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Flavonoids are polyphenolic compounds spotted in various fruits, vegetables, barks, tea
plants, and stems and many more natural commodities. They have a multitude of
applications through their anti-inflammatory, anti-oxidative, anti-carcinogenic properties,
along with the ability to assist in the stimulation of bone formation. Bone, a rigid connective
body tissue made up of cells embedded in a mineralised matrix is maintained by an
assemblage of pathways assisting osteoblastogenesis and osteoclastogenesis. These
have a significant impact on a plethora of bone diseases. The homeostasis between
osteoblast and osteoclast formation decides the integrity and structure of the bone. The
flavonoids discussed here are quercetin, kaempferol, icariin, myricetin, naringin, daidzein,
luteolin, genistein, hesperidin, apigenin and several other flavonoids. The effects these
flavonoids have on the mitogen activated protein kinase (MAPK), nuclear factor kappa b
(NF-kb), Wnt/b-catenin and bone morphogenetic protein 2/SMAD (BMP2/SMAD)
signalling pathways, and apoptotic pathways lead to impacts on bone remodelling. In
addition, these polyphenols regulate angiogenesis, decrease the levels of inflammatory
cytokines and play a crucial role in scavenging reactive oxygen species (ROS).
Considering these important effects of flavonoids, they may be regarded as a promising
agent in treating bone-related ailments in the future.
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1 INTRODUCTION

Bone is a composite structure that handles a multitude of processes such as preservation of skeletal
size, shape integrity, harbouring marrow and controlling mineral homeostasis. Modelling and
remodelling form the basis of bone development and maintenance. These are processes that occur
throughout the life. The cycle of bone formation and removal is coordinated all over the body but
occur at various sites (1). The structure of a bone is the single most complicated organisation
handling the calcium phosphorous metabolism in the human system. Numerous cells are involved
in this system. Collagen, a triple helix combined with calcium and phosphorous, make up the basic
components of the bone, reinforcing the material making up the human skeleton. There are two
types of bones – cortical bones which are the solid ones and trabecular bones which have a soft and
intricate structure (2). Bones, as we know, are essential for our posture, movement, protection and
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housing of delicate organs and agility. The structural framework
gives us genetic superiority over other species with respect to our
ability to perform various tasks like swimming, walking,
climbing and many more. Homo erectus, as the name suggests,
was the first species to ever walk upright on the face of the earth.
Since then, humanity has progressed to great lengths of
development and evolution. This singularly portrays the
importance of skeleton in the supremacy established by human
beings. However, the mechanisms of bone formation and
modification become very important. Sadly, the truth is that
the mechanisms of bone remodelling aren’t clearly laid out yet
(3). This gives a great opportunity for researchers to study and
understand deeply about the mechanisms in the near future.
From time immemorial, study of history has always helped us to
correct our mistakes and improve our knowledge of the
concerned arena. In this case, several kinds of research on
bone diseases in humans and animals have assisted in gaining
knowledge on the mechanisms of bone remodelling cycle. The
receptor activator of nuclear factor-kB (RANK)/RANK ligand/
OPG and canonical Wingless-related integration site (Wnt)
signalling are a part of the major signalling pathways. The
bone remodelling cycle is regulated by paracrinal secretions
such as growth factors, prostaglandins, cytokines and
endocrinal secretions such as ergocalciferol, calcitonin,
parathormone (PTH), glucocorticoids, thyroxine, estrogen and
testosterone (4). Flavonoids, a group of naturally derived
compounds with variable phenolic structures, are found in
plant foods that are a part of our everyday lives. Flavonoids
have many beneficial effects stemming from the significant
presence of antioxidant activity, anti-resorptive effects and free
radical scavenging capacities (5). They play a prime role in
various sectors ranging from nutritional, pharmaceutical to
medicinal and cosmetic applications. Research studies have
shown that flavonoids assist in lowering the cardiovascular
mortality rate and coronary heart disease (6). Flavonoids like
Quercetin, Kaempferol, Genistein, Daidzein etc., show healing
properties for osteoporosis, a leading cause for joint pain and loss
of bone density by regulating osteoblast(OB) and osteoclast (OC)
differentiation (7). Soy Isoflavones, in particular, show promising
results with antiresorptive activity via osteoclast inhibition and
promotion of osteoblast differentiation. This is because of their
weak binding to the estrogen receptor and a higher affinity
towards ERb when compared to ERa, thus mimicking
estrogen. Recent studies also indicate the role of soy
isoflavones in activating signalling via bone morphogenetic
proteins (BMP), thus exhibiting estrogen-independent
properties (8). Asian foods have always been rich in flavonoid
content, and this might be the probable cause of the increased
lifespan of Asian individuals, as they assist in curing many fatal
diseases like cancer, cardiovascular diseases and diabetes (8–10).
Flavonoids have long been used in Chinese medicine to cure
bone fractures, diabetes and many other morbidities (11–14). As
many studies highlight, these phytochemicals have a plethora of
functions and a huge potential for applications in various fields.
Science is yet to divulge into the actualities of molecular
mechanisms of flavonoids, and this paper attempts to devise a
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link between flavonoids and their potential to provide a cure for
bone diseases like osteoporosis, inflammation of bone associated
with rheumatoid arthritis and periodontal disease, and to give a
lucid comprehension of primal flavonoids and the benefits they
provide in the systemic metabolism of humans.
2 BONE REMODELLING

Bone is a complex dynamic structure under continuous
remodelling characterised by the resorption of damaged or old
bone by the osteoclasts, followed by its’ replacement with the
newly formed bone by the osteoblasts. A proper balance between
bone resorption and formation is required to maintain a healthy
skeleton (15). Bone remodelling tends to become absolutely
necessary as it facilitates the primary bone to be replaced by
the secondary bone which has higher mechanical strength,
removes microfractures and ischemic fractures in bones and at
last, assures a correct balance of Ca+/K+ (16). Bone remodelling
requires the co-ordinated function of four types of cells namely,
bone-lining cells, osteocytes, osteoclasts, and osteoblasts and
involves four phases: activation phase, resorption phase,
reverse phase and formation phase (17). Osteoclasts are cells
sourced from the myeloid, distinctly marked by the presence of
multiple nucleus and expression of tartrate-resistant acid
phosphatase (TRAP) and the calcitonin receptor (18, 19). The
cytokines Colony stimulating factor-1 (CSF-1) and receptor
activator of nuclear factor – kappa B(NF-kB) ligand (RANKL)
regulate the survival and differentiation of osteoclast precursor
cells (1). After differentiation, osteoclasts form an association
with the surface of bone through alpha-v beta integrin that
transmits signals regulating the organization of the
cytoskeleton. The signals thereby activate proto-oncogene
tyrosine-protein kinase Src (c-Src), spleen tyrosine kinase
(SYK), Guanine nucleotide exchange factor VAV3 Ras
homologous GTPases (20). Microscopic trenches are formed
on the bone trabeculae surface by secretion of hydrochloric
acid and proteases, like cathepsin K (CTSK), into an
extracellular lysosomal space to degrade the matrix and
mineral parts of the bone (21). Several osteotropic factors such
as Interleukin-11 (IL-11), IL-1, PTH and 1,25-(OH)2D3,
indirectly enhance osteoclast formation by stimulation of
RANKL on the surface of osteoblasts, followed by RANKL
binding RANK on osteoclast precursors. This gives rise to the
activation of downstream signalling pathways such as the NF-kB,
Ak strain transforming (AKT) pathway, c-Jun N-terminal kinase
(JNK) pathway, p38 mitogen activated protein kinase (MAPK),
and extracellular signal regulated kinase (ERK) pathway (22–26).
The other factors associated with RANK-activated signalling
pathways like c-fos, c-src, TNF- Receptor associated Factor 6
(TRAF-6) and Nuclear factor of Activated T-cells (NFATc-1)
also play an important role in regulation of osteoclastogenesis
(27–29). The formation of osteoclasts and their subsequent
activation is limited primarily by various factors, in particular
osteoprotegerin (OPG) which plays an inhibitory role by acting
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as a decoy receptor for RANKL. The homeostasis of RANKL/
OPG is a major determinant for the integrity of bone (30).

Neural crest progenitor cells and mesodermal cells give rise to
osteoblasts, leading to the differentiation of progenitors into
proliferating preosteoblasts, osteoblasts and then into
osteocytes. Runt-related transcription factor 2 (RUNX2) is
essential for progenitor cell differentiation across the osteoblast
lineage (31). During the proliferation of cells, RUNX2 regulates
vascular endothelial growth factor (VEGF), osteocalcin (OCN),
Receptor activator of nuclear factor kappa-B ligand (RANKL),
dentin matrix protein 1 (DMP1) and sclerostin (32). osterix
(OSX), insulin-like growth factor (IGF), Bone morphogenetic
proteins (BMPs), fibroblast growth factor (FGF), endothelin-1
and PTH regulate differentiation of osteoblasts (33, 34). BMP
and PTH are related to activating Wnt signalling pathways (35).
The fully differentiated osteoblast is distinguished by
coexpression of alkaline phosphatase and type I collagen, both
crucial for production of bone matrix and the subsequent
mineralization (36). Mature osteoblasts generate mineralization
regulators such as osteonectin (ON), OCN, osteopontin (OPN)
and RANKL required for osteoclast differentiation. During the
end of their lifetime, osteoblasts change into either osteocytes
embedded in mineralized matrix or lining cells wrapping the
bone surfaces (37). Thus, the homeostasis between bone
formation by osteoblasts and bone resorption by osteoclasts,
tightly coupled and regulated by various pathways, transcription
factors and secreted molecules decide the overall integrity and
structure of the bone.
3 BONE DISEASES

When the cycle of bone remodelling gets disturbed, and the level
of osteoclastogenesis exceeds the level of osteoblastogenesis, it
weakens the bone resulting in conditions like osteoporosis,
periodontitis and rheumatoid arthritis (21).

Osteoporosis is one of the leading causes of bone fractures.
There are about nine million fracture incidences worldwide,
resulting in a cost of $100 billion. Osteoporotic hip fractures
have about 200 million occurrences, and this highlights the great
danger that it poses. In first world countries like USA and Europe,
even with top-notch medical facilities, 30% of women have
osteoporosis, and 40% of post-menopausal women and 30% of
men have a high chance of experiencing osteoporotic fracture (38).
Sex steroid deficiencies post menopause alter the production of T-
cell cytokines which in turn affect the production of RANKL/OPG
by the cells of osteoblastic lineage leading to excessive
differentiation of osteoclasts and hence excessive resorption.
Moreover, pathological conditions involving inflammation
increases osteoclastogenesis via the production of M-CSF,
RANKL, PTHrP, cytokines and prostaglandins (39). An example
of this is the overproduction of osteoclasts mediated by IL-6 being
a cardinal pathophysiological change in sex-steroid induced
osteoporosis (40). Another bone remodelling degenerative
disease is periodontitis which involves alveolar bone loss (BL),
gingival inflammation, clinical attachment loss (CAL), bleeding,
exfoliation of the tooth and periodontal pocketing (41).
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The disease progression is characterised by excessive production
of matrix metalloproteinases (MMPs), leukotrienes, M-CSF,
inflammatory cytokines and mediators such as IL-6, IL-1b,
TNF-a, prostaglandin E2 (PGE-2) by an over-reactive immune
system. The cytokines IL-6 and IL-1b were identified to be the
most potent cytokines contributing to bone resorption via
activation of RANKL, thereby promoting osteoclast activity (42).
Rheumatoid arthritis a chronic, systemic, inflammatory
autoimmune disorder is characterised by symmetric, erosive
synovitis and, in certain cases, extraarticular involvement (43).
Bone erosion in RA is typified by the involvement of
autoantibodies early in the disease as well as several
inflammatory cytokines including TNF-a, IL-6, IL-1b and IL-17
which exert pro-osteoclastogenic effects via stimulation of
production of RANKL and M-CSF (44–46).

When any disease is subjected to treatment, two parameters
have to be primally considered: Selectivity and Therapeutic index
(47). In addition to both of these prerequisites, convenience is also
important while deciding treatment methods. Convenience refers
to the preference of the patients to consume the drugs in particular
routes than other routes. Though parenteral routes have many
advantages, recipients traditionally prefer the oral route, as it is
much less of a discomfort (48). Amongst the prerequisites
mentioned above, therapeutic index and convenience are already
satisfied as toxicity is almost zero and administration is through
oral route. Though the third requirement, selectivity, is not
adequate for flavonoids, this can be increased by changing the
glucose content associated to give rise to glucoside compounds
having higher selectivity, thus making flavonoids better and safe
than any other medications present (49).
4 NATURAL FLAVONOIDS

Flavonoids are bioactive compounds belonging to an important
class of low molecular weight plant secondary metabolites having
a polyphenolic structure. Flavonoids are widely found in fruits,
vegetables, herbs, beverages, spices and oils. Hence, they are also
known as dietary flavonoids (6, 50). Following terpenoids
(30,000) and alkaloids (12,000), the third-largest group of
natural products is represented by flavonoids, comprising
nearly 10,000 compounds (51). All flavonoids contain 15
carbon atoms in their basic skeleton which are distributed as
two six-membered rings and one three-carbon unit linked to
them as C6-C3-C6 (51, 52). The 3-carbon unit bridging the
phenyl groups usually cyclizes with oxygen to form a third ring.
This core structure is called 2-phenylbenzopyranone (53).
Flavonoids are most often associated with sugar in the
conjugated form to be O-glycosides or C-glycosides. They can
also exist as aglycones (54). The glycosides are normally attached
to position 3 or 7, with the most common carbohydrates
occupying those positions being D-glucose, L-rhamnose, gluco-
rhamnose, galactose or arabinose (52). The other factors
pertaining to the varied chemical nature of the flavonoids
include patterns of hydroxylation, conjugation between
aromatic rings, methoxy groups, and other substituents such as
sulphates and prenyl groups (51, 55). Flavonoids have been
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known to exhibit a broad spectrum of pharmacological and
biochemical reactions associated with health promoting effects.
Examples of such therapeutic properties are anti-inflammatory,
hepatoprotective, anti-mutagenic, anti-oxidative, anti-neoplastic,
anti-viral, anti-microbial, anti-helminthic, anti-allergic, anti-
hormonal, anti-thrombotic, differentiation and apoptotic effects
(6, 7, 56). Numerous in-vitro studies have shown flavonoids
capacity in modulating the key cellular enzymes. Modulation of
these enzymes, in turn, affect the important cellular pathways
which regulate cell division and proliferation, inflammatory and
immune responses, detoxification and platelet aggregation (57).
Flavonoids act as potential metal-chelators and free radical
scavengers. They neutralise free radicals by donating electrons
from their conjugated double bonds and groups via resonance,
thus acting as natural anti-oxidants (51, 56). Recent studies have
discovered the connection between flavonoids and the regulation
of bone metabolism. This property is being studied, to use
flavonoids as a possible therapy in the future, for the treatment
of osteoporosis (7).
5 CLASSIFICATION OF FLAVONOIDS

Flavonoids can be broadly categorised into three groups: the
bioflavonoids, the iso-flavonoids (phytoestrogens) and the neo-
flavonoids (white flavonoids) (50). The variations in the different
classes and subclasses of flavonoids are attributed to factors such
as the degree of unsaturation, the carbon of the C ring to which
the B ring is attached, degree of hydroxylation, degree of
oxidation, glycosylation pattern and other substitutions (51).

5.1 Iso-Flavonoids
In iso-flavonoids the B ring is attached to position 3 on the C-ring
(6). Iso-flavonoids structurally resemble 17-beta estradiol and bind
to oestrogen receptors. Hence, they are also known as phyto-
oestrogens. Depending on the endocrine estrogenic levels, they can
act as either agonists or antagonists (8, 58). Iso-flavonoids possess
tremendous potential to fight various diseases including
amelioration of osteoporosis and cardiovascular disease,
prevention and treatment of hormone-related cancer, treatment
of menopause symptoms and other age related diseases (59). The
major sources of isoflavones are the leguminous plants belonging
to the family Fabaceae/Leguminosae. Other sources include red
clover, red wine, germs of alfalfa and linseed, with red clover
containing the highest amount of phyto-estrogens (58, 60). Some
examples of isoflavones are Genistein, daidzein, glycitein,
biochanin A and formononetin (60).

5.2 Neo-Flavonoids
Flavonoids in which the B-ring is attached to position 4 of the C-
ring are known as neo-flavonoids (NFs). The first neoflavone to be
isolated was calophyllolide from Calophyllum inophyllum seeds
(6). NFs have been categorised into two broad groups namely, the
4-phenylcoumarins (dalbergin group) and the diphenyl allyl
compounds (latifolin group). They are distributed in a wide
range of plants belonging to families Fabaceae, Clusicaea,
Leguminosae, Rubiaceae, Passifloraceae, Thelypteridaceae and
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Polypodiaceae. The most abundantly found neo-flavone is
Dalbergin isolated from various plants of the genus Dalbergia.
NFs exhibit several therapeutic properties which include anti-
allergic, anti-inflammatory, anti-osteoporotic, antimicrobial and
anti-oxidant (61).

5.3 Bio-Flavonoids
Those class of flavonoids in which the B-ring is attached to
position 2 of the c-ring are called as bio-flavonoids. They can be
further subdivided into different subclasses depending on the
structural features of the C-ring. These subclasses are flavones,
flavonols, flavonones, flavan-3-ols/catechins, anthocyanidins and
chalcones (6). Flavonols are the most common and largely
occurring flavonoids in the plant kingdom. Examples of major
dietetic flavonoids are quercetin, kaempferol, fisetin, isorhamnetin
and myricetin, with quercetin being one of the most abundant
flavonoids of the human diet (62). Flavones are majorly found in
foods such as celery, lettuce and capsicum peppers (50). The main
flavones of the human diet include apigenin and luteolin (62).
Catechins, otherwise known as flavan-3-ols possess a hydroxyl
group in C3 of C-ring (a dihydro-pyran heterocycle). Catechins,
gallocatechin, epigallocatechin, epicatechin and gallate are a few
compounds that fall under this category. A variety of fruits,
vegetables and plant-based beverages contain abundant
concentrations of catechin. Green tea is the main dietary source
(63). Flavanones have a basic skeleton of 2-phenylbenzopiran-4-
one. They play a vital role in regulating the metabolic pathways of
other flavonoids (64). They are found in almost all citrus fruits and
are responsible for their bitter taste. Hesperitin, naringin and
eriodictyol are a few examples of this subclass (6). Anthocyanidins
are another subclass of bio-flavonoids that are water-soluble and
are found in the leaves, stems, roots, flowers and fruits of all higher
plants. They are responsible for the red, purple and blue colour of
certain fruits, which vary depending on the pH. Cyanidin,
peonidin, pelargonidin, delphinidin, petunidin and malvidin are
the most prevalent compounds (53). The last subclass, chalcones
are open-chain flavonoids. They consist of two aromatic rings A
and B joined by a 3-carbon a,b-unsaturated carbonyl group.
Leguminosae, Asteraceae and Moraceae are the three families
that contain the largest number of natural chalcones. Examples of
chalcones include naringenin chalcone, isoliquiritigenin,
phloretin, licodione, echinatin etc (65).

5.3.1 Quercetin
Quercetin is one of the most important and widely studied dietary
bioflavonoids. It is ubiquitously found in fruits and vegetables
(66). For several years in China, Quercetin and its derivatives have
been used in the treatment of osteoporosis because of their natural
anti-oxidant property (67). Quercetin regulates various pathways
involved in maintaining bone homeostasis such as the RANK/
RANKL/OPG System, MAPK signalling, apoptotic pathway,
canonical Wnt/b Catenin signalling, BMP and transforming
growth factor (TGF-b) signalling (Figures 1A, B). Further
quercetin exhibits anti-oxidative, anti-inflammatory and
angiogenic properties through which it maintains a balance
between osteoblastogenesis and osteoclastogenesis (66). Prouillet
et al., showed that, in MG-63 human osteoblasts, quercetin had a
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stimulatory effect on alkaline phosphatase (ALP) activity in the
range of 1-50 mM without any significant cytotoxic effects.
Quercetin-induced ALP activation requires the ERK pathway
and rapidly stimulates it, because inhibition of this pathway by
the MEK inhibitor PD 98059 reduced the enhancing actions of
quercetin. Moreover, the direct role of ER involved in the effect of
quercetin was shown by the fact that ER antagonist ICI 182780
prevented quercetin-induced increase in ALP activity (68). While
the previous study showed involvement of ER, another study on
the effects of quercetin pretreatment on osteogenic differentiation
and proliferation of Human Adipose Tissue Derived Stromal Cells
(hADSC) indicated an ER-independent mechanism (69, 70). In
mouse monocyte/macrophage cell line RAW264.7, quercetin and
quercetin-3-O-glucoside (Q3G) were found to decrease the
number of RANK-L-induced TRAP positive multi-nucleated
osteoclast cells significantly in dose dependent manner.
Treatment with quercetin suppressed the expression of
osteoclast related genes such as the calcitonin receptor (CTR),
CTSK, MMP-9 and NFATc1. NFATc1 is a master regulatory
transcription factor of osteoclast differentiation regulated by
RANK-L via activator protein-1 (AP-1) and NF-kB (71, 72).
Actin-ring formation, which is important for bone resorption in
osteoclast-like mononucleated cells (OCLs) was disrupted by
quercetin. This suggests a possible role of quercetin in regulating
the signal transducing molecules involved in actin-ring formation:
p60 c-src tyrosine kinase, phosphoinositide-3-kinase (PI3K),
GTP-binding proteins (GTP-BP) and protein kinase A (PKA)
(73). IL-17 is an osteoclastogenic inflammatory cytokine
promoting the production of other destructive cytokines such as
the macrophage migration inhibitory factor (MIF), tumour
necrosis factor-alpha (TNF-a) and RANK-L which in turn
increase reactive oxygen species (ROS) and osteoclastic
differentiation in rheumatoid arthritis (RA). IL-17-stimulated
RA-fibroblasts-like synoviocytes (RA-FLS), when treated with
quercetin decreased the production of RANK-L, TNF-a, IL-6
and IL-8. Quercetin decreased the IL-17-induced phosphorylation
of mammalian target of rapamycin (mTOR), ERK and NF-kB in
Frontiers in Endocrinology | www.frontiersin.org 5
RA-FLS, whereas it increased the IL-17-induced phosphorylation
of AMP-activated protein kinase (AMPK). Since AMPK is known
to counteract and inhibit mTOR signalling, the effect of quercetin
on AMPK activation suppresses mTOR and induces apoptosis in
osteoclasts (74). MC3T3-E1 cells, treated with Lipopolysaccharide
(LPS), a pro-inflammatory glycolipid suppressed the m-RNA and
protein expression levels of ALP, RUNX2, OSX and OCN, thus
inducing apoptosis and inhibiting the differentiation of osteoblasts
via the JNK pathway. Quercetin reversed this condition by
increasing the phosphorylation of ERK-1/2, which inhibited the
induction of apoptosis by p38 MAPK and JNK. Further, quercetin
upregulated the expression of anti-apoptotic proteins B-cell
lymphoma-2 (BCL-2) and BCL-XL, while it downregulated the
apoptotic proteins caspase-3, BCL-2 associated X apoptosis
regulator (BAX) and cytochrome c (75). In osteoblasts isolated
from foetal rat calvaria quercetin aglycone upregulated the m-
RNA and protein levels of three anti-oxidant genes heme
oxygenase-1 (HO-1), g-glutamate cysteine ligase catalytic
subunit (GCLC) and catalase. However, it did not upregulate
Nuclear factor erythroid 2–related factor 2 (Nrf-2), the
transcription factor of these three genes. Quercetin also
downregulated the phosphorylated levels of ERK1/2 and NF-kB,
which suggests an anti-inflammatory response associated with the
activation of anti-oxidant genes (76). This is in contrast to the
studies on MC3T3-L1 osteoblasts and MG-63 osteosarcoma cells
(68, 77). Further studies are required to confirm the exact role of
ERK1/2, NF-kB p65 and Nrf-2 in mediating the anti-oxidative
responses (76). Zhou et al., investigated the effect of quercetin on
angiogenesis and found that it increased the expression of
angiogenic factors VEGF, angiopoietin 1 (ANG-1), basic
fibroblast growth factor (bFGF) and TGF-b, ultimately leading
to bone regeneration (66). Another pathway regulating bone
homeostasis is the Wnt/b-catenin pathway. Pre-treatment of
MC3T3-E1 cells with quercetin increased the protein levels of
Wnt3 and b-catenin, which is responsible for osteoblast
differentiation (75). One of the mechanisms by which TNF-a
suppresses osteoblastogenesis is by inhibiting the activation of
A B

FIGURE 1 | (A) Regulation of RANK/RANKL/OPG system by quercetin. (B) Actions of quercetin on JNK, ERK and p38 MAPK pathways.
November 2021 | Volume 12 | Article 779638
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SMAD signal transduction by TGF-b and BMP-2. The effect of
quercetin in this case, only added to the inhibitory effect of TNF-a,
rather than suppressing it. Thus, the overall effect of quercetin on
bone formation involves complex competing pathways which may
depend on the dose and the concentrations of cytokines and
growth factors prevailing in the micro-environment (72).

5.3.2 Kaempferol
Kaempferol and its derivatives are natural bioflavonoids enriched
in fruits and vegetables and are used as nutraceuticals. Kaempferol
possesses various medicinal properties some of which are directly
associated with bone-sparing effects (78). Both adipocytes and
osteoblasts are differentiated from multipotential mesenchymal
stem cells in bone marrow. During the process of ageing, there is a
reciprocal increase in adipogenesis and decrease in osteogenesis in
the bone marrow, which has to be inhibited and reversed to treat
bone diseases such as osteoporosis. The in vitro studies of Ritu
et al., showed that kaempferol inhibited the differentiation of bone
marrow mesenchymal stem cells(BMSCs) to adipocytes, whereas
it stimulated increased osteoblast differentiation (79). This is
supported by the fact that kaempferol downregulated the LPS-
induced expression of lipid-anabolism genes (sterol regulatory
element binding protein-1c [SREBP-1c], fatty acid synthase [FAS]
and peroxisome proliferated activated receptor-gamma [PPAR-g])
in BMSCs (Figure 2). On the contrary, it promoted the expression
of genes involved in lipid catabolism (carnityl palmitoyl
transferase [CPT-1], PPAR-a and acetyl CoA carboxylase
[ACC]), thus preventing adipogenesis (80). Kaempferol
treatment of BMSCs increased the expression of important
downstream regulatory proteins in the mTOR pathway, which
suggests its involvement in the differentiation of osteoblasts. The
role of mTOR in osteogenesis was validated by Zhao et al., where
treatment BMSCs with a specific inhibitor of mTOR called rapa,
resulted in decreased levels of osteogenic activity. However, several
other studies exhibit controversies over the role of mTOR in bone
formation (81). In mouse calvarial osteoblast cell line MC3T3,
kaempferol inhibited the TNF a-induced signalling in osteoblasts
and thereby reduced the secretion of osteoclastogenic cytokines
interleukin-6 (IL-6) and monocyte chemoattractant protein-1
(MCP-1). It also blocked the TNFa-induced nuclear translocation
of NF-kB, a transcriptional regulator of MCP-1. Further,
kaempferol antagonised the RANKL induced differentiation of
RAW264.7 cells to osteoclasts by inhibiting c-Fos expression, an
immediate early oncogene, which is indispensable for
osteoclastogenesis (82). In LPS treated BMSCs, kaempferol
reversed the downregulation of expression of chondrogenic
markers SRY-Box Transcription Factor 9 (SOX-9), COL-2 and
Aggrecan and strongly elevated their levels. Besides, kaempferol
caused a significant decrease in the levels of matrix metallo-
proteinase-3 (MMP-3), MMP-13, ADAM metallopeptidase with
thrombospondin Type 1 Motif-4 (ADAMTS-4), ADAMTS-5. The
inflation of pro-inflammatory cytokines IL-6, IL-1b, inducible nitric
oxide synthase (iNOS) and TNF-a induced by lipopolysaccharide
(LPS) was reduced by kaempferol, while it increased the level of
anti-inflammatory cytokine IL-10 (80, 83). The LPS-induced
activation of NF-kB was also inhibited by kaempferol, as was
shown by the reduced nuclear staining of p-65 (80). Treatment
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with kaempferol of ATDC5 cells, led to a marked increase in the
mRNA levels of genes encoding COL-2 and COL-10, which are
markers of fully differentiated chondrocytes. Also, kaempferol
induced the activation of ERK and p38 MAP kinase pathway.
Further, it promoted the expression of BMP-2 and BMP-4, thereby
suggesting that stimulation of chondrogenesis occurs via BMP-2
signalling pathway in ATDC-5 cells (84). Treatment with 8-prenyl
kaempferol, a prenyl flavonoid on MC3T3-E1 cell line, regulated
osteoblast differentiation via BMP-2 signalling pathway, which
subsequently triggered SMAD1/5/8. This led to the activation of
the transcription factor RUNX2 which promoted bone
mineralization by regulating the expression of COL-1, OPN and
ON (85). Kaempferol induced luciferase activity in rat primary
osteoblasts transfected with pERE-Luc and also triggered
phosphorylation of ER-a, which suggested that kaempferol acts
via ER activation. This was confirmed when pre-treatment with
ICI 182,780 completely blocked the kaempferol-induced pERE-
Luc activity. Additionally, kaempferol upregulated ALP activities
and the transcription of several bone differentiation marker genes
such as the COL1A1, ON, OCN, RUNX2 and OSX (86). A study
by prouillet et al., on MG-63 human osteoblastic cell strain
demonstrated that kaempferol induced increase in ALP
activation involves the ERK pathway. This was shown by
incubating the cells with PD 98059, an inhibitor of ERK
pathway, which reduced the stimulatory effects of kaempferol on
ALP. ICI 182780, a pure anti-estrogen, inhibited ERK activation
and reduced the levels of ALP in kaempferol treated cells which
shows that kaempferol activates ERK pathway via the ERs (69, 85).
MAP kinase activation via a non-genomic action of ER can lead to
downstream modulation of the transcription factor AP-1 which
has been predicted to have a binding site on the promoter of the
ALP gene. This transcription factor can act as a possible link
between rapid ERK activation and increased ALP activity (69).
Pretreatment with kaempferol of MC3T3-E1 cells exhibited a
marked reduction in antimitochondrial antibody (AMA)
induced-cell damage by preventing mitochondrial membrane
potential dissipation, complex IV inactivation, [Ca2+]i elevation,
and ROS production. Kaempferol induced the activation of AKT,
PI3K and cAMP response binding element protein (CREB)
inhibited by AMA, which are known to be involved in
osteoblast-like cell proliferation and differentiation (87). RANK-
L induced differentiation of RAW 264.7 cells to osteoclasts was
shown to be inhibited by kaempferol by suppressing the
expression of osteoclastogenic factors TRAF6, NFAT-c1, and c-
Fos. Osteoclastogenesis was also suppressed by inhibiting
autophagy related factors beclin-1 and sequestosome 1 (p62/
SQSTM1) (83, 88). Furthermore, in dexamethasone-induced rat
calvarial osteoblasts, kaempferol decreased osteoblast apoptosis by
inducing expression of the anti-apoptotic gene BCL-2 and
suppressing BAX, a pro-apoptotic gene (78).

5.3.3 Icarin
Icariin is the main active prenylated flavonol glycoside isolated
from the herb Epimedium pubescens. It has been widely used for
several centuries in Chinese herbal medicine and is known to
possess “bone strengthening” properties (89, 90). Naturally
isolated icariin is becoming an interesting alternative in the
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prevention and treatment of bone diseases (90). It has been
known to enhance osteoblastic differentiation and proliferation,
inhibit bone resorption, and induce apoptosis of osteoclasts (89).
Pre-osteoblastic MC3T3-E1 cells treated with icariin upregulated
the levels of osteogenic markers RUNX2, OCN, BSP and ALP in
a dose dependant manner. Besides, Icariin was effective in
upregulating RUNX2, BSP and OCN levels in mouse primary
osteoblasts as well. mRNA expression levels of inhibitor of DNA
binding-I (Id-1), a transcriptional target of BMP/SMAD
signalling was increased in MC3T3-E1 cells when treated with
icariin, whereas expression of RUNX2 m-RNA was upregulated
in both MC3T3- E1 cells and POBs. This suggests the
involvement of BMPs and RUNX2 signalling in osteogenesis
induced by icariin (91, 92). In adult female osteoblast-like cells,
icariin caused a significant increase in ALP activity and nitric
Frontiers in Endocrinology | www.frontiersin.org 7
oxide (NO) levels followed by increased proliferation and
mineralisation of osteoblasts (Figure 3A). NO is known to
exhibit inhibitory effects on bone resorption by suppressing
osteoclasts activity and precursor recruitment connected to
iNOS activity. Moreover, icariin treatment increased BMP-2/
SMAD protein expression as well. Both NO and BMP-2/SMAD
activate the transcription of RUNX2 gene, thereby regulating
bone homeostasis. Icariin also attenuated caspase-3 activity in
the osteoblast-like cells on the 28th day of treatment with icariin,
thereby exhibiting its anti-apoptosis effect (93). Sheng et al.
demonstrated that treatment with icariin upregulated OCN
synthesis, ALP activity, calcium deposition and collagen
synthesis in BMSCs, thus promoting osteogenic differentiation.
Additionally, icariin increased the expression levels of marker
genes and proteins namely RUNX2, OSX, BMP-2 and IGF in
FIGURE 2 | Regulation of autophagy and apoptosis of osteoclasts by kaempferol via degradation of p62/SQSTM1.
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osteogenic cultures. Ming et al. and Huang et al. found that
icariin inhibited osteoclastogenesis induced by RANKL and M-
CSF in mouse bone marrow culture and inhibited bone
resorption by stimulating apoptosis of mature osteoclasts (89).
In the study of Wu et al., on BMSCs, it was found that ERK, p38
and JNK signalling pathways were all phosphorylated indicating
their participation in osteoblast proliferation, differentiation and
mineralisation. Blocking these three pathways significantly
inhibited ALP activity and expression of COL1, OPN and
OCN. Besides, icariin treatment has also been reported to
instigate osteogenic differentiation of BMSCs through the
activation of PI3K–AKT–eNOS–NO–sGC–cGMP–PKG
signalling pathway (94). Icariin caused significant inhibition of
NF-kB activation in RANKL-induced RAW264.7 cells by
degradation of nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, alpha (IkB-a) (Figure 3B).
RANKL-induced expression of downstream regulatory factors
c-Fos and NFATc1 were decreased after treatment with icariin,
which in turn reduced the levels of target osteoclastogenic
proteins such as CTSK and TRAP (95). Treatment with icariin
on bone mesenchymal stem cells upregulated the expression of
osteogenic genes RUNX2, ALP, and COL1 and decreased the
expression levels of adipogenic genes —PPARg, fatty acid
binding protein-4 (Fabp4), and adipsin, thus inhibiting the
differentiation of BMSCs into adipocytes. Icariin promoted the
phosphorylation of Glycogen synthase kinase-3b (GSK-3b) and
elevated the levels of active b-catenin in the nucleus of BMSCs.
Inhibition of the Wnt signalling pathway brought down the
phosphorylation of GSK-3b, caused degradation of b-catenin
and upregulated the expression of adipogenic genes, thus
confirming the intervention of the Wnt pathway in the
differentiation of BMMSCs (92, 96). Recently it was found that
cyclin D1, a mitogenic signal sensor that pushed cells from G0
phase into the proliferative cycle, was significantly increased in
icariin treated BMSCs (92). Iron overload and accumulation in
post-menopausal women and elderly men has been found to be
Frontiers in Endocrinology | www.frontiersin.org 8
linked to bone metabolism abnormalities like osteopenia,
osteomalacia and osteoporosis. Treatment with icariin reversed
the iron-overload-induced elevation of ROS and mitochondrial
dysfunction caused by the collapse of mitochondrial membrane
potential. Thus, icariin attenuated the increase in osteoclasts
differentiation and promoted osteoblasts proliferation and
differentiation in iron-overloaded MC3T3-E1 osteoblasts (97).
Icariin inhibited hypoxia induced apoptosis in neonatal rat
calvarial osteoblasts. It reduced the expression levels of caspase-3
and upregulated the mRNA expression levels of BCL-2, thereby
inhibiting apoptosis. Also, icariin supplementation diminished the
intracellular malondialdehyde (MDA) levels and ROS production,
while increasing the activity of SOD, anti-oxidant enzyme to
ameliorate the hypoxia induced stress (98). In the LPS-induced
osteoclastogenesis model, icariin treatment reduced the LPS-
induced activities of osteoclast differentiation marker protein
TRAP and regulator of bone resorption- acid phosphatase (ACP).
Moreover, icariin suppressed the LPS-induced RANKL expression,
whereas it elevated the LPS-inhibited expression of OPG, an
osteogenic marker. In addition, icariin could inhibit the synthesis
of osteoclastogenic pro-inflammatory cytokines such as IL-6 and
TNF-a. Alongside this, icariin reduced prosteoglandin-E2 (PGE-2)
production by obstructing synthesis of cyclo-oxygenase -2 (COX-2),
therefore inhibiting bone resorption (99). Considering the
limitations of animal models in determining the therapeutic
efficacy and pharmacological properties of icariin and derivatives,
further verification using mammalian models, primates and human
clinical trials is required (90).

5.3.4 Myricetin
Myricetin belongs to a subclass of bio-flavonoids called flavonols.
It is majorly found in berries, fruits, vegetables, medicinal herbs
and tea plants (100, 101). Myricetin is known to possess
antioxidant, anti-inflammatory, antimicrobial, anti-viral,
antioxidative, anti-tumorigenic and antiallergic properties.
Recent studies also provide evidence for myricetin exhibiting
A B

FIGURE 3 | (A) Osteogenic effects exerted by icariin through promotion of osteoblastogenesis and inhibition of adipocyte differentiation from pre-osteoblasts.
(B) Inhibition of bone resorption by icariin via inhibition of osteoclast-related genes and pathways.
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osteo-protective properties and inhibiting osteo-clastogenesis
(102, 103). Huang et al., demonstrated that myricetin
treatment suppressed RANKL-induced differentiation of mouse
macrophage RAW264.7 cells into characteristic TRAP-positive
multinucleated osteoclast-like cells (OCL). The hypothesis that
impairment of osteoclast differentiation would also result in the
inhibition of osteoclast bone resorption was confirmed by bone
resorption assay, which showed complete bone resorption
activity at myricetin concentrations ≥50 mm (100). In the
Titanium particle-induced mouse calvarial osteolysis model,
myricetin disrupted the RANKL-induced F-actin ring
formation, a characteristic feature of mature osteoclasts
responsible for bone resorption. It also decreased the RANKL-
induced expression of osteoclastogenic markers TRAP, CTR,
CTSK, V-ATPase-d2, c-Fos, and NFATc1 (Figure 4). Further,
Myricetin inhibited the production of pro-inflammatory
cytokines TNF-a and IL-1b, thereby suppressing the NF-kB
pathway and MAPK pathways (p38, JNK1/2, and ERK1/2)
responsible for osteoclast formation and bone resorption (104).
Ying et al., showed that treatment with myricetin elevated the
serum OCN and ALP levels in rats with streptozotocin-induced
diabetic osteoporosis. The levels of serum anti-oxidants SOD and
catalase were also increased in response to addition of myricetin
(105). In human chondrocytes, myricetin reduced the levels of
Frontiers in Endocrinology | www.frontiersin.org 9
IL-1b stimulated inflammatory mediators and cytokines such as
PEG-2, COX-2, iNOS, IL-6 and TNF-a as well as the elevated
levels of MMPs, thereby inhibiting extracellular matrix (ECM)
degradation and promoting generation of COL-2. Regulation of
these mediators was associated with the repression of NF-kB
pathway by the activation of Nrf2/HO-1 with a possible
mediation of the PI3K/AKT pathway (106). Pre-treatment of
human gingival fibroblasts with myricetin suppressed the LPS-
induced expression of MMP-1, MMP-2 and MMP-8. RANKL-
stimulated RAW264.7 cells when pre-treated with myricetin,
exhibited reduced phosphorylation of p38 and ERK pathways,
inhibited phosphorylation of c-Src and impeded the degradation
of IkB-a. Moreover myricetin showed inhibitory effects on the m-
RNA expression of osteoclastogenic markers such as TRAP, c-
FOS, CTSK and NFATc-1 (107). Myricetin exhibits protective
effects against 2-deoxy-D-ribose induced oxidative damage in
MC3T3-E1 cells by decreasing the levels of protein carbonyl,
advanced oxidation protein products, and MDA. Besides it
elevated the levels of ALP activity, collagen content, calcium
deposition, OCN and OPG in the presence of 2-deoxy-D-ribose
(108). In human bone marrow stromal cells (hBMSCs),
myricetin upregulated the levels of m-RNA expressions of
osteogenic markers OCN, COL-1, ALP and RUNX2. Apart
from that, myricetin triggered the Wnt/b-catenin pathway and
FIGURE 4 | Regulation of cellular pathways by myricetin. (Nucleoside diphosphate kinase-NDPK, Receptor-interacting serine/threonine-protein kinase 3-RIPK3,
Mixed lineage kinase domain-like-MLKL, C-X-C chemokine receptor type 4- CXCR4, ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 5- ST6GALNAC5,
Phosphoinositide-dependent kinase 1-PDK 1, Pyruvate kinase M2-PMK2, Toll-like receptor 4- TLR4, CCAAT/enhancer binding protein homologous protein-CHOP,
Glucose-regulated protein 78-GRP-78, Endoplasmic reticulum stress-ERS, Proliferating cell nuclear antigen-PCNA, Yes-associated protein-YAP-1, Large tumour
suppressor kinase-1/2- LATS1/2, p90 ribosomal S6 kinase-p90RSK, Ribosomal protein S6 kinase beta-1-p70S6K).
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upregulated the expression of several downstream genes such as
T-cell factor-1(TCF-1) and lymphoid enhancer factor-1 (LEF-1)
(109). Hsu et al., showed that treatment with myricetin on the
conditionally immortalized human fetal osteoblastic cell line
(hFOB) and the human osteosarcoma cell line MG-63, caused a
significant upregulation of BMP-2, which in turn increased the
phosphorylated levels of SMAD 1/5/8 and p38, one of the MAPK
pathways (110). The effects of myricetin on Dexamethasone(DEX)
treated MC3T3 cells revealed that, it ameliorated the DEX-
induced inhibition of bone formation markers namely RUNX2,
BSP, OPN, OCN, COL1A1 and ALP. Besides myricetin promoted
matrix mineralisation via the ERK signalling pathway and
downregulated TRAP activity and C-terminal telopeptide of type
I collagen (CTx) in DEX treated cells (111). Pre-treatment with
myricetin on MG-63 cells, reduced the synergistic effect of IL-1b
and TNF-a on anti-Fos immunoglobulin-M (IgM) mediated
apoptosis of osteoblasts, thereby attenuating the activation of
apoptotic proteins caspase-8 and caspase-3, and upregulating the
levels of the anti-apoptotic protein FLICE inhibitory protein
(FLIP) (112). Overall, myricetin has proven to exhibit osteogenic
properties and further studies are required to use it as a therapeutic
agent against bone diseases.

5.3.5 Naringin
Naringin, a polymethoxylated flavonoid glycoside, is an active
ingredient of citrus fruits and Chinese herbal medicine. It
possesses several pharmacological effects, including bone-
protective properties. Zhu et al. demonstrated that naringin
exhibits anti-osteoporosis property in a fashion similar to
estrogen, by binding to the estrogen receptors. This might
replace estrogen-replacement therapy in clinical use (113, 114).
In the study of Li et al., naringin promoted the osteogenic
proliferation and differentiation of BMSCs and also exhibited a
5-7 day delay between the start of naringin treatment and the
burst of ALP expression. This suggested a delayed differentiation
pattern of the BMSCs in response to naringin treatment (114). In
human amniotic fluid stem cells (hAFSCs), naringin was shown
to upregulate ALP activity and calcium deposition in a dose
dependent manner. Naringin significantly promoted the
expression of osteogenic marker genes including ALP, OPN
and COL-1 as well as the osteoclastogenesis-inhibition marker
gene OPG, thus enhancing the osteogenic differentiation of
hAFSCs (Figure 5). This differentiation was shown to be
regulated via the BMP and Wnt/b-catenin pathways involving
BMP-4, RUNX2, b-catenin and cyclin D1 (115). Further,
naringin induces the apoptosis of osteoclasts via inhibition of
activation of the death receptor pathway (Fas, TNF) or
mitochondrial apoptosis pathway. In the study conducted by Li
et al., it was confirmed that naringin could downregulate the
mRNA expression levels of the pro-apoptotic marker gene BCL-
2 and downregulate the expression levels of the anti-apoptotic
marker gene BAX (116). Treatment of RAW627.4 cells with
naringin abrogated RANKL induced formation of TRAP positive
osteoclast cells. Additionally, naringin attenuated the gene
expression levels of osteogenic markers such as CTSK, CTR
and TRAP as well as osteoclastogenic fusion genes including
dendritic cell-specific transmembrane protein (DC-STAMP),
Frontiers in Endocrinology | www.frontiersin.org 10
and V-ATPase d2 (d2). Further, naringin suppresses the
RANKL induced activation of NF-kB via inhibition of
degradation of IkB and suppresses the activation of ERK
pathway as well (117). Recent studies have shown naringin
being an HMG-CoA reductase inhibitor, might possibly
promote BMP-2 expression and induce bone formation,
suggesting the possible involvement of mevalonate pathway. In
co-cultures of osteoblasts and bone marrow cells, naringin
suppressed the IL-1 induced osteoclastogenesis (118). Naringin
may also possess the ability to downregulate the expression of
PPARg in BMSCs, thus reducing adipogenesis and promoting
bone formation. In addition, naringin inhibited the mRNA
expression of osteoclastogenic markers including RANK,
TRAP, MMP-9 and NFATc1, whereas it upregulated c-Fos
expression in RAW627.4 cells (119). Li et al., showed that
increased levels of SOD, catalase and MDA in dexamethasone
(DEX)-treated-inflammatory bowel disease (IBD) rats were
significantly reduced by the intervention of naringin (120). The
experiments of Wu et al., revealed that naringin induced
osteoblast proliferation, differentiation and maturation in
cultured osteoblasts. Besides, in MC3T3-E1 osteoblastic cells,
the stimulatory effects of naringin on the expression of BMP-2
was found to involve the activations of PI3K, AKT, c-Fos/c-Jun
and AP-1 pathways. Furthermore, it was found that the osteo-
protective effects of naringin on UMR-106 cells were attributed
to its positive effect on the Wnt/b-catenin pathway via AMPK
and AKT signalling (121, 122). Kanno et al., demonstrated that
naringin inhibited the LPS-induced production of NO and the
expression of inflammatory gene products such as TNF-a, IL-6,
iNOS, COX-2 and the transcriptional activity of NF-kB.
Suppression of these pro-inflammatory cytokines which are the
positive regulators of osteoclastogenesis via the inhibition of
NF-kB might result in the inhibition of osteoclastogenesis and
bone resorption (123). Further, naringin promoted angiogenesis
and neovascularization during fracture callus formation in murine
osteoporotic models, likely by regulating the expression of VEGF
in osteocytes (119). Naringin’s diverse effects on bone indicate its
potential in the treatment and prevention of many
common orthopaedic conditions. Naringin strongly reduces
osteoclastogenesis, inflammation, and adipogenesis and
promotes osteoblastic differentiation from progenitor cells for
the maintenance and preservation of both cartilage and bone.
However additional research is required to assess the ways in
which the pharmacokinetic properties of naringin can be
improved, in order to optimize its therapeutic effects.

5.3.6 Daidzein
Daidzein is a phytoestrogen belonging to the iso-flavonoid group
and abundantly found in soy products. Considering the fact that
daidzein can bind to estrogen receptors a and b and have estrogenic
effects, they can be used as an alternative to estrogen replacement
therapy (124). Osteoblast cell cultures treated with exhibited
enhanced osteoblast viability and induced their differentiation
from osteoprogenitors to terminally differentiated osteoblasts.
Moreover, daidzein increased the ALP activity, OCN synthesis
and the mRNA expression levels of BMP-2 in primary osteoblast
cell cultures (125). Exposure of porcine osteoblasts to daidzein
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increased the nuclear levels of the osteogenic transcription factor
RUNX2 that was blocked by ICI 182,780. Daidzein also caused a
heightened secretion of OPG in the medium of porcine control OB,
while it decreased the membrane content of RANKL (126). Picherit
et al. demonstrated that in ovariectomised rat model of
postmenopausal osteoporosis, oral administration of daidzein
arrested both cancellous and cortical bone loss or only cortical
bone loss, while manifesting no estrogenic activity on the uterus.
Therefore, this proves that daidzein has no adverse effects on the
uterus (127). Treatment with daidzein on ovariectomized mice
significantly reduced the production of ROS and TNF-a by
activated T-cells, both of which are involved in the stimulation of
osteoclastogenesis (128). In osteoblast like MG-63 cells,
administration of daidzein caused a remarkable elevation in the
levels of ALP and COL-1 and also protected against cisplatin
induced apoptosis via an ER-dependent MEK/ERK and PI3K/
AKT activation (129). Daidzein promoted osteoblast proliferation
and differentiation via the BMP pathway, which upregulated the
phosphorylated levels of SMAD 1/5/8. This in turn, led to an
increase in the expression of osteogenic marker genes, including
ALP, RUN-X2, COL-1 and OSX (130). Furthermore, daidzein
demonstrated anti-osteoclastic activity in RAW264.7 cells by
downregulating the expression levels of TNF-a induced c-Fos and
NFAT-c1 (both of which are important regulators of osteoclast
differentiation) in an ER dependent manner. In addition, daidzein
inhibited nuclear translocation of NFAT-c1 and also reduced the
Frontiers in Endocrinology | www.frontiersin.org 11
levels of NF-kB and DC-STAMP levels (131). However, high levels
of daidzein cannot not always be beneficial. A correct balance is
always required for optimum activity. A study by Dang et al., using
mouse bone marrow cells and mouse osteoprogenitor KS483 cells
has shown that at concentrations below 20 mM, they inhibit
osteogenesis and at concentrations higher than 30 mM, it
stimulates adipogenesis (124). This proves that a proper amount
of daidzein should be taken, and high or lower levels may not tend
to be beneficial to the human body.

5.3.7 Luteolin
Luteolin is a flavonoid found in many herbal extracts and has been a
part of the traditional culture in Asian countries through medicines
and supplements. Exposure of mouse bone marrow derived
macrophages (BMMs) to luteolin inhibited osteoclast
differentiation induced by RANKL and also downregulated the
expression of osteoclast related genes such as NFATc1, c-Src, DC-
STAMP, MMP-9, CTSK and TRAP. Moreover, luteolin suppressed
bone resorption in a dose-dependent manner in mature osteoclasts
incubated with RANKL and M-CSF (132). In RAW264.7 cells,
luteolin inhibited the formation of mature TRAP-positive
osteoclasts induced by RANKL via the suppression of activating
transcription factor (ATF2) downstream of p38 MAPK and
NFATc1, thus inhibiting bone resorption. This was accompanied
by the disruption of actin rings of the osteoclasts (133). The effects of
luteolin on the prevention of bone loss in experimental periodontitis
FIGURE 5 | Effects of naringin on bone (A) naringin-induced upregulation of osteoblastogenesis via regulation of BMP-2 and Wnt/b-catenin pathways (B) upregulation of
osteoblastogenesis and downregulation of adipogenesis (C) inhibition of osteoclastogenesis and osteolysis by naringin mediated by the inhibition of RANK/RANKL
interaction (D) inhibition of bone resorption by inducing apoptosis of osteoclasts and reducing inflammatory cytokines that induce osteoclast formation.
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in Wistar rats were assessed and it was found that treatment with
luteolin remarkably decreased the alveolar bone loss by attenuating
osteoclastogenic activity and production of osteoclastogenic
markers including MMP-9 and RANKL. Besides, it upregulated
osteoblastic activity via the increased expression of osteogenic
markers such as tissue inhibitor of metalloproteinase (TIMP-1),
BMP-2, and OPG expressions (134). Nash et al. demonstrated that
Luteolin-treated mouse osteoblasts exhibited elevated ALP activity
and collagen formation via interactions with estrogen receptors
(135). Luteolin treatment ofMC3T3-E1 osteoblasts abrogated the 3-
morpholinosydnonimine (SIN-1)-induced production of oxidative
stress markers which included NO, PGE2, TNF-a and IL-6, thus
preventing osteoclastogenesis and bone resorption in diseases linked
with the overproduction of inflammatorymediators such as arthritis
(136). In cultured human periodontal ligament cells (HPDLCs),
administration of 1µmol of luteolin strongly enhanced cell viability,
ALP activity and increased calcified nodules content. Additionally
luteolin significantly upregulated the mRNA and protein expression
levels of osteoblast specific markers such as ALP, BMP2, OSX and
OCN and the relative expression levels of b-catenin and cyclin D1
(137). Yang et al., demonstrated that in murine calvarial osteoblasts
administration of luteolin suppressed the IL-1b-induced expressions
of MMP-9 and MMP-13 via a possible inhibition of the ERK
pathway, thus preventing excessive degradation of bone matrix
(138). Luteolin dose dependently suppressed the mRNA and
protein expression levels of pro-inflammatory cytokines and
mediators including TNF-a, IL-6, COX-2 and iNOS in LPS-
stimulated mouse alveolar macrophage MH-S and peripheral
macrophage RAW 264.7 cell lines via inhibition of
phosphorylated NF-kB and AP-1 mediated through blockage of
Akt and IkB kinase (IKK) phosphorylation. Further, luteolin
inhibited the production of ROS as well (139). In a study by
Abasi et al., it was found that luteolin at lower concentrations
conferred protection against high-glucose-induced cell death
compared to its cytotoxic effects at high doses. Thus, in order to
utilise the protective cations of luteolin, it is safest to avoid
consuming high doses of luteolin in food supplements (140).

5.3.8 Genistein
Genistein, a phytoestrogen, is a non-steroidal compound, that
shows structural similarity to estradiol-17b. This enables
genistein to bind to sex hormone binding proteins and
estrogen receptors, thus exhibiting anti-estrogenic and
estrogenic properties, the former being done by competing
with estradiol with estrogen receptors (141, 142). Anderson
et al. discovered a tendency in OVX rats treated with genistein
to maintain a better bone mass when compared to the untreated
control rats and conjugated estrogen-treated rats, with the low-
dose genistein treated groups exhibiting the highest numerical
effect on bone retention. Several studies have implied that at low
doses genistein acts through estrogen receptors, thus rendering
bone-preserving effects. However, it has also been shown that
genistein at high doses might induce multiple cellular effects and
may not necessarily cause estrogen receptor activation. Thus,
further studies are required to determine the effects of non-
pharmacological doses of genistein (143). In a study conducted
by Li et al. on Sprague Dawley rats, it was found that genistein at
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both high and low doses, caused a remarkable increase in the
BMD, bone volume and also resulted in denser subchondral
trabecular bone in vivo. At low doses, genistein upregulated the
mRNA expression levels of osteogenic markers including ALP,
OCN, OPG, ERa and ERb, whereas it downregulated the
osteoclastogenic marker RANKL both in vivo and invitro. High
dose genistein decreased the mRNA levels of bone homeostasis
related markers such as ALP, OCN, OPG, RANKL and ERa,
while it increased ERb expression levels invitro and in vivo, thus
not only inhibiting bone resorption but also bone formation at
higher doses- (144). Fanti et al., demonstrated that treatment
with genistein of OVX rats lead to an approximate 50% percent
reduction in distal femur cancellous bone loss and loss of whole
tibia BMD. Highest genistein dose (25 mg/g/day) resulted in
larger uterine size compared to the intermediate dose which
provided maximum bone-sparing effects but lesser uterine size,
thus suggesting a possible non-estrogen mediated mechanism of
genistein such as direct interaction with cellular enzymes
including via direct interaction with cellular enzymes as diverse
as 5-LOX, COX, cyclic AMP phosphodiesterase, protein kinases,
DNA topoisomerase II and 11b-hydroxysteroid dehydrogenase
(Figure 6). Moreover, genistein treatment suppressed the elevated
levels of pro-inflammatory cytokine TNF-a, an inhibitor of
osteogenesis (145). In MC3T3 pre-osteoblastic cells, treatment
with genistein altered the expression levels of genes associated with
cell proliferation, cell migration, cell differentiation, and
inflammatory responses. Successive knockdown analyses showed
that two upregulated genes (Ereg and Efcab2) and three
downregulated genes (Hrc, Gli1, and Iftm5) play crucial roles in
the differentiation of osteoblasts via increasing the expressions of
osteoblast-associated markers such as RUNX2, ALP and BMP-2
(146). Administration of genistein to human bone marrow
stromal cells suppressed its differentiation into adipocytes by
inhibiting the mRNA levels of PPARg and CCAAT/enhancer
binding proteins (C/EBPs), while it enhanced osteoblastogenesis,
thus preventing bone loss associated with excessive adipogenesis
(147). Besides, genistein was also found to increase the expression
levels of b-catenin and reduced the levels of IL-6 in Sprague
Dawley rats (148). Liao et al. have shown that genistein promotes
osteoblastic differentiation by the activation of p38 MAPK-
RUNX2 pathway. Moreover, several other studies have revealed
a possible cross talk between this pathway and other pathways
mediated by BMP and protein kinase C (PKC) (149). Genistein
also has shown to induce osteoblast proliferation and
differentiation from BMSCs through the involvement of ER–
NO–cGMP pathway (150). The expressions of two main
osteoclastogenic markers c-Fos and NFATc1, were found to be
inhibited by genistein. Furthermore, genistein inhibited RANKL-
induced degradation of IkB and nuclear translocation of NF-kB
and also suppressed the expressions of IL-1 and CTSK mediated
by tyrosine kinase-NF-kB pathway. These effects led to the
inhibition of differentiation of osteoclasts and subsequent bone
resorption (89).

5.3.9 Hesperidin
Hesperidin, also called Hesperetin-7-O-glucuronide is a flavonoid
abundantly found in citrus fruits and belongs to the flavonoid
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subgroup called flavonones. Hesperidin is a glycoside flavonoid
which when absorbed gets hydrolysed into the aglycone form by gut
microbiota and undergoes further metabolic changes-1 (151).
Several studies have reported hesperidin to act as a potential
bioactive compound in maintaining bone health in OVX rat
models (152). In primary osteoblasts obtained from wistar rats,
hesperidin, was found to upregulate the mRNA levels of ALP and
OCN via upregulation of RUNX2 and OSX, the two important
transcription factors in relation to osteoblasts, which are a part of
the MAPK and BMP signalling pathways (Figure 7).
Phosphorylation of SMAD1/5/8 complex also seemed to be
increased, thus suggesting the participation of the BMP pathway
through activation of SMAD1/5/8. Moreover, noggin, a protein
secreted by osteoblasts and known to hinder the BMP pathway was
found to be downregulated by hesperidin (151). Besides, treatment
with hesperidin showed slight modulation in the levels of c-Jun and
c-Fos, which form a part of the transcription factor AP-1
responsible for the activation of osteoblast-related genes. This
indicates the possible intervention of hesperidin through the
MAPK signalling pathways (152). In periodontal ligament stem
cells (PDLSCs), administration of hesperitin, increased the mRNA
level of the osteogenic transcription factor Fos-related antigen-1
(FRA-1) and also the protein levels of OPN and COL-1A. Under
conditions of high glucose, the ROS produced by PDLSCs were
scavenged by hesperitin. Furthermore, hesperitin also stimulated the
activation of Wnt/b-catenin pathway mediated by the activation of
PI3K/AKT signalling (153). A study by Kim et al., demonstrated a
Frontiers in Endocrinology | www.frontiersin.org 13
possible antiresorptive effect of hesperitin through the inhibition of
four pathways namely NIK/IKK, ERK, p38, and JNK, which in turn
suppressed the NF-kB signalling responsible for osteoclastogenesis
and also showed effects on the redox regulating transcription factors
Trx/Ref-1 (154). Additionally, exposure to hesperidin of male
gonad-intact senescent rats, attenuated the production of the pro-
inflammatory cytokine IL-6 (155). Although the exact mechanism
of action of hesperidin hasn’t been elucidated, the above-mentioned
pathways have been discovered as of yet to be regulated
by hesperidin.

5.3.10 Apigenin
Apigenin is a flavonoid belonging to the subgroup flavone and is
widely present in several fruits and vegetables such as olives,
apples and parsley. Although only minimum information is
present on the role of apigenin in bone metabolism, a few
studies indicate the role of apigenin in preventing bone loss
(156). Pre-treatment of H2O2 induced MC3T3-E1 cells with
apigenin, caused an upregulation of anti-oxidant enzymes SOD1,
SOD2 and glutathione peroxidase (GPx), thus counteracting the
ROS produced. Further, apigenin remarkably increased the
expression levels of genes responsible for osteoblast
differentiation such as ALP, OPN, OPG, BSP, OSX, OCN and
BMPs (BMP2, BMP4 and BMP7). Other anti-oxidant properties
of apigenin include activating H2O2-induced reduced expression
of AKT2, PI3K and ERK, all of which are key-regulators of
pathways involved in survival, thus inhibiting apoptosis
FIGURE 6 | Effects of genistein on osteoblasts, osteoclasts and their precursor cells.
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osteoblasts (Figure 8). These findings suggest the role of
apigenin in the treatment of bone diseases associated with
oxidative stress (157). Apigenin treatment of TNF-a-induced
MC3T3-E1 osteoblasts, reduced its production of IL-6 and NO
involved in bone resorption, suggesting apigenin’s intervention
in treating bone disorders such as osteoporosis characterised by
excessive production of inflammatory cytokines (158). In a study
by Lee et al., it was demonstrated that apigenin supressed the
activity of collagenase in RA and also showed that apigenin
inhibited LPS-induced production of NO and COX-2 by RAW
264.7 macrophage cells. In addition, apigenin significantly
attenuated the TNFa-induced adhesion of monocytes to
human umbilical vein endothelial cell (HUVEC) monolayer
and TNF-a-stimulated elevation of vascular cellular adhesion
molecule-1 (VCAM-1), intracellular adhesion molecule-1
(ICAM-1), and E-selectin-mRNA, all of which are involved in
RA (159). Treating LPS-induced macrophages with apigenin,
profoundly suppressed the production of IL-6, IL-1b, and TNF-
a via regulating various signalling pathways. Apigenin
suppressed LPS-induced production of IL-1b by disrupting
caspase-1 activation via hampering the inflammasome assembly.
Also, apigenin arrested the LPS-stimulated production of IL-6 and
IL-1b by decreasing the mRNA stability through inhibition of
ERK1/2 activation. Additionally, apigenin inhibited the activation
of NF-kB via induced by TNF-a and IL-1b thus providing evidence
to use apigenin for potentially treating inflammatory bone diseases
(160). Furthermore, Zhang et al., have shown the involvement of
JNK and p38 MAPK signalling pathways in stimulating osteoblast
Frontiers in Endocrinology | www.frontiersin.org 14
differentiation via upregulation of osteoblast-specific genes (161). In
conclusion, the pathways discussed above provide evidence to use
apigenin as a possible intervention in the treatment of bone-related
diseases. Figure 9 depicts an overview of the flavonoids that regulate
molecular mechanism in bone remodelling.

5.3.11 Other Flavonoid
Puerarin, a natural isoflavone isolated from the Chinese herb
Pueraria lobata, exhibits osteogenic effects similar to 17-b-
estradiol, suggesting a therapeutic role in the treatment of
osteoporosis in the future. Puerarin treatment on rat
osteoblasts increased the levels of ALP and stimulated
osteoblastic proliferation via a possible mediation of the PI3K/
Akt pathway (162). Puerarin alleviated pathological bone graft
defects and apoptosis of BMSCs and increased their proliferation
and differentiation. Further, it decreased the levels of
proinflammatory cytokines and promoted the levels of anti-
inflammatory cytokines, thus ameliorating bone loss via
inflammation (163). In human osteoblasts (hOBs), treatment
with puerarin was shown to inhibit serum-free-induced
apoptosis by upregulating the expression of BCL-2 and
downregulating the expression of BAX through the activation
ERK-1/2 signalling pathway (164). Besides puerarin is well
accepted as an autophagy regulator and osteoclastogenesis
inhibitor, with the exact role of autophagy in puerarin-
regulated osteoclastogenesis still being unclear (165). In
RANKL-induced BMMs, osteoclastogenesis was alleviated with
puerarin treatment, which inhibited the expression of
FIGURE 7 | Effect of hesperidin on signalling pathway regulating differentiation of osteoblasts.
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osteoclastogenic genes and the TRAF6/ROS-dependent MAPK/
NF-kB signalling pathway (166). Petunidin, a compound
belonging to the flavonoid family anthocyanin has been shown
to be a promising natural agent in inhibiting osteoclastogenesis
and promoting bone formation. Treating RAW264.7 cells with
petunidin significantly inhibited osteoclastogenesis by suppressing
the mRNA expression of osteoclastogenic markers c-Fos,
NFATc1, MMP9, CTSK, and DC-STAMP. Petunidin stimulated
the gene expression of osteogenic markers BMP-2 and OCN,
whereas it inhibited mRNA expression of MMP-2, MMP-9,
MMP-13 and the proteolytic activities of MMP-9 and MMP-13
inMC3T3-E1 cells (167). The isoflavonoid formononetin has been
suggested to be a natural selective estrogen receptor modulator
(SERM), and exhibit estrogenic activity on bone cells, thus
inhibiting the development of osteoporosis in post-menopausal
Frontiers in Endocrinology | www.frontiersin.org 15
women (168). A study by Singh et al. revealed that treatment with
formononetin on overiectomised (OVx) osteopenic mice repaired
the cortical bone defect and promoted bone regeneration
accompanied by elevated expression of osteogenic markers
BMP-2, RUNX2 and OCN (169). Formononetin treatment on
C2C12 progenitor cells remarkably enhanced ALP activity,
calcium deposition, and the expression of osteogenesis specific
markers including ALP, RUNX2, OCN and BMP isoforms. It was
also demonstrated that osteogenic differentiation in these cells
treated with formononetin was enhanced by p38 MAPK
dependent SMAD 1/5/8 signalling pathways (170). In BMMs,
treatment with formononetin regulated OPG and RANKL
expression levels, and inhibited RANKL induced TNF-a, IL-1b,
IL-6, MCP-1 and macrophage inflammatory protein-1a (MIP-
1a). These were accompanied by a reduction in RANKL induced
FIGURE 9 | Overall schematic depiction of flavonoids regulating molecules in bone remodelling.
FIGURE 8 | Regulation of autophagy and apoptotic pathways by apigenin.
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activation of the NF-kB p65 subunit, degradation of IkBa,
activation of AKT, ERK, JNK and p38 MAPK (171). In
addition, formononetin inhibited classic osteoclastogenic
markers significantly. Furthermore, it possesses angiogenic
properties required for bone fracture healing and upregulates
expression of VEGF and VEGF-R2 (172). Naringenin a dihydro
flavonoid compound abundantly found in fruits such as orange,
pomelo and drynaria has shown to possess osteogenic effects. In
BMSCs, treatment with naringenin upregulated the gene and
protein expression levels of ALP, RUNX2, C-X-C chemokine
receptor type 4 (CXCR4) and stromal cell-derived factor 1
(SDF-1) via the SDF-1/CXCR4 signalling pathway (173).
Calycosin, an isoflavonoid phytoestrogen, significantly
suppressed osteoclast formation from BMMs and inhibited the
expression of osteoclastogenic markers, including CTSK, TRAP
and MMP-9. Moreover, calycosin attenuated the expression levels
of NFATc1 and c-Fos via inhibition of activation of NF-kB and
MAPKs thereby preventing bone resorption (174). Curcuma
longa, a member of the family Zingiberaceae commonly referred
to as turmeric, contains an important flavonoid named curcumin.
A study by Folwarczna et al. exhibited that curcumin reduced
serum estradiol and mineralization, and increased bone formation
and histomorphometric properties of the bone (175–178).
Curcumin was found to downregulate the Wnt/b-catenin
pathway, AKT pathway, BCL-2, NF-kB, COX-2 and activated
GSK-3b, thus preventing oxidative stress and inflammatory
responses induced by these pathways (177, 179–187). A study
by Notoya et al., utilising rat calvarial osteoblast-like cells, showed
that curcumin inhibited the proliferation of osteoblasts without
induction of apoptosis. This occurred due to the expression of p21
protein, which resulted in the arrest of cell cycle (188). In another
study by Yamaguchi et al. with an analogue of curcumin UBS109,
it was found to increase SMAD activity, BMP-induced SMAD
activation and TGF-b-induced SMAD activation. It was also
found to inhibit TNF-a-induced SMAD suppression. This
might be crucial to enhance the differentiation of osteoblasts
(189). Also, curcumin slightly inhibited the enhancement of
RANKL by IL-1a in human bone marrow stromal cells (190).
Epigallocatechin-3-gallate is a flavonoid found abundantly in
green tea. Epigallocatechin (EGCG) was found to have promote
differentiation of osteoblasts in murine BMSCs. In a study by Lin
et al., EGCG showed upregulation of osteogenic-related genes
including osteocalcin, RUNX2, OCN, ALP and BMP2, resulting in
increased mineralization in a cultured mesenchymal stem cell line
derived from bone marrow (191). The expression of RUNX2 and
OSX, which are important for mesenchymal stromal cells to
differentiate to osteoblasts, was increased by EGCG, and thereby
resulted in increased osteogenesis (192). Oleuropein, a flavonoid
found in green olives and the olive tree, has recently been deeply
researched for its multiple health benefits (193). In a study by
Santiago-Mora et al. using the periodontitis model in rats,
Oleuropein downregulated the genes linked with adipogenesis
such as lipoprotein lipase and PPAR‐g and upregulated the factors
promoting osteogenesis such as OCN, RUNX2 and ALP and
eventually enhanced osteoblastic differentiation (194). Moreover,
oleuropein reduced JNK, p38 MAPK and ERK1/2, and prevented
Frontiers in Endocrinology | www.frontiersin.org 16
the translocation of NF‐KB from cytosol to nucleus which is
important for the activation of NF‐KB (195). Castejon et al. also
demonstrated a downregulation of MAPK and NF‐KB pathway,
reduced MMP‐3, COX‐2, TNF‐a, MMP‐1 and IL‐6 levels in IL‐1b-
induced synovial fibroblast cells by oleuropein (196, 197). OCN and
BMP4 are augmented by this flavonoid, and TRAP osteoclasts are
inhibited (194, 198). BMP4 is linked with high OPG production,
and this leads to a higher rate of osteoblastogenesis (199).
6 CONCLUSION AND
FUTURE PERSPECTIVE

Bone-related disorders as such are a growing problem in aging
populations especially post-menopausal women experiencing
acute estrogen deficiency. The long-term progression of these
diseases give rise to serious consequences such as fractures which
create significant negative impacts including reduced quality of
life, sustained disability and a growing economic burden due to
their high medical costs. The current treatment options
consisting of antiresorptive agents (such as bisphosphonates,
hormone-replacement therapy, selective oestrogen-receptor
modulators and anti-RANKL antibodies) and/or anabolic
agents (such as intermittent low doses of teriparatide and
antisclerostin antibodies) are not free from adverse effects that
limit their use (66). This is where flavonoids come into role.
These naturally derived phytochemicals possessing potent bone
conserving properties beyond calcium and vitamin D exhibit
fewer or no side effects compared to conventional therapies. A
number of flavonoids are being evaluated for their properties
beyond their chemical anti-oxidant capacity, such as anti-
inflammatory effects. By regulating cell signalling pathways
that influence osteoblast and osteoclast differentiation, these
bioactive compounds have been reported to promote bone
formation and inhibit bone resorption. However, there is no
single mechanism that can elucidate the actions of flavonoids,
rather it is a combination of a myriad of pathways. Despite the
presence of several gaps, attempts are being made to develop a
unifying model to integrate the identified molecular targets and
signalling pathways and show how flavonoids from different plant
sources might affect them (8). Only a small number of studies on
flavonoids have been extrapolated to human clinical trials. In a
double-blind placebo randomised controlled study by Hassan
et al., on type 2 diabetes mellitus patients, the effects of
quercetin administration on biomarkers of bone mineralisation
were investigated. It was found that patients who received an oral
supplementation of quercetin at 500mg/day for a period of 3
months exhibited increased levels of serum OCN, Vitamin D and
calcium compared to their pre-treatment levels (66). A similar
study carried out for a combined dosage administration of icariin,
genistein and daidzein for 24 months in postmenopausal women
showed reduced bone loss and improved BMD in the lumbar
spine and femoral neck (90). Furthermore, ongoing studies suggest
the possibility of incorporation offlavonoids in bone scaffolds and
grafts to ensure local administration and sustained release of
flavonoids which can aid in quicker bone healing. This strategy
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has been considered to overcome the shortcomings concerned
with bioavailability, stability and other biopharmaceutical
properties of flavonoids so that a desired concentration can be
maintained at the target site (200). Despite having such
tremendous implications on bone health, only a limited number
of studies on flavonoids have been extended beyond animal
models. In order to translate these animal data to dietary
interventions in humans, we also require comparative data of
the various sources of flavonoids. Therefore, proper identification
of the flavonoids’ sources, bioactive ingredients and their effective
doses remains crucial to undertake and invest in future clinical
trials (8). However, the study of interactions of flavonoids with
various cellular pathways and their potential to aid in the
prevention or repair of bone defects possesses tremendous scope
and is definitely a rich area for future research.
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