolute
interaction energies but instead are ranked by their contribu-
tion to the variance in potency across the series of ligands.
For example, residues Ala116 and Glu114 are consistently
dark blue in the interaction map (Figure 7) because these
interactions are strongly negative and are present in all but
one of the ligands. In the case of the SAR map (Figure 10),
the energies, and corresponding colors, range from unfavor-
able positive interactions (red) to favorable negative interac-
tions (green), reflecting the range of interactions with
different ligands.

A residue that illustrates use of the SAR map is Met166.
The interaction between Met166 and 30 is highly negative
(dark blue), consistent with the high potency of 30. In
contrast, the positive interaction (orange) between Met166
and 40 is likely a contributing factor to the poor affinity of
40. The molecular structures are consistent with this trend.
Met166 has many favorable contacts with 30 (Figure 11a).
It is not surprising that these interactions would improve
potency. Once again, this demonstrates that the underlying
QM calculations are able to reproduce trends in essentially
hydrophobic interactions. By comparison, examination of the
complex with 40 shows very little contact between Met166

Figure 7. Interaction map for the key residues (x-axis). The compounds on the y-axis are arranged with respect to the activity. The binding
affinity decreases from top to bottom. The legend designates the magnitude of the unscaled descriptor in eV.

658 J. Chem. Inf. Model., Vol. 50, No. 4, 2010 ZHANG ET AL.



and the ligand trends in affinity across chemotypes (Figure
11b). Previous reseach has suggested that π-stacking interac-
tion could be significant between the side chain of methionine
and the phenyl group.42 However, the SAR map shows that
the interaction of phenyl group of 40 and Met166 contributes
little to the binding afinity. This is also observed from the
interaction map, the EAB value between Me166 and 40 is
only -0.017 kcal/mol. Checking the X-ray structure of
2UW8, the shortest distance of heavy atoms between Met166
(sulfur atom) and the phenyl group of 40 (carbon atom from
the benzene ring) is 4.41 Å, which is considered to be too
large to achieve good electronic overlapping between two
atoms. Thus, the EAB value is relatively smaller than other
ligands.

The SAR Map in Figure 10 can also be used to identify
broad trends in affinity not only within but across chemo-
types. For example, while there is a great deal of variation
in the heat maps for the most potent compounds on the left

side of the map (i.e., Met166 through Gly48), most of these
potent ligands appear to benefit from favorable interactions
with residues Met113-Lys174 and Tyr62-Gln170. Upon
closer inspection, it becomes apparent that the increased
affinity is due to interactions with ligands that contain two
aromatic rings (one being the hinge binding heterocycle)
separated by a third ring. These compounds clearly light up
green on the right side of the SAR Map, and the trend holds
over all chemotypes in the study. One more interesting trend
apparent on the left side of the SAR map is the yellow grids
(between Met113-Lys174 and Tyr62-Gln170), for com-
pounds with the lowest affinity. These compounds, from
multiple chemotypes, are devoid of a basic amine. Thus,
compounds containing a primary amine in the correct
location are clearly visible in the interaction map as blue
grids for Asp177 and/or Glu120. Conversely, the SAR map
shows that these same residues are colored yellow, in the
case of ligands, that lack this basic amine.

CONCLUSION

We have used 15 crystal structures for a series of PKB
inhibitors to train an SE-COMBINE model. This model was
then applied to a larger, external test set of 30 ligands. The
QM energies and the COMBINE-optimized models were
both reasonably predictive for the training and, most
importantly, the test set. The goal of this work was not just
to build a model of potency but to use the recently developed

Figure 8. Hydrogen-bond interactions between receptor and ligands:
(a) ligand 35 hydrogen bond to Glu114 and Ala116; (b) ligand 40
has no hydrogen bonds with Glu114 and Ala116; and (c) ligand
30 hydrogen bond to Asn 164 and Asp 177.

Figure 9. Hydrophobic interactions between key residue Val50
(magenta) and ligands (light blue): (a) ligand 31; (b) ligand 43;
and (c) ligand 28.
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pairwise decomposition scheme in DivCon to analyze the
contributions of individual residues to ligand binding. This
was done using two formalisms: First, the absolute EAB

values from PWD were used to construct a heat map
(interaction map), where residues were coded by their
absolute pairwise interaction energies. Second, a SAR map
was constructed from the PLS pairwise terms that are scaled

by variance. The first map highlights favorable interaction
energies in an absolute sense. An example is the hydrogen-
bond network between the ligand heterocyclic cores and the
hinge region of the kinase. This region “lights up” in the
interaction map with all but one ligand (a ligand that lacks
this functionality). The second map (SAR map) highlights
residues that contribute the most to discriminating between
potent and weak ligands. In this case, the hydrogen-bonding
interactions between the ligands and the hinge are less
striking because there is less variance across the series of
ligands. On the other hand, other interactions that play a
major role in the variation of potency across the series are
more apparent in the SAR map. Both heat maps provide
valuable insights into the role of specific residues in
conveying activity. They provide detailed and quantitative
information not otherwise available.
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