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Abstract

Background: Taxol is a microtubule stabilizing agent that arrests cells in mitosis leading to cell death. Taxol is widely used to
treat breast cancer, but resistance occurs in 25–69% of patients and it is vital to understand how Taxol resistance develops
to improve chemotherapy. The effects of chemotherapeutic agents are overcome by survival signals that cancer cells
receive. We focused our studies on autotaxin, which is a secreted protein that increases tumor growth, aggressiveness,
angiogenesis and metastasis. We discovered that autotaxin strongly antagonizes the Taxol-induced killing of breast cancer
and melanoma cells by converting the abundant extra-cellular lipid, lysophosphatidylcholine, into lysophosphatidate. This
lipid stimulates specific G-protein coupled receptors that activate survival signals.

Methodology/Principal Findings: In this study we determined the basis of these antagonistic actions of lysophosphatidate
towards Taxol-induced G2/M arrest and cell death using cultured breast cancer cells. Lysophosphatidate does not
antagonize Taxol action in MCF-7 cells by increasing Taxol metabolism or its expulsion through multi-drug resistance
transporters. Lysophosphatidate does not lower the percentage of cells accumulating in G2/M by decreasing exit from S-
phase or selective stimulation of cell death in G2/M. Instead, LPA had an unexpected and remarkable action in enabling
MCF-7 and MDA-MB-468 cells, which had been arrested in G2/M by Taxol, to normalize spindle structure and divide, thus
avoiding cell death. This action involves displacement of Taxol from the tubulin polymer fraction, which based on inhibitor
studies, depends on activation of LPA receptors and phosphatidylinositol 3-kinase.

Conclusions/Significance: This work demonstrates a previously unknown consequence of lysophosphatidate action that
explains why autotaxin and lysophosphatidate protect against Taxol-induced cell death and promote resistance to the
action of this important therapeutic agent.
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Introduction

Breast cancer is the most common malignancy among women

in Western societies and approximately 30% of breast cancer

patients develop metastases and die [1]. Taxol is widely used for

treating metastatic and early-stage breast cancer. Taxol interacts

with b-tubulin [2] causing lateral polymerization and microtubule

stability resulting in mitotic arrest and cell death [3]. Resistance to

Taxol is common with response rates of only 25 to 69% when used

as a first-line treatment. There is an urgent need to identify

patients who will respond to treatment [4] and to understand how

to overcome chemo-resistance.

The efficacy of chemotherapy is often compromised by survival

signals received by tumor cells [5,6]. We showed that extracellular

lysophosphatidate (LPA) provides such a survival signal. LPA

strongly antagonizes Taxol-induced death in MCF-7 breast cancer

and MDA-MB-435 melanoma cells [7]. This effect requires the

activation of phosphatidylinositol 3-kinase (PI3K) and it is

accompanied by a reversal of the Taxol-induced increase in

ceramide concentrations. These latter results are compatible with

earlier studies where ceramides were shown to antagonize the

stimulation of cell division by LPA [8]. Ceramides are bioactive

lipids that cause increased apoptosis in most cells [9]. They

accumulate in cancer cells in response to a large variety of

chemotherapeutic agents and radiation therapy as part of the

process leading to caspase activation and cell death [10,11,12].

Therefore, a combination of ceramides with traditional chemo-

therapy drugs may have the potential to be used as a new

therapeutic intervention against multiple cancers [13].

The present studies deal mainly with another novel effect of

LPA, namely its ability to antagonize the Taxol-induced

accumulation of cancer cells in the G2/M phase of the cell cycle

[7]. The signaling effects of extracellular LPA are mediated by at

least eight G-protein coupled receptors [14,15,16]. Most of the

LPA in extracellular fluids is produced by the secreted enzyme,

autotaxin (ATX), which converts the abundant extracellular

lysophosphatidylcholine to LPA and thus controls LPA concen-

trations [6,16,17,18]. Circulating LPA is turned over rapidly with
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half-life about 3 min in mice [19,20]. This half life depends on the

balance of ATX activity in producing LPA [19] and the ecto-

activities of lipid phosphate phosphatases (LPPs), which degrade

extracellular LPA [6,20,21].

Increased ATX expression is strongly associated with tumor

growth, invasion, angiogenesis and metastasis [22,23,24]. Recent

work in vivo supports the importance of ATX and LPA in tumor

development. Increased expression of ATX, LPA1, LPA2 or LPA3

receptors in mice increased the frequency of invasive, estrogen

receptor-positive and metastatic breast cancer [25]. ATX activity

is required for lysophosphatidylcholine to stimulate cancer cell

migration [19,26,27] and to antagonize Taxol-induced cell death

[7]. ATX action also antagonizes carboplatin-induced apoptosis in

ovarian cancer cells [28].

We proposed that inhibiting ATX activity or expression, and

thereby LPA formation, could provide an important supplement

for chemotherapy or surgery [7,26]. The present work was

performed to identify how LPA production by ATX decreases the

Taxol-induced accumulation of cells in G2/M, an event that

precedes apoptosis [7]. This work is a necessary initial step in

elucidating the signaling pathways used by LPA to cause Taxol

resistance. We now show that this LPA action does not depend on

increased expulsion of Taxol from cancer cells, increased Taxol

metabolism, a delay in the entry into G2/M or selective killing of

cells in G2/M. Surprisingly, LPA has a remarkable effect of

enabling cells that had been arrested in G2/M by Taxol to

normalize spindle formation, divide and thus escape from cell

death. This LPA action depends on the activation of PI 3-kinase,

which causes Taxol to be displaced from the tubulin polymer

fraction.

Results

LPA decreases the Taxol-induced accumulation of cells in G2/

M by increasing the escape from mitotic arrest.

We selected MCF-7 cells for this study based on our previous

work [7] and the widespread use of these cells to study apoptosis.

To investigate how LPA antagonizes the Taxol-induced arrest in

G2/M and subsequent cell death [7], we determined if LPA

affects cell cycle progression or induces selective killing of cells

arrested in mitosis by Taxol. MCF-7 cells were treated with

bromodeoxyuridine (BrdU) for 1 h to label cells in S-phase

(Protocol A; Fig. 1). Progression through the cell cycle of the

labeled cells was measured by FACS analysis for 12 h after

treatment with 10% delipidated serum, in which LPA and other

bioactive lipids were removed [7] and 50 nM Taxol was added in

the presence or absence of 5 mM LPA. These concentrations gave

optimum cell killing and efficient rescue, respectively [7]. This

Taxol concentration is similar to that achieved during chemo-

therapy [29] and the LPA concentration is in physiological/

pathological range [17].

Sixty percent of the labeled cells were still in S-phase at the end

of the labeling period, as expected. Untreated cells started to exit

S-phase immediately thereafter, and approximately 60% of these

labeled cells had progressed into the G2/M phase at 2 h after

labeling (Fig. 1A,B). Labeled cells started to exit mitosis, and enter

into the G1 phase after 4 h from labeling and they continued to

accumulate in the G1 peak during 12 h after labeling. LPA alone

slowed the progression of BrdU-labeled cells out of S-phase. Fewer

cells accumulated in G2/M until 8 h after labeling. However,

there was no significant change in the progression of BrdU-labeled

cells through mitosis and into the following G1 phase (Fig. 1A,B,C).

The percentage of cells in the G1 peak increased in parallel in LPA

treated and control cells from 4 to 12 h after labeling.

Taxol slightly delayed the transit of labeled cells out of S-phase,

resulting in a lower decrease of cells in S-phase for the first 4 h of

treatment. It also inhibited progression through mitosis, as

expected [30]. The percentage of labeled cells in the G2/M peak

increased continuously from the time of Taxol addition up to 12 h

later (up to 70614% at 12 h), whereas there was no significant

progression of labeled cells through mitosis into the following G1

(Fig. 1A,D). Addition of LPA to the Taxol treatment restored the

passage of the cells through S-phase to the levels observed in the

absence of Taxol. Cells treated with both Taxol and LPA started

to exit S-phase immediately after labeling. Approximately 60% of

labeled cells had progressed into the G2/M phase at 2 h after

labeling. Labeled cells started to exit mitosis and enter into the G1

phase after 4 h from labeling. They continued accumulating in the

G1 peak to 12 h after labeling, much like the untreated cells did.

In fact, the percentage of cells in the G1 peak increased as fast in

Taxol and LPA treated cells as it did in control cells from 4 to 12 h

after labeling (Fig. 1A,E). LPA, therefore, enabled the Taxol-

treated cells to start exiting G2/M after 4 h. There was

consequently a marked increase in accumulation of cells in the

G1 peak from 665% at 4 h to 4969% after 12 h incubation

(p,0.05) (Fig. 1A,E). BrdU-labeled cells, therefore, progressed

through the cell cycle and accumulated in the G1 peak. This

evidence indicates that LPA releases the cells from G2/M arrest in

the presence of Taxol.

To investigate further this apparent progression through mitosis

in the presence of Taxol and LPA, we pretreated MCF-7 cells with

50 nM Taxol in the presence of 10% delipidated serum for 24 h to

establish a G2/M arrest. We then labeled cells that were still

cycling through S-phase with BrdU for 2 h. The cells were then

incubated further with Taxol in the presence or absence of LPA

(Protocol B; Fig. 2). Maintaining Taxol increased (p,0.05) the

percentage of BrdU-labeled cells in the G2/M peak from 5068%

at the end of the labeling period to a maximum of 6368% at 4 h

later, as expected (Fig. 2A,B). Although the mitotic block was not

absolute and the percentage of labeled cells in the G2/M peak

decreased after 4 h; only 40%68% of labeled cells had re-entered

into the G1 peak at 12 h after the labeling. Moreover, these cells

did not progress significantly into the following S-phase. The

percentage of labeled cells detected in the S-phase peak decreased

during the first 4 h and remained at this low level to the end of the

experiment at 12 h.

Addition of LPA to the Taxol-treated cells decreased (p,0.05) the

percentage of labeled cells in the G2/M peak from 4 h until 12 h

after time of addition (Fig. 2A,C). After 12 h only 1965% remained

in G2/M. Consistent with a release from the G2/M block, LPA

consistently induced the expected concomitant increase in the

percentage of labeled cells detected in the G1 peak from 1764%

at the time of addition to 6867% at 12 h later (p,0.01) (Fig. 2A,B,C).

These results show that LPA does not produce a decrease in the

percentage of cells in G2/M by inducing selective killing of these cells.

Instead, it induces their release from the Taxol-induced G2/M arrest.

The cells released from mitotic arrest underwent mitosis and started

another cell cycle, entering the following G1 phase in less than 4 h,

and the following S phase after 8 h (Fig. 2A,C).

We next verified these highly unexpected conclusions by

studying the effects of Taxol and LPA on cell death and the

morphology of the nucleus and spindles in MCF-7 compared to

MDA-MB-468 cells. MCF-7 cells do not express caspase-3 [31]

whereas MDA-MB-468 cells express relatively high caspase-3

activity [32]. We incubated both cell lines for 26 h with 10%

delipidated serum and 50 nM Taxol and then used microscopy to

study their fates in the presence or absence of LPA (Protocol C).

We also removed Taxol from the incubations for the last 12 h to

Lysophosphatidate Reverses G2/M Arrest by Taxol
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test if cells recovered from Taxol treatment without LPA addition.

Cells were stained with anti-tubulin antibody, anti-phospho-

histone H3 antibody and DAPI for DNA (Fig. 3A). This identified

mononucleated cells, multinucleated cells, those that were in

apoptosis or dying (obvious deformations in cytoskeletal and

nuclear structure) (Fig. 3B) and those in mitosis with abnormal

spindle morphology (Fig. 3C).

After incubating with Taxol for 26 h, 46% of MCF-7 cells were

in mitosis (Fig. 4A). Incubating for a further 12 h in Taxol

increased (p,0.05) the percentage of cells in mitosis to 52610%,

whereas removal of Taxol decreased this value to 4065%,

p,0.05. Incubating cells with LPA in the presence or absence of

Taxol for 12 h decreased (p,0.05) the percentage of cells that

were in mitosis to about 20% (Fig. 4A). LPA also decreased

(p,0.05) the proportion of mitotic cells with abnormal spindles

from 8669% in cells where Taxol was maintained to 4967%

(Fig. 4B). Removal of Taxol decreased the percentage of the cells

with abnormal spindles and the presence of LPA further amplified

Figure 1. Lysophosphatidate does not block the entry of Taxol treated MCF-7 cells into G2/M. Panels A–E, cells were treated with BrdU
for 1 h to label cells in S-phase. Cells were then incubated for 12 h with 10% delipidated serum in the presence or absence of 50 nM Taxol or 5 mM
LPA (Protocol A). The progression of cells through S, G2/M and G1 phases was quantified (Panels B–E) from the FACS analysis (Panel A). DNA
histograms were composed with CellQuest software. The histogram for time 0 for all treatments shows the same results, repeated for clarity of the
figure. Results are means 6 SD for three independent experiments.
doi:10.1371/journal.pone.0020608.g001
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this effect (p,0.05). LPA also facilitated mitosis (p,0.05) and the

production of G1 mononucleated cells regardless of whether Taxol

was maintained or removed (Fig. 4C). In addition, LPA increased

the percentage of multinucleated cells (Fig. 4D). This latter result

indicates that some cells escaped Taxol-induced mitotic arrest in

the absence of cytokinesis.

After incubating with Taxol for 26 h, 1363% of the remaining

cells were dead or dying as identified because of their apoptotic or

necrotic morphology (Fig. 3B). Incubating the cells for a further

12 h in Taxol increased (p,0.05) the percentage of dead or dying

cells to 2464% (p,0.01) and this value was similar when Taxol

was removed. LPA decreased (p,0.05) the percentage of dead or

dying cells regardless of whether Taxol was maintained or

removed during the final 12 h of incubation (Fig. 4E).

We also used MDA-MB-468 cells to establish if the effects of

LPA on Taxol-induced mitotic arrest and cell death occur in other

breast cancer cells. Treatment for 26 h with 50 nM Taxol caused

about 4665% to accumulate in mitosis (Fig. 5A). We then chose to

incubated these cells for 6 or 12 h with LPA since this was where

the major effects of LPA were observed in MCF-7 cells (Fig. 4).

Incubating MDA-MB-468 cells with LPA in the presence of Taxol

for 12 h decreased (p,0.05) the percentage of cells that were in

mitosis from 5366% with Taxol alone to about 3265% (Fig. 5A).

The percentage of cells with abnormal spindles increased with

time of incubation, whereas LPA reversed this effect (p,0.05)

(Fig. 5B). LPA also increased (p,0.05) the percentage of

mononucleated cells in G1 from 1464% to 2063% and

2666% after 6 and 12 h, respectively (Fig. 5C). LPA also

significantly increased the percentage of multinucleated cells after

6 and 12 h (Fig. 5D). By contrast, continued treatment with Taxol

in the absence of LPA decreased the proportion of mononucleated

and multinucleated cells. Incubation with Taxol for the initial 26 h

of the experiment induced significantly higher killing of MDA-

MB-468 cells compared to MCF-7 cells (2767% compared to

1363%) (Figs 4E and 5E). An additional incubation of MDA-MB-

468 cells for 12 h with Taxol increased the percentage of dead and

dying cells to 3864%. LPA prevented the increase in the

percentage of dead and dying cells and this percentage stayed at

2465% after the 12 h incubation.

LPA does not increase the expulsion of Taxol from MCF-7 cells

or increased Taxol metabolism, but it does cause dissociation of

Taxol from the tubulin polymer compartment.

The next experiments were performed to investigate the

mechanisms of how LPA decreases Taxol-induced cell death

through the release of breast cancer cells from mitotic arrest.

Chemo-resistance is already known to result partially through the

activation of drug transporters [33], which can cause cross-

resistance to other chemotherapeutic agents [34]. We, therefore,

hypothesized that LPA decreases Taxol-induced accumulation of

the cells in G2/M [7] by stimulating Taxol efflux through ABCB1

(multidrug resistance gene 1), p-glycoprotein (ABCC1) or ABCG2,

since these transporters account for a major portion of drug

resistance in human tumor cells [35]. MCF-7 cells express high

levels of ABCG2, less ABCC1 and no ABCB1 [36].

To investigate whether LPA stimulates the export of Taxol,

MCF-7 cells were pretreated for 26 h with 50 nM [3H]Taxol to

Figure 2. Lysophosphatidate releases the cells from G2/M phase. Cells were preincubated with 50 nM Taxol for 24 h and cells passing
through S-phase were labeled for 2 h with BrdU. Cells were then incubated for 12 h with 10% delipidated serum in the presence or absence of 50 nM
Taxol or 5 mM LPA (Protocol B). The progression of cells treated with Taxol alone or Taxol and LPA through S, G2/M and G1 phases of the cell cycle
(Panels B and C, respectively) was quantified by FACS analysis (Panel A). DNA histograms were composed with CellQuest software. The histogram for
time 0 for all treatments shows the same results, repeated for clarity of the figure. Results are means 6 SD for three independent experiments.
doi:10.1371/journal.pone.0020608.g002
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load the cells with Taxol as in the experiments described in Fig. 4.

These cells were incubated in 10% delipidated serum, in which

endogenous LPA and other bioactive lipids were removed [7].

Cells were then incubated in the presence or absence of 5 mM

LPA for a further 12 h. At the end of the 26 h incubation, 7068%

of the total Taxol was in the cells and incubation for a further 12 h

increased (p,0.05) the proportion of Taxol inside the cells to

8065% (Fig. 6A). Removal of Taxol during the final 12 h

incubation was accompanied by the loss (p,0.05) of 3268% of

the [3H]Taxol from the cells into the medium (Fig. 6B). LPA did

not significantly affect these Taxol distributions in either protocol.

We, therefore, rejected our first hypothesis.

We also analyzed the [3H]Taxol under all conditions by thin

layer chromatography [37]. There was no significant formation of

39-p-hydroxytaxol and 6a-hydroxytaxol, the major Taxol metab-

olites, either in the absence or presence of LPA (results not shown).

We also determined whether the LPA-induced escape of the

breast cancer cells from mitotic arrest can be explained by the

release of Taxol from its association with the polymerized tubulin

fraction. MCF-7 cells were pretreated for 26 h with 50 nM

[3H]Taxol to load the cells with Taxol and produce mitotic arrest

as in Fig. 4. The medium was maintained, 5 mM LPA was added as

indicated and the cells were then incubated for and additional 12 h.

The amount of [3H]Taxol associated with the polymerized tubulin

Figure 3. Morphology of Taxol-treated MCF-7 cells. MCF-7 cells were preincubated with 10% delipidated serum and 50 nM Taxol for 26 h.
Cells were then stained with DAPI, anti-phospho-histone and with anti-tubulin. The appearance of the cell in mitosis (assessed by DAPI and P-histone
staining) is shown in Panel A. Panel B shows cells that did not stain for P-histone and which were identified as being mononucleated, multinucleated
or dead. Panel C shows examples of the appearance of cells that were identified as having abnormal spindles.
doi:10.1371/journal.pone.0020608.g003
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fraction was decreased significantly by LPA treatment (Fig. 7A).

This decrease was balanced by the appearance of Taxol in the

soluble compartment of the cells (Fig. 7B) in agreement with the lack

effect of LPA on the cellular content of Taxol (Fig. 6A and B).

The LPA effect in decreasing the association of Taxol with the

polymerized tubulin was reversed by incubation with 40 mM

LY294002, the PI 3-kinase inhibitor (Fig. 7A). We confirmed these

results in separate experiments where MCF-7 cells were incubated

in the presence or absence of LPA or LY294002 for 6 rather than

12 h (results not shown). We were aware that LY294002 has other

actions such as the inhibition of casein kinase-2. We, therefore,

tested different concentrations of LY294002, Wortmannin (anoth-

er PI3K inhibitor) and TBB (4,5,6,7-tetrabromobenzotriazole, a

selective casein kinase-2 inhibitor) [38]. LY294002 reversed the

LPA-induced displacement of Taxol from polymerized tubulin

with a maximum effect at 20 mM (Fig. 7C). Wortmannin also had

a similar effect at 50 and 100 nM (Fig. 7D). TBB had no

significant effect between 10 and 100 mM (results not shown).

We next investigated the role of LPA receptors on the LPA

effect on Taxol distribution.

Among the LPA receptors, LPA1, LPA2, and LPA3 are the best

characterized and have the major role in LPA action [6,39]. Real-

time RT-PCR was performed to detect changes in mRNA

expression levels for LPA receptors and also ATX in three breast

cancer cell lines. We already showed that ATX expression is low in

MCF-7 and MDA-MB-231 cells (Samadi et al; Gaetano et al) and

ATX mRNA levels are similar in the MDA-MB-468 cells (Fig. 8A).

Taxol treatment for 26 h did not significantly change ATX

mRNA expression in any of the cell lines.

MCF-7 and MDA-MB-468 cells predominantly express LPA2

and MDA-MB-231 mainly express LPA1 receptors [40] and this is

reflected in the mRNA levels (Fig. 8B and C). MDA-MB-231 cells

expressed relatively more mRNA for LPA3 than MCF-7 or MDA-

MB-468 cells (Fig. 8D). Taxol treatment caused a 6-fold increase

in LPA3 receptor mRNA in MDA-MB-231 cells and a significant

decrease in LPA2 mRNA in MCF-7 cells (Fig. 8B,C,D).

Figure 4. Lysophosphatidate releases MCF-7 cells from Taxol-induced arrest in G2/M and cell death. MCF-7 cells were preincubated
with 10% delipidated serum and 50 nM Taxol for 26 h. Taxol was then maintained or removed in the presence of 10% delipidated serum and 5 mM
LPA was added as indicated (Protocol C). Cells were then stained with DAPI, anti-phospho-histone and with anti-tubulin at the times indicated. The
Panels show the percentage of: A) cells in mitosis, B) percentage of cells in mitosis that had abnormal spindles, C) mononucleated cells, D)
multinucleated cells and E) dead and dying cells. Total number of cells (100%) includes mononucleated, multinucleated, dead and dying and mitotic
cells. Time zero shows 26 h pretreatment with Taxol. Results are means 6 SD (where large enough to be shown) for three independent experiments.
doi:10.1371/journal.pone.0020608.g004
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To investigate the role of these LPA receptors in the

displacement of Taxol from polymerized tubulin, we applied

VPC51299, an LPA1/3, antagonist and studied Taxol localization

in both cytosolic and polymerized tubulin compartments. In

MCF-7 cells, 1 mM VPC51299 failed to change the LPA-induced

displacement Taxol from polymerized tubulin (Fig 9A). However,

in MDA-MB-231 cells, VPC51299 attenuated the action of LPA

(Fig 9B).

Discussion

The present work demonstrates that the effect of LPA in

decreasing the Taxol-induced accumulation of breast cancer cells

in G2/M [7] does not depend on an LPA-induced export of Taxol

from the cells, or increased Taxol metabolism. Neither does LPA

decrease the Taxol-induced accumulation of MCF-7 cells in

mitosis by delaying entry into G2/M or by inducing selective

death of the cells arrested in mitosis. Instead, LPA produced the

surprising effect of reversing Taxol action in producing abnormal

mitotic spindles. This effect was dependent on PI3K and the

displacement of Taxol from its association with the tubulin

polymer fraction. We also showed that the LPA-induced release

from mitotic arrest protected the cells from the consequent Taxol-

induced cell death [41,42,43].

We designed our experiments to investigate this latter

phenomenon by preincubating cells for 26 h with delipidated

serum and Taxol to produce mitotic arrest. The delipidated serum

provides protein growth factors required for cell cycle progression,

but it lacks lipid growth factors including LPA [7]. This enabled us

to study the effects of Taxol removal or LPA addition on the

structure of spindles in the cells and the progression of cells from

G2/M into G1. Although removal of Taxol after 26 h caused a

decrease in Taxol within the cells and allowed more cells to

progress to G1, this effect was not as potent as the addition of LPA.

LPA did not increase the expulsion of Taxol from the cells, but it

did cause a redistribution of Taxol within the cells by displacing it

from the polymerized tubulin fraction. We, therefore, conclude

that LPA has a specific effect in facilitating normal spindle

structure in the presence of Taxol. This LPA effect will decrease

Taxol-induced mitotic arrest and also enable cancer cells to escape

Figure 5. Lysophosphatidate releases MDA-MB-468 cells from Taxol-induced arrest in G2/M and cell death. MDA-MB-468 cells were
preincubated with 10% delipidated serum and 50 nM Taxol for 26 h. Taxol was then maintained or removed in the presence of 10% delipidated
serum and 5 mM LPA was added as indicated (Protocol C). Cells were stained with DAPI, anti-phospho-histone and with anti-tubulin at the times
indicated. The Panels show the percentage of: A) cells in mitosis, B) percentage of cells in mitosis that had abnormal spindles, C) mononucleated cells,
D) multinucleated cells and E) dead and dying cells. Total number of cells (100%) includes mononucleated, multinucleated, dead and dying and
mitotic cells. Time zero shows 26 h pretreatment with Taxol. Results are means 6 SD for three independent experiments.
doi:10.1371/journal.pone.0020608.g005
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from Taxol-induced arrest in G2/M and cell death, as we showed

using our experimental protocols.

In vivo, ATX expression increases the exposure of tumors to LPA

and this is associated with increased tumor aggressiveness,

angiogenesis and metastasis [22,23,24,44]. MCF-7 cells express

mainly LPA2 [40] and, as expected, neither LPA1 and LPA3

antagonists or pertussis toxin blocked LPA antagonism towards

Taxol in these cells [7]. LPA also enabled MDA-MB-468 cells to

escape from Taxol-induced mitotic arrest and consequent cell

death. These cells also have high LPA2 receptor expression [40],

but whereas MCF-7 cells do not express caspase-3 [31], MDA-

MB-468 cells express relatively high caspase-3 activity [32]. This

probably explains why they displayed greater Taxol-induced cell

death. LPA2 receptors are especially associated with increased

development of breast and other cancers [25,45]. Activation of

LPA2 receptors protects against adriamycin-induced caspase-3

cleavage and cell death [46]. This depends on the LPA2-

dependent degradation of the pro-apoptotic protein, Siva-1 [46].

Our work describes another mechanism by which LPA can

protect against Taxol-induced cell death, which involves displace-

ment of Taxol from the polymerized tubulin fraction and escape

from mitotic arrest. We also showed that LPA protects MDA-MB-

435 cells, which show relatively high LPA1 expression, from

Taxol-induced death [40]. Consequently, the effects of LPA in

causing Taxol resistance appear to occur in several cancer cell

lines. We showed that LPA-induced PI3K activation decreases the

Taxol-induced formation of ceramide, a proapoptotic lipid [7].

Now we showed that the role of LPA in displacement of Taxol

from polymerized tubulin depends on the differential expression of

LPA receptors (LPA 1/3 in MDA-MB-231 cells and LPA2 in MCF-

7 cells). In fact, Taxol treatment increases mRNA expression for

LPA3 in MDA-MB-231 cells and decreased LPA2 mRNA

expression in MCF-7 cells. We do not know the mechanisms by

which Taxol effects these changes.

Activation of several LPA receptors, including LPA1, LPA2 and

LPA3 results in PI3K activation [47]. We propose that LPA-induced

displacement of Taxol from polymerized tubulin is PI3K dependent

based on studies with LY294002 and wortmannin where we see

inhibition in the expected concentration ranges. We recognize that

all inhibitors have off target effects, but these are different between

LY294002 and wortmannin. Also, we used a casein kinase-2

inhibitor since LY294002 can inhibit this enzyme [38]. Casein

kinase-2 can be activated in Wnt signaling, and it is also involved in

cell cycle progression [48,49]. To investigate the possible role of

casein kinase-2 in the LPA effect, we also used TBB (a selective

inhibitor of casein kinase-2) and observed no effect on LPA-induced

Taxol displacement from polymerized tubulin even at 100 mM TBB.

Tumor cells are particularly responsive to the effects of ATX and

LPA compared to non-transformed cells since they often express low

LPP activities [6,50,51,52,53]. In addition, MCF-7 and MDA-MB-

435 cells exhibit very low expression of LPP1 and LPP3, and

relatively high LPP2 compared non-transformed MCF10A breast

epithelial cells (G. Venkatraman and D.N. Brindley, unpublished

observations based on real-time RT-PCR). This distribution is

opposite to that in non-transformed fibroblasts [54,55]. The LPPs

have a dual function: the ecto-activities balance the action of ATX

by decreasing extracellular LPA concentrations and thus receptor

activation [20,21]. Increased LPP1 expression enhances LPA

degradation by ovarian cancer cells, which inhibits cell proliferation

and colony-forming activity, and produces a marked increase in

apoptosis [52]. The intracellular activities of the LPPs decrease

signaling downstream of the activation of LPA and tyrosine kinase

receptors including the platelet-derived growth factor receptor

[54,56]. Importantly, high LPP1 expression also decreases the

ability of LPA to activate downstream signaling targets including

ERK, Rac and Rho [54]. This appears to depend upon the

expression of LPP1 within the cell and its ability to degrade a wide

variety of bioactive lipid phosphates downstream of receptor

activation [56]. Increased expression of LPP3 also decreases the

growth, survival, and tumorigenesis of ovarian cancer cells [53]. By

contrast, LPP2 has effects on cell signaling that are different from

those of LPP1 and LPP3 since LPP2 expression specifically

stimulates the progression of cells through the cell cycle [55]. We,

therefore, conclude that many cancer cells may be particularly

sensitive to the effects of LPA [6]. The LPA effects that we observe

on mitosis in MCF-7 cells could, therefore, be higher than those in

non-transformed cells.

The present work establishes that the effects of ATX and LPA

in antagonizing Taxol-induced death of breast cancer cells results

from the PI3K-dependent displacement of Taxol from polymer-

ized tubulin and escape from mitotic arrest. This is an unexpected

observation that adds to our knowledge of how LPA signaling

downstream of PI3K antagonizes Taxol action. Our work also

provides further evidence that ATX and LPA could be an

important source of chemo-resistance to the therapeutic use of

Taxol in treating breast and other cancers. The roles of ATX and

LPA in aggravating resistance to chemotherapy have received little

Figure 6. LPA does not affect Taxol expulsion form MCF-7 cells.
Panel A, approximately 26105 MCF-7 breast cancer cells were grown to
confluence in 3.5 cm cell culture dishes. The medium was replaced with
1.5 ml RPMI 1640 medium containing 10% of charcoal-treated FBS with
50 nM Taxol containing 0.5 mCi [3H]Taxol. After incubation for 26 h, the
medium was supplemented in some cases with 5 mM LPA or not as
indicated and the incubation was continued for another 12 h. Media
and cells were collected at the times indicated and Taxol was extracted.
Results are expressed as the percentage of total radioactivity recovered
in the cells and medium. Panel B, cells were treated and analyzed as
above but after 26 h incubation, Taxol was removed and 5 mM LPA was
added or not as indicated. The results are expressed as the percentage
of the radioactivity added to the medium presented as mean 6 S.D.
(where large enough to be shown) for three independent experiments.
doi:10.1371/journal.pone.0020608.g006
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attention. No present cancer treatment depends on the inhibition

of ATX or LPA signaling. This work emphasizes the importance

of developing therapeutic agents that decrease ATX activity and

signaling through LPA receptors. These agents could provide

valuable adjuvants to increase the efficacy chemotherapy and

surgery.

Materials and Methods

The sources of most of the materials and details of methods

including the preparation of delipidated calf serum have been

described [7].

Cells
Characterized MCF-7, MDA-MB-231 and MDA-MB-468 cells

were obtained from the American Type Culture Collection (Manassas,

VA) and they were used within six months after resuscitation.

Materials
Monoclonal anti-a-tubulin, sodium pyruvate, NADH, RNAase

A, goat and donkey serum, sodium borate, and propidium iodide

were from Sigma-Aldrich (Oakville, ON, Canada). Bromodeoxy-

uridine (BrdU), mouse anti-BrdU and FITC goat anti–mouse IgG

antibody were purchased from BD Pharmingen (Mississauga, ON,

Canada). [o-benzamido-3H]Taxol was obtained from Moravek

Biochemicals (Brea, CA, USA). Anti-phospho-histone H3 was

from Millipore (Billerica, MA, USA). We purchased TBB (casein

kinase-2 inhibitor) from Tocris Biosciences (Ellisville, MI, USA).

Cell culture and bromodeoxyuridine/propidium iodine
double staining

Bromodeoxyuridine/propidium iodine double staining was

performed as described previously [57]. For nuclei isolation, we

optimized incubation times and temperatures for enzymatic

digestion in MCF-7 cells (5 ml of 0.04% pepsin in 0.1 N HCl

for 20 min at room temperature). Samples were analyzed with a

Calibur Flow Cytometer (Becton Dickinson, San José, CA, USA)

using Cell Quest software.

Immunocytochemistry
Flame-sterilized glass coverslips (18 mm) were placed in 12-well

culture plates and about 26105 MCF-7 breast cancer cells were

plated and grown to confluence. Cells were stained with DAPI,

monoclonal anti-a-tubulin and polyclonal anti-histone H3.1

(Phospho-Ser 10) [58].

Measurement of Taxol uptake, distribution and
metabolism

After growing cells to confluence, the medium was replaced

with 1.5 ml RPMI 1640 containing 10% of charcoal-treated FBS

Figure 7. LPA causes dissociation Taxol from the polymerized tubulin compartment. Approximately 26106 cells were seeded in 6 cm
dishes. After growing cells to confluence, the medium was replaced with 3 ml RPMI 1640 containing 10% of charcoal-treated FBS containing 50 nM
[3H]Taxol (0.5 mCi). Cells were preincubated for 26 h. After this, 5 mM LPA and different concentrations of inhibitors were added as indicated.
Polymerized tubulin (Panel A) and soluble fractions (Panel B) were then separated and the distribution of [3H]Taxol was determined. Panels C and D
show the dose response curves for LY294002 and Wortmannin, respectively. Results are means 6 SD for three independent experiments. Panels A
and B, * a significant difference of P,0.05.
doi:10.1371/journal.pone.0020608.g007
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containing 50 nM [3H]Taxol (6,660 Ci/mol). Cells were incubat-

ed for the indicated times and medium was collected. Cells were

washed three times with ice-cold RPMI 1640 medium containing

0.1% BSA to remove extracellular Taxol. The cell lysates were

then collected by scrapping twice with 0.5 ml of ice-cold

methanol. Chloroform (1 ml) was added to the combined

methanol extracts followed by 0.9 ml of 2 M KCl. The mixture

was shaken and centrifuged. Radioactivity in both cell lysates and

media were measured by scintillation counting. Cell extracts were

also analyzed on silica gel 60 thin layer chromatography plates

(Merck, Darmstadt, Germany) after development with toluene/

acetone/formic acid (60:39:1, by vol.) [37]. The distribution of 3H

was determined with a BioScan 200 Imaging Scanner followed by

scintillation counting of various areas of the plate.

Measurement of Taxol association with polymerized
tubulin

Incorporation of Taxol in the soluble (cytosolic) and polymer-

ized (non-cytosolic) fractions of the cells was determined by a

standard method as described previously [59,60]. Briefly, 26106

cells were seeded in 6 cm dishes. After growing cells to confluence,

the medium was replaced with 3 ml RPMI 1640 containing 10%

of charcoal-treated FBS and 50 nM [3H]Taxol (0.5 mCi). Cells

were incubated for 26 h. Then the incubation was continued for

additional 12 h with [3H]Taxol in the presence and absence of

LPA (5 mM) and different inhibitors as described in the text. Cells

were then collected and suspended in 200 ml of hypotonic lysis

buffer (1 mM MgCl2, 2 mM EGTA, 0.5% NP-40, 20 mM Tris-

HCl at pH 6.8 containing protease and phosphatases inhibitors)

and incubated for 5 min. Polymerized tubulin was collected in a

pellet by microcentrifugation at 18000 x g for 10 min. The

supernatant (200 ml) containing the cytosolic fraction was

transferred to another tube. The pellet containing the polymerized

fraction was resuspended in 200 ml of hypotonic lysis buffer.

Protein concentrations for each fraction were measured using the

BCA assay (Thermo Scientific). A sample of each fraction (20 ml)

Figure 8. Differential expression of autotaxin and LPA1-3 receptors in MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells.
Results show mRNA concentrations expressed relative to that for cyclophilin for (A) ATX (B) LPA1 (C) LPA2 and (D) LPA3 in cells incubated for 26 h in
the presence or absence of Taxol. Results are means 6 SD from three independent experiments for ATX and LPA1 and six independent experiments
for LPA2 and LPA3. *P,0.05 and ** p,0.01.
doi:10.1371/journal.pone.0020608.g008

Figure 9. Involvement of LPA1/3 and LPA2 receptors in LPA-
induced displacement of Taxol from polymerized tubulin in
MCF-7 and MDA-MB-231 cells. MCF-7 (Panel A) and MDA-MB-231
cells (Panel B) were preincubated for 26 h with [3H]Taxol as in Fig. 7.
After this, 5 mM LPA or 1 mM VPC51299, a LPA1/3 receptor antagonist,
was added as indicated and the incubations were continued for a
further 12 h. Polymerized tubulin was then isolated and the distribution
of [3H]Taxol was determined. Results are means 6 SD for three
independent experiments. *P,0.05 comparing cells incubated in the
absence of LPA with those incubated with LPA and/or the LPA1/3

antagonist, VPC51299.
doi:10.1371/journal.pone.0020608.g009
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was added to 2 ml of scintillation solution (Cyto-Scint, MP, Irvine,

CA), and radioactivity counted.

Measurement of mRNA expression
Total RNA was extracted using the RNAqueous kit, according

the manufacture’s instruction. DNA-free kit was also applied to

remove contaminating DNA from RNA preparation. Total RNA

was treated with superscript II reverse transcriptase. Real-time

RT-PCR was performed with 25 ml of master mix containing

26Syber Green buffer mix and forward and reverse primers

(Invitrogen). The internal control was the constitutively expressed

housekeeping human cyclophilin A. Primers for human ATX

were as follows: sense, 59-ACAACGAGGAGAGCTG CAAT-39;

antisense, 59-AGAAGTCCAGGCTGGTGAGA-39 ; for human

cyclophilin A: sense, 59-TTCATCTGCACTGCCAAGAC-39;

antisense, 59-TCGAGTTGTCCACAGT CACC-39; for hu-

man LPA1: sense, 59-ACAGCCATGAAT GAAC CA CA-39;

antisense, 59-TCTCCGAGTATTGGGTCCTG-39; for human

LPA2: sense, 59-GTGCAGGAATCTGGCTCTTC-39; antisense,

59-GGGTGTCCACAGTCTGTCCT-39; for human LPA3 recep-

tor: sense, 59-TGCTCATTTTGCTTGTCTGG-39 and antisense,

ATGATGAGGAAGGCCATGAG. Samples were assayed in

triplicate on the 7500 Real Time PCR System (Applied Biosystems).

Statistical Analysis
Statistical analysis was performed by analysis of variance with a

Kruskal-Wallis post hoc test.
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Increased concentrations of phosphatidate, diacylglycerol and ceramide in ras-
and tyrosine kinase (fps)-transformed fibroblasts. Oncogene 14: 1571–1580.

51. Imai A, Furui T, Tamaya T, Mills GB (2000) A gonadotropin-releasing

hormone-responsive phosphatase hydrolyses lysophosphatidic acid within the
plasma membrane of ovarian cancer cells. J Clin Endocrinol Metab 85:

3370–3375.
52. Tanyi JL, Hasegawa Y, Lapushin R, Morris AJ, Wolf JK, et al. (2003) Role of

decreased levels of lipid phosphate phosphatase-1 in accumulation of lysopho-

sphatidic acid in ovarian cancer. Clin Cancer Res 9: 3534–3545.
53. Tanyi JL, Morris AJ, Wolf JK, Fang X, Hasegawa Y, et al. (2003) The human

lipid phosphate phosphatase-3 decreases the growth, survival, and tumorigenesis
of ovarian cancer cells: validation of the lysophosphatidic acid signaling cascade

as a target for therapy in ovarian cancer. Cancer Res 63: 1073–1082.
54. Pilquil C, Dewald J, Cherney A, Gorshkova I, Tigyi G, et al. (2006) Lipid

phosphate phosphatase-1 regulates lysophosphatidate-induced fibroblast migra-

tion by controlling phospholipase D2-dependent phosphatidate generation. J Biol
Chem 281: 38418–38429.

55. Morris KE, Schang LM, Brindley DN (2006) Lipid phosphate phosphatase-2
activity regulates S-phase entry of the cell cycle in Rat2 fibroblasts. J Biol Chem

281: 9297–9306.

56. Brindley DN, Pilquil C (2009) Lipid phosphate phosphatases and signaling. J
Lipid Res 50 Suppl: S225–230.

57. Terry NH, White RA (2006) Flow cytometry after bromodeoxyuridine labeling
to measure S and G2+M phase durations plus doubling times in vitro and in

vivo. Nat Protoc 1: 859–869.
58. Giannakakou P, Robey R, Fojo T, Blagosklonny MV (2001) Low concentrations

of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of

mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity.
Oncogene 20: 3806–3813.

59. Kavallaris M, Tait AS, Walsh BJ, He L, Horwitz SB, et al. (2001) Multiple
microtubule alterations are associated with Vinca alkaloid resistance in human

leukemia cells. Cancer Res 61: 5803–5809.

60. Verrills NM, Flemming CL, Liu M, Ivery MT, Cobon GS, et al. (2003)
Microtubule alterations and mutations induced by desoxyepothilone B:

implications for drug-target interactions. Chem Biol 10: 597–607.

Lysophosphatidate Reverses G2/M Arrest by Taxol

PLoS ONE | www.plosone.org 12 May 2011 | Volume 6 | Issue 5 | e20608


