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Abstract: In the past, acellular dermal matrices (ADMs) have been used in implant-based breast
reconstruction. Various factors affect the clinical performance of ADMs since there is a lack of
systematic characterization of ADM tissues. This study used BellaCell HD and compared it to
two commercially available ADMs—AlloDerm Ready to Use (RTU) and DermACELL—under
in vitro settings. Every ADM was characterized to examine compatibility through cell cytotoxicity,
proliferation, and physical features like tensile strength, stiffness, and the suture tensile strength.
The BellaCell HD displayed complete decellularization in comparison with the other two ADMs.
Several fibroblasts grew in the BellaCell HD with no cytotoxicity. The proliferation level of fibroblasts
in the BellaCell HD was higher, compared to the AlloDerm RTU and DermACELL, after 7 and 14 days.
The BellaCell HD had a load value of 444.94 N, 22.44 tensile strength, and 118.41% elongation ratio,
and they were higher than in the other two ADMs. There was no significant discrepancy in the
findings of stiffness evaluation and suture retention strength test. The study had some limitations
because there were many other more factors useful in ADM’s testing. In the study, BellaCell HD
showed complete decellularization, high biocompatibility, low cytotoxicity, high tensile strength, high
elongation, and high suture retention strengths. These characteristics make BellaCell HD a suitable
tissue for adequate and safe use in implant-based breast reconstruction in humans.
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1. Introduction

An acellular dermal matrix (ADM) is a form of biological skin that is extracted from cadaveric skin
in processes like decellularization and terminal sterilization [1]. It mainly constitutes fibrillary collagen,
elastin, glycoproteins, proteoglycan, glycosaminoglycan, growth factors, and basement membrane.
Elastin and collagen facilitate the tensile strength, while elasticity, proteoglycans, and laminin help
in the induction of angiogenesis and binding to the connective tissues [1]. Moreover, growth factors
control cell behavior, and cross-linked ADM degrades and releases biochemical signals at similar rates
to that of native tissue extracellular matrix (ECM) [2]. When ADM is implanted into a body part, it
influences host remodeling responses like cell movement, proliferation, and differentiation, and works
an inductive support for the formation of site-specific useful host tissues.

Recently, ADM has been found to be useful in several fields like abdominal wall surgery, cleft palate
repair, nasal septal reconstruction, breast reconstruction, and the evidence for its uses are evolving
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and developing. There are two major methods for breast reconstruction, namely implant-based
reconstruction and autologous tissue-based reconstruction [3]. Due to the improved detection of breast
cancer there is a demand for breast reconstruction development in breast manufacturing methods.
Expander-based reconstruction has no donor indisposition, they are simple to conduct, and has become
much common. The most popular technique is the placement of the expander below the pectoralis
major muscle [4]. The fan-shaped pectoralis muscle does not cover the inferolateral aspect of the breast
implant, and the ADM is implanted as a sling in between the pectoralis muscle and the inframammary
fold [5]. The benefits of using the ADMs are the support provided to the inferolateral, greater fill
volume, the greater definition of the inframammary pleat, and lesser capsular contracture. ADM is an
indispensable biomaterial in breast reconstruction, through the refinement of the surgical approach
and the manufacturing process.

AlloDerm was developed in 1994; different ADM products for breast reconstruction are currently
available in the market. Every material is derived from a specific source and placed in a variety of
processing procedures, sterilization, and storage environment. A human-derived ADM, BellaCell HD,
was recently developed by Biomed Corporation, through a unique process. For the biomaterials to
be applied in living organisms, the in vitro studies of their stability and biocompatibility should be
performed [6]. This research is an in vitro study examining the decellularization status, biocompatibility,
and mechanical features of BellaCell HD.

2. Materials and Methods

2.1. ADMS

The research used BellaCell HD by Hans Biomed Corporation (Daejeon, Korea) and two human
ADMS for comparison, i.e., AlloDerm Ready to Use (RTU) by LifeCell Corp. (Branchburg, NJ, USA)
and DermACELL by LifeNet Health (Virginia Beach, VA, USA). Below are the processes that were
conducted on the three human ADMS for evaluation of the BellaCell HD. The BellaCell HD is a novel
human ADM.

2.2. Decellularization Assessment

For the study, paraffin-embedded ADMs were sectioned at 5 µm thickness, and after removing
the paraffin, the sections were rehydrated with a reducing series of alcohol concentration to water.
The standard protocol for H & E was followed. The samples were evaluated by light microscopy
at different range magnifications to inspect the presence of the cells and collagen fibers. The light
microscope was 40, 100, and 200 magnifications.

2.3. Cell Culture

For experimental purposes, the ADM specimens were divided into 1 by 1 cm pieces, put into
24-well cell culture dishes, washed with PBS twice, and later incubated in media at 37 ◦C and 5%
carbon dioxide for ten minutes, before the cell seeding process. NIH3T3 and L-929 mouse fibroblasts
were grown in Dulbecco’s modified Eagle’s medium added with 100 µg/mL streptomycin, 100 U/mL
penicillin, and 10% heat-inactivated fetal bovine serum. The cells were cultured at 37 ◦C in 5%
CO2/95% air.

2.4. Proliferation Assay

For cell proliferation assay, NIH3T3 fibroblasts were seeded on the ADMs at 5 × 104 cells/mL and
incubated for 1, 7, and 14 days. Cell proliferation was assessed with the use of an MTT assay. MTT
solution at the 100 µL/well was added and incubated for 4 hours at 37 ◦C. The formazan crystals were
liquified in dimethyl sulfoxide (DMSO), and the optical densities were calculated at 570 nm by an
ELISA reader.
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2.5. Cytotoxicity Assay

Cytotoxicity assays with the cultured cells were used for the testing chemicals and drug screening.
For this study, sterile physiological saline were added and eluted at 37 ± 2 ◦C for 72 ± 2 h. Minimum
essential medium (1×) with Earle’s salts (MEM-E, Flow Labs., Rockville, MD, USA) was used as a
negative control after cell exposure to a similar environment with the test sample and DMSO as a
positive control, and sterile physiological saline as the solvent control. The eluate was centrifuged at
3000 rpm for 5 min, and the supernatant was used as the test group. L-929 fibroblasts were seeded at a
concentration of 5 × 104 cells/well and incubated for 24 hours in a 37 ◦C saturated incubator with 5%
CO2. The medium was detached after one day, and the eluate from the negative control group, the
positive, the solvent regulator cluster, and the test assembly was replaced with a medium mixed in the
same amount, with a 2-fold content of the MEM medium. After incubation for two days at 37 ◦C in a
humidified incubator with 5% CO2, cell morphology was examined under a light microscope at 200×
magnification, and cell viability was evaluated by MTT assay.

2.6. Uniaxial Tensile Testing

Biological soft tissue is a non-linear material, and the mechanical features affect the quality of
life [7]. For this research, seven specimens (n = 7) measuring 10 mm × 7 mm were prepared from each
of the ADMs (based on the American Society for Testing and Materials (ASTM) specification #D638-03).
The average thickness of the specimens for each ADM was 1.97 mm for BellaCell HD, 1.3 mm for
AlloDerm RTU, and 1.9 mm for DermACELL. The sample used in this study had different thickness.
Each sample was oriented vertically in the Instron material testing system with a 3.0 cm gauge length,
and approximately 2.0 cm of the specimen was fixed firmly in each pneumatic grip. Samples were
pulled to a uniaxial pressure at a rate of 30 mm/min until failure. When the ADM was broken, the
elongation ratio (%), the maximum length divided by original length, and the maximum load (N) was
determined. Tensile strength was evaluated by the division of maximum load with the cross-sectional
area (mm2) of the sample to yield the value in megapascal (MPa) units, and 1 N/mm2 equaled 1 MPa.

2.7. Stiffness Testing

Most of the biomaterials were viscoelastic, showing time dependence in the cell’s response to
the loads. In this study, stiffness testing was conducted using a custom test fixture. The custom test
fixture was fabricated based on American Society for Testing and Materials (ASTM) specification
#F1306. Three specimens (BellaCell HD n = 3, AlloDerm RTU n = 3, DermACELL n = 3) measuring
5 cm × 5 cm were prepared. The average thickness of each ADM specimen was 1.88 mm for BellaCell
HD, 1.16 mm for AlloDerm RTU, and 1.3 mm for DermACELL. The sample used in this study had
different thickness. The specimen was fixed between the upper and lower jigs, and the probe moved
downward to compress the sample at a degree of 25 mm/min. The stiffness was evaluated through
division of the load sustained with sample (N) in the stiffness examination by the movement (mm) of
the probe.

2.8. Suture Retention Strength Testing

The cell width and the distance of the joint bite from the sample free edge are the most significant
geometrical parameters [8]. For this work, four samples (2 cm × 4 cm) were prepared from each ADM.
From the bottom of the sample, a suture was passed through the ADMs (1.0 cm). A pulling rate of
20 mm/min was applied as the suture tore out of the ADMs. The maximum load (N) was recorded as
mean ± standard error of the mean (SEM).

2.9. Statistical Analysis

All figures are reported as mean ± SEM. Statistical analyses were conducted using SPSS statistical
software, and it was beneficial in providing the frequencies and bivariate statistics. For all data,
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significant differences were established using an unpaired t-test. For all analyses, p < 0.05 was
explained as statistically substantial.

3. Results

3.1. Decellularization Assessment

BellaCell HD and DermACELL displayed complete decellularization under a light microscope
after staining. Complete decellularization showed the compatibility of the BellaCell HD for use in
breast reconstruction. Some cellular debris between collagen fibers were visible on the AlloDerm RTU,
as shown (Figure 1).
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Figure 1. Decellularization assessment. The extracellular matrix of acellular dermal matrices (ADMs)
was assessed by H&E staining (scale bar = 100 µm). The BellaCell HD and DermACELL display
complete decellularization while the AlloDerm Ready to Use (RTU) shows cellular debris between
the figures.

3.2. Biocompatibility Assessment

Cell proliferation in BellaCell HD was highest in the one day, though not statistically significant.
On the 7 and 14 days, BellaCell HD was higher than in the AlloDerm RTU (Figure 2A). There was no
significant difference in cell proliferation between BellaCell HD and DermACELL. After the 1, 7, and
14 days of incubation with NH3T3 fibroblasts, invasive cells on the ADM’s surface were photographed
with the use of a light microscope at 100×magnification. All samples displayed the same degree of
cell adhesion on the first day, as demonstrated (Figure 2B). Many cells overgrew in the BellaCell HD
in comparison to the other matrices. Cell proliferation was not constant in the AlloDerm RTU, but
growth was mainly seen on the dent surface (Figure 2B).

3.3. Cytotoxicity Assay

MTT assay showed that all three products had a cell viability of over 90%, indicating no cytotoxicity
as illustrated in Figure 3A. In the cytotoxicity assay, a significant decline in cell count was observed in
the positive control using DMSO. There was a rise in cell count in the negative control, as seen under a
light microscope at 200×magnification (Figure 3B). In all test groups using BellaCell HD, AlloDerm
RTU, and DermACELL, there was a growth with a spindle-like structure (Figure 3B).

3.4. Uniaxial Tensile Test

Uniaxial tensile testing showed that the maximum load at the ADM break was 444.94 N for
BellaCell HD, which was higher than that for AlloDerm RTU (181.92 N), and marginally lower for
DermACELL (492.11 N), which was not statistically significant (Figure 4A). The tensile strength of
BellaCell HD was 22.44 MPa. It was significantly higher than the 14.34 MPa observed for AlloDerm
RTU and not substantially different from the 26.12 MPa observed for DermACELL (Figure 4B).
The elongation ratio at the ADM break was 118.41% for BellaCell HD, 126.38% for AlloDerm RTU, and
104.13% for DermACELL (Figure 4C).
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Figure 2. Biocompatibility assessment. (A) Cell adhesion on the surface of ADMs was
observed under microscope after staining with H&E (B) Cell proliferation was evaluated by a
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. Cell adhesion and proliferation in a
span of 1, 7, and 14 days. Figure 2A is a representation of cell adhesion, while Figure 2B shows the cell
proliferation rate and incubation days. The cells overgrew with time in the BellaCell HD in comparison
to the other two matrices, and the AlloDerm RTU cell growth was viewed at the dent. Each datum
represents the ±SEM of three independent experiments.
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Figure 3. Cytotoxicity assay. (A) Cell viability was assessed by an MTT assay. (B) Cell morphology
was observed under the light microscope at 200×magnification. Cytotoxicity of cell growth and cell
viability in the three tissues. Figure 3A shows 90% cell viability and no cytotoxicity. In Figure 3B, cells
grew in a spindle-like material. Each datum represents the ±SEM of three independent experiments.
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Figure 4. Uniaxial tensile test. (A) Maximal load, (B) tensile strength, and (C) elongation. Figure 4A
shows the 444.94 N break for BellaCell HD, AlloDerm RTU 181.92 N, and 492.11N for DermACELL.
The tensile for the BellaCell HD, Alloderm RTU, and DermACELL is 22.44 MPa, 14.34 MPa, and
26.12 MPa (Figure 4B). Figure 4C represents the elongation ratio of 118.41%, 126.38%, and 104.13% for
BellaCell HD, Alloderm RTU, and DermACELL products, respectively. Each datum represents the
±SEM of three independent experiments.
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3.5. Stiffness Testing

A biomaterial requires mechanical strength to uphold integrity until full regeneration of the tissue
and has to sustain space for the cell ingrowths and nutrient absorption in vitro, thereby supporting the
loadings in vivo [9]. The scaffold should be able to match its characteristics to those of initial tissues
to avoid pressure shielding and offer the cell appropriate mechanical cues [10]. The stiffness testing
showed that DermACELL had the highest stiffness of 0.90 N/mm, while those of AlloDerm RTU and
BellaCell HD were measured 0.28 N/mm and 0.44 N/mm, respectively, as illustrated in Figure 5.
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3.6. Suture Retenstion Strength Testing

The ADM must withstand tearing at the point of the suture when tension pulls at the suture.
Break starting strength is firm against the assessment parameter discrepancies, and it is dependent on
the geometry of the sample [11]. The contrast of suture preservation and mode one crack opening
evaluations shows the linear relationship between break starting and tearing energy [12]. The results
of suture retention strength testing showed that the maximum load for BellaCell HD was 97.06 N,
which was higher than that for AlloDerm RTU and for DermACELL, as shown in Figure 6. However,
these differences were not statistically significant (p > 0.05).Bioengineering 2020, 7, x FOR PEER REVIEW 7 of 10 
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is a requirement for breast implantation [18]. Using a low tensile ADM the tissue would be vulnerable 
to matrix rupture, which could result in implant malposition [19]. After implantation, the expander 
was inflated for some months to get an adequate amount of skin, similar to that in the contralateral 
breasts. Therefore, ADM should have sufficient tensile strength to withstand the inflating pressure 
of the expander [18]. BellaCell HD showed a high tensile strength; thus; it was capable of providing 
sufficient physical support when used in breast reconstruction. 

Figure 6. Suture retention strength test. Four samples (2 cm × 4 cm) were prepared from each
ADM. From the bottom of the sample, a suture was passed through the ADM (1.0 cm). A pulling
rate of 20 mm/min was applied as the suture tore out of the ADMs. The maximum load (N) was
recorded as mean ± SEM. It displays the maximum load of 97.06 N, 79.65 N, and 80.48 N for BellaCell
HD, AlloDerm RTU, and DermACELL, respectively. Each datum represents the ±SEM of three
independent experiments.
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4. Discussion

The present study used the novel ADM, BellaCell HD, in an in vitro environment, contrasting it
with two commercially available human ADMs. The aim was for the ADM to be successfully utilized
in expander-based breast reconstruction. The BellaCell HD showed complete decellularization, viewed
using H & E staining under a light microscope [13]. The BellaCell also showed high cell adhesion and
cell proliferation without cytotoxicity in the biocompatibility assessment. The BellaCell HD displayed
a high tensile strength, elongation, low stiffness, and high suture retention power in the mechanical
property assessment.

The manufacturing process of ADMs consists of decellularization, preservation, and sterilization
stages. The most important phase is decellularization using physical, chemical, or biological
techniques [6]. Manufacturing of each product is done differently. The purpose of the decellularization
process is the removal of antigenic material while preserving extracellular matrix biochemistry
and structure [14]. The presence of residual DNA in the biological scaffold materials results in an
inflammatory response. Previous research found that the presence of cells within a biomaterial
is linked with increased macrophage M1 polarization, increased proinflammatory cytokines, and
weak remodeling results in a primate model [15]. Reasons for complication development in the
ADMs in breast reconstruction are multifactorial [16]. Hence, this research holds that BellaCell HD is
immunologically safe for implantation in the human body.

Immune cells like lymphocytes, granulocytes, macrophages and mast cells, fibroblast, and
myofibroblasts recolonize the original ADM during implantation in the breast reconstruction
process [14]. Capsule and capillaries are formed by the fibrosis and neovascularization [17]. It should be
compatible and capable of inducing the biological responses like host cell adhesion and cell proliferation
with no cytotoxicity to the host tissue. Lack of biocompatibility leads to an imbalance resulting in
implant mobility that causes infection, reconstructive failure, and seroma. High compatibility of
BellaCell HD might result in a favorable outcome when employed in breast reconstruction.

The benefit of using ADM in expander-based breast reconstruction is because it offers physical
support to the implant hence preventing shifting or bottoming out [18]. High tensile strength ADM is
a requirement for breast implantation [18]. Using a low tensile ADM the tissue would be vulnerable
to matrix rupture, which could result in implant malposition [19]. After implantation, the expander
was inflated for some months to get an adequate amount of skin, similar to that in the contralateral
breasts. Therefore, ADM should have sufficient tensile strength to withstand the inflating pressure
of the expander [18]. BellaCell HD showed a high tensile strength; thus; it was capable of providing
sufficient physical support when used in breast reconstruction.

The paramount result of this research was that BellaCell HD showed both a high tensile strength
and elongation ratio, which meant elasticity and flexibility, respectively. The AlloDerm RTU had low
stiffness rate, and lower tensile strength [1]. The tensile power strength of DermACELL was high,
like that of BellaCell HD, though with high stiffness. The elements helped the surgeons in handling
ADM efficiently and overcoming the size discrepancy between the standardized ADM material and
the spaces that required coverage for every patient [20]. Most surgeons create a vertical or horizontal
stab incision to the ADM, whereas others mesh the ADM using a skin graft Mesher [21]. However,
all of these techniques have the shortcoming of increasing the contact area between the implant and
the mastectomy flap [22]. Therefore, the high elasticity and pliability of the BellaCell HD would
help in bridging the gap, particularly by stretching it. Currently, prepectoral implant placement with
complete coverage by ADM has become popular because of low postoperative pain and low animation
deformity [23]. Since more complex techniques are needed for complete wrapping with ADM, the
high flexibility of the ADM will help safe handling.

In the suture retention strength test, BellaCell HD had the uppermost suture retention strength
of the three human ADMs examined. When the ADM was implanted as a hammock shape in
implant/expander-based breast reconstruction, ADM was sutured with the elevated pectoralis major
superior and the chest wall at the inframammary and lateral mammary fold inferolateral [24].
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Although few human research studies have been conducted, it is speculated that the suture site wound
is more vulnerable to dehiscence than the ADM itself, until it is fully integrated with the host tissue [25].
Therefore, the high suture retention strength of BellaCell HD will aid in preventing implant herniation
through the suture site. For BellaCell HD to expand its indications like other common ADMs, it must
have appropriate suture retention strength that can withstand high tensions such as abdominal walls,
which is supported by these findings.

Indeed, AlloDerm RTU and DermACELL have been used in clinical applications such as
breast reconstruction. DermACELL is an appropriate adjunct to the post-mastectomy outcome
of reconstruction with expanders. Histological observation showed early graft integration at 6 weeks
post-implantation [26]. Clinical data on AlloDerm RTU used in breast reconstruction showed full
incorporation and integration into the host tissue [27]. Based on the present study, BellaCell might also
reduce complications that lead to reconstruction failure.

The limitation of this study is that biocompatibility and mechanical properties of ADM were
tested only in an in vitro setting. We used only NIH3T3 and L-929 mouse fibroblasts to assess cell
proliferation and cell viability. However, not only fibroblasts but also myofibroblast, lymphocytes,
macrophages, granulocytes, and mast cells were involved in the ADM integration [28]. Moreover,
antibodies, complement, and cytokines also perform a significant part in the host response to ADM [29].
Therefore, to identify the exact mechanism through which ADM integrates into the human body and
to use it to create an ideal ADM, further detailed studies are recommended. The ADM facilitates
the biochemical change through a process called “stretching” after implantation, which varies from
product to artefact [30]. However, it is challenging to manufacture individual multi-vector forces in an
in vitro setting. In vivo studies would be required to address this, to help surgeons predict the need
for an ADM sling overcorrection in implant/expander-based breast reconstruction.

Authors should discuss the results and how they can be interpreted in perspective of previous
studies and of the working hypotheses. The findings and their implications should be discussed in the
broadest context possible. Future research directions might also be highlighted.

5. Conclusions

The BellaCell HD showed high compatibility, low cytotoxicity, high tensile strength, and complete
decellularization, thus, displaying its suitability for use in breast reconstruction.
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