
Research Article
Integrative Bioinformatics Analysis Revealed Mitochondrial
Dysfunction-Related Genes Underlying Intervertebral
Disc Degeneration

Zhengya Zhu ,1 Zhongyuan He ,1,2 Tao Tang ,1,2 Fuan Wang,1,2 Hongkun Chen,1

Baoliang Li,1,2 Guoliang Chen ,1,2 Jianmin Wang ,1 Wei Tian,3 Dafu Chen ,3

Xinbao Wu,3 Xizhe Liu ,2 Zhiyu Zhou ,1,2 and Shaoyu Liu1,2

1Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery,
The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
2Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of
Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
3Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics
and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China

Correspondence should be addressed to Xizhe Liu; liuxizhe@mail.sysu.edu.cn and Zhiyu Zhou; zhouzhy23@mail.sysu.edu.cn

Received 6 July 2022; Accepted 15 August 2022; Published 11 October 2022

Academic Editor: Xiaolong Chen

Copyright © 2022 Zhengya Zhu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. Mitochondrial dysfunction plays an important role in intervertebral disc degeneration (IDD). We aim to explore the
pathways and key genes that cause mitochondrial dysfunction during IDD and to further reveal the pathogenesis of IDD based
on bioinformatic analyses. Methods. Datasets GSE70362 and GSE124272 were downloaded from the Gene Expression
Omnibus. Differentially expressed genes (DEGs) of mitochondrial dysfunction between IDD patients and healthy controls were
screened by package limma package. Critical genes were identified by adopting gene ontology (GO), Kyoto encyclopedia of
genes and genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. We collected both degenerated and
normal disc tissues obtained surgically, and we performed western blot and qPCR to verify the key DEGs identified in
intervertebral disc tissues. Results. In total, 40 cases of IDD and 24 healthy controls were included. We identified 152 DEGs,
including 67 upregulated genes and 85 downregulated genes. Four genes related to mitochondrial dysfunction (SOX9,
FLVCR1, NR5A1 and UCHL1) were screened out. Of them, SOX9, FLVCR1, and UCHL1 were down-regulated in peripheral
blood and intervertebral disc tissues of IDD patients, while NR5A1 was up-regulated. The analysis of immune infiltration
showed the concentrations of mast cells activated were significantly the highest in IDD patients. Compared with the control
group, the level of T cells CD4 memory resting was the lowest in the patients. In addition, 24 cases of IDD tissues and 12 cases
of normal disc tissues were obtained to verify the results of bioinformatics analysis. Both western blot and qPCR results were
consistent with the results of bioinformatics analysis. Conclusion. We identified four genes (SOX9, FLVCR1, NR5A1 and
UCHL1) associated with mitochondrial dysfunction that play an important role in the progress of disc degeneration. The
identification of these differential genes may provide new insights for the diagnosis and treatment of IDD.

1. Introduction

Low back pain (LBP) is a common muscle bone disease that
causes physical pains to patients and severe economic bur-
den to the society [1, 2]. Intervertebral disc degeneration
(IDD), as one major cause of LBP, is featured by structural

destruction, apoptosis of nucleus pulposus cells, release of
proinflammatory cytokines, and extracellular matrix degra-
dation in the intervertebral disc [3, 4]. So far, the concrete
pathology of IDD is unclear, and the clinical treatment strat-
egies are mainly targeted at conservative treatment or surgi-
cal intervention for symptom relieving. Nevertheless, nearly
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20% of IDD patients respond badly to non-surgical therapy
[5]. Thus, further clarifying the molecular mechanism of
IDD is a new route for precise intervention of LBP.

A normal intervertebral disc is anatomically composed
of gelatinous nucleus pulposus (NP) in the center and annu-
lus fibrosus tissues in the periphery, and is assisted by carti-
laginous endplates (CEP) to enhance its mechanical
strength. The intervertebral disc (especially nucleus pulposus
tissues) is critical in maintaining the physiological functions
of the spine, and can absorb and disperse the machinery
loads of the spine that moves at all directions [6]. Interverte-
bral disc, the largest vessel-free organ in the human body,
acquires energy mainly through anaerobic glycolysis [7],
and mitochondria are critical in supply energy for the inter-
vertebral disc to maintain normal physiological functions
[5]. In addition to matter and energy metabolism, mitochon-
dria are involved in regulation and control of second mes-
senger functions, such as release of reactive oxygen species
(ROS) and calcium ions, and further activate various signal-
ing pathways to maintain the steady functions of nucleus
pulposus cells. Reportedly, the mitochondria in the NP cells
of IDD patients are structurally and functionally abnormal,
and mitochondrial dysfunction may be one of the causes
that accelerate the progression of IDD. As a by-product of
aerobic respiration, ROS is mainly produced in the mito-
chondria by the electron transport chain and other mito-
chondrial located proteins. With the excessive
accumulation of ROS, mitochondria are the main target of
ROS attack in disc cells [8].

In this study, we screened out the differential expressions
of mitochondrial genes, between normal people and IDD
patients in both intervertebral disc tissues and peripheral
blood, from the transcriptome sequencing gene data of Gene
Expression Omnibus (GEO). The key pathways and proteins
were identified from analysis of gene ontologies (GOs),
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways, protein-protein interaction (PPI) networks, and some
other bioinformatics analysis tools that offer a new clue to
uncover the pathogenesis of IDD and theoretically underlies
intervertebral disc repair and regeneration.

2. Materials and Methods

2.1. Data Downloading. Datasets GSE70362 [9] and
GSE124272 [10, 11] were downloaded from GEO.
GSE70362 containing 32 cases of IDD and 16 control cases
was obtained from the GPL17810 sequencing platform.
The GSE124272 containing 8 cases of IDD and 8 control
cases was acquired from the GPL21185 sequencing plat-
form. All cases were of human source. The above two
datasets were integrated for downstream analysis. The
batch effect between datasets was calibrated using package
SVA of R language [12] and the data were normalized
using log2. The expression distribution after the above
processing was visualized in box plots, including 40 IDD
cases and 24 control cases.

To analyze the expressions of mitochondrial dysfunction
genes in all samples, we first identified 11 mitochondrial
dysfunction genes from database GeneCards [13] by using

keyword ‘Mitochondrial dysfunction’ (CGB5, KIT, FLVCR1,
SP1, SOX9, UCHL1, CYP21A2, NR5A1, DAZ4, DHH,
POMK). Then after intersection with the existing expression
profiles, 9 genes were left (KIT, FLVCR1, SP1, SOX9,
UCHL1, CYP21A2, NR5A1, DHH, POMK).

2.2. Panorama of Mitochondrial Dysfunction Genes. To fur-
ther explore the correlations of mitochondrial dysfunction
genes in all patients, we calculated the Pearson correlations
between genes. The absolute value of correlation coefficient
larger than 0.3 and p<0.05 indicate the presence of correla-
tion. The correlations between qualified genes were plotted
on the R package ggplot2 [14].

To analyze the effects of expressions of mitochondrial
functional genes on IDD, we analyzed the differentially
expressed genes (DEGs) between the IDD group and the
control group using the integrated dataset on the R package
limma [15] and screened out the significant genes. The
thresholds were absolute value of log2 (fold change)
(log2FC)>1.5 and Padj<0.05. The genes with log2FC>1.5
and Padj<0.05 were upregulated, and the genes with
log2FC< -1.5 and Padj<0.05 were downregulated. Especially,
the volcano plots show the downregulated or upregulated
DEGs. The heatmaps of all these DEGs in all samples were
plotted on the R package pheatmap [16]. To analyze the
expressions of mitochondrial dysfunction genes between
the control and tested groups, we plotted the box plots of
the two groups using the R package ggpubr [17]. The two
groups were compared using Wilcoxon rank sum test. The
significant level was p<0.05.

Protein-protein interaction (PPI) networks are formed
from the interactions of single proteins, and participate in
all steps of the life process, including biosignal transfer, gene
expression regulation, energy and substance metabolism,
and cell cycle regulation. Systematic analysis of interactions
among abundant proteins in biosystems is contributive to
understanding the rationale of proteins in biosystems, clari-
fying the mechanisms of biosignals and energy/substance
metabolism in special physiological states such as diseases,
and for knowing the functional associations between pro-
teins. STRING is a database for searching known PPIs and
predicting PPIs [18]. We used STRING and chose the genes
with combined score larger than 400 to build a network of
interactions between DEG-related proteins. The PPI net-
work was visualized on Cytoscape 3.7.2 [19].

2.3. Diagnostic Model Based on Mitochondrial Dysfunction
Genes. Given the influence of mitochondrial dysfunction,
the control samples and tested samples may contain differ-
ent mitochondrial dysfunction genes that show different sta-
tuses. Hence, it is highly feasible to build a diagnostic model
based on mitochondrial dysfunction genes.

Here, we first used ridge regression to screen all mito-
chondrial dysfunction genes on the R package glmnet [20],
and found out the optimal λ. After the regression, the genes
with coefficient not being 0 were remained. Then the genes
were further screened through logistics regression. The
genes chosen for modeling and their coefficients were dis-
played as forest map on the R package forestplot [21].
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After that, to identify the multifactor influence of feature
genes in the diagnostic model, we chose the genes with large
absolute weights in the previous model on the R package
rms [22] and built a new logistics multifactor regression
model. To validate the predictive efficacy of the new diag-
nostic model, we plotted receiver’s operating characteristic
curve (ROC) and calculated the area under curve (AUC)
on the R package pROC [23].

2.4. Gene Set Enrichment Analysis. To further uncover the
biological differences between the tested samples and the
control samples, we subjected the DEGs to gene set enrich-
ment analysis (GSEA).

GSEA is a commonly-used method for large-scale func-
tion enrichment analysis at different dimensions and levels,
and usually involves three aspects: bioprocesses, molecular
functions, and cell components [24]. KEGG is a widely-
used database that stores information of genome, biological
pathways, diseases, and drugs [25]. All significant DEGs
were subjected to GO function annotation and KEGG path-
way enrichment analyses on the R package clusterprofiler
[26, 27] to identify the significantly enriched bioprocesses.
The results were visualized as bar charts and bubble plots.
The significant threshold of enrichment analysis was set at
adjusted p<0.05.

Gene enrichment analysis determines whether a preset
gene is significantly different between two biological states,
and is often used to estimate the changes in pathways and
bioprocesses in a dataset [28]. To study the differences in
bioprocesses between two groups, we chose the gene profile
dataset, and downloaded reference gene sets ‘c5.go.v7.4.en-
trez.gmt’ and ‘c2.cp.kegg.v7.4. entrez.gmt’ from database
MSigDB [29]. The datasets were enriched and visualized
using the GSEA from the R package clusterprofiler. The sig-
nificant level was set at adjusted p<0.05.

GSVA, the gene set variation analysis [30] and a nonpara-
metric unsupervised method, converts the between-sample
gene expressionmatrix into a between-sample gene set expres-
sion matrix, and thereby evaluates the gene set enrichment of
chip nucleolus transcriptome. GSVA is used to evaluate
whether a pathway is enriched between samples. Gene sets
‘c5.go.v7.4.entrez.gmt’ and ‘c2.cp.kegg.v7.4. entrez.gmt’
acquired from database MSigDB were sent to GSVA at the
gene expression level, and thereby, the function enrichment
differences were compared between two types of tissues.

2.5. WGCNA. Weighted gene correlation network analysis
(WGCNA), a systematic biological method to describe gene
association modes between samples, can identify the gene
sets with highly collaborative changes, and identify the can-
didate biological marker genes or therapeutic targets accord-
ing to the internality of gene sets and to the associations
between gene sets and phenotypes [31]. The correlated key
gene sets between the tested and control groups were identi-
fied using the R package WGCNA [31], which were used in
subsequent analysis.

2.6. Protein-Protein Interaction (PPI) Network. The gene
expressions are universally and mutually associated, and

especially, the genes that regulate the same biological process
are highly associated. Hence, to uncover the gene associa-
tions in the tested group or the control group through
WGCNA, we built a PPI network.

The above genes from the database STRING [32] were
inputted to build a PPI network at the default confidence
level of 0.4. Then the PPI was outputted. Further analysis
was done on Cytoscape [19]. The network attributes of
nodes were calculated, and the hub nodes were identified
with node degrees as the standard on the package Cyto-
hubba [33]. The top 10 nodes ranked by the node degree
were classified as the hub nodes. These nodes were highly
associated with other nodes and thus may play critical roles
in the regulation and control of all biological processes,
which are worth of further research.

2.7. Identification and Correlation Analysis of Immune
Infiltrating Cells. The immune microenvironment mainly
consists of immune cells, inflammatory cells, fibroblasts,
interstitium samples, and various cytokines and chemokines,
and thus is a loaded comprehensive system. The infiltration
analysis of immune cells is pivotal in disease research and
prediction of therapeutic prognosis. CIBERSORT is an algo-
rithm for deconvolution of expression matrix of immune cell
subtypes according to the rationale of linear support vectors,
and uses RNA-Seq data to estimate the abundance of
immune cells in samples [34]. The CIBERSORT from R lan-
guage [34] was used to calculate the abundance of 22 types
of immune cells between the tested group and the control
group, and the composition of immune cells was visualized
as box plots. The differences in proportions of immune cells
were calculated using Wilcoxon test, at the significant level
of P<0.05.

2.8. Unsupervised Clustering. Because of ubiquitous hetero-
geneity among patients, such heterogeneity can be inter-
preted using unsupervised clustering of samples according
to hub genes, and the samples were reclassified. This classi-
fication can help us to comprehensively understand the
mechanism of mitochondrial dysfunction in different modes
of disc degeneration.

Table 1: Primers used for RT-qPCR.

FLVCR1
F:5′- GGAACTTGAATCCAGCCAGAGAA -3′
R:5′- GTCCGTTGTATCCATAAGGTAGCA -3′

NR5A1
F:5′- GACAGGGAGAAGTTGAGCAGGTAT -3′
R:5′- TTGGGTGGGAGAGGGAATCAGT -3′

UCHL1
F:5′- GCTCAAGCCGATGGAGATCAAC -3′

R:5′- ACTGCGTGAATAAGTCCGATTGTG -3′

SOX9
F:5′- GAGCAGCGAAATCAACGAGAAACT -3′
R:5′- ACAAAGTCCAAACAGGCAGAGAGA -3′

GAPDH
F:5′- ACTTTGGTATCGTGGAAGGACTCA -3′
R:5′- CCAGTAGAGGCAGGGATGATGTT -3′
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First, the optimal number of clusters was determined
using the R package factoextra [35]. After that, all patients
were clustered in an unsupervised way using k-mean cluster-
ing. The samples were classified into 2 clusters, and the final
clustering effect was examined using factoextra. The expres-
sions of the 10 hub genes between the two groups were dis-
played as heatmaps. Histograms of groups were plotted on R
package ggpubr [17] with the sample clustering label. The
two groups were compared using Wilcoxon rank sum test
at the significant level p<0.05.

2.9. RNA Extraction and Real-Time Quantitative Polymerase
Chain Reaction (RT-qPCR). The ethics approvals were pro-
vided by the institutional review board of the Seventh Affil-
iated Hospital of Sun Yat-sen University (KY-2021-030-01).
All enrolled patients provided written informed consent for
the research protocol. The degree of IDD was determined
by magnetic resonance imaging (MRI) following Pfirrmann
classification [36]. Tissues of Pfirrmann I-II were used as
controls. Human lumbar disc tissues were obtained from
patients who underwent spinal canal decompression treat-
ment. The nucleus pulposus and annulus fibrosus tissues
were separated and RNA was extracted directly from tissues
according to a previous protocol [37]. In brief, 150mg of a
sample was cut up and then digested with 2mg/ml pronase
at 37°C, flash-frozen, pulverized in liquid nitrogen, and
homogenized with a tissue lyser. Total RNA was extracted

using a TRI Reagent (Invitrogen, USA) and 400ng of RNA
was then converted to cDNA using a cDNA synthesis kit
(Takara, Japan).

RT-qPCR was performed using Power Up SYBR Green
Master Mix (Thermo Fisher Scientific, USA) on a real-time
system (Bio-Rad, USA). As described in the protocol, each
reaction mixture consisted of 5μl of 2×Power Up SYBR
Green Master Mix, 2μl of nuclease-free water, 0.5μl of each
of 10μM forward and reverse primers and 2μl of cDNA.
The applied cycle conditions were: 50°C for 2min and
95°C for 2min followed by 44 cycles of 15 s at 95°C and
1min at 60°C. The specific primers used here were designed
using Primer 6.0 (Applied Biosystems, CA), and the
sequences are provided in Table 1. Results were normalized
to housekeeping gene glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) expression using the 2-ΔΔCt algorithm.

2.10. Extraction and Culture of Primary Intervertebral Disc
Cells. NP tissues and AF tissues were digested using 2mg/
ml type II collagenase (Gibco, USA) at 37°C. After washing
with PBS, the digested tissues were transferred to DMEM/
F12 (Gibco, USA) containing 10% fetal bovine serum
(Gibco, USA) and 1% penicillin/streptomycin (Gibco,
USA) in the incubator at 5% CO2 and 37°C. The cells at
the confluent stage were passaged after digestion with
0.25% Trypsin-EDTA (Gibco, USA). Cells after the second
passage were used in the following experiments.

Interaction network

GSE70362
(32 VS 16)

Functional annotation KEGG pathway enrichment

GSEA analysis

GO term enrichment

Immune
infiltration analysis

IDD-DEGs

ConsensusClusterPlus
Cluster 2 (5)

Cluster 1 (35)

GSE124272
(8 VS 8)

Combined data
40 vs 24 LASSO

WGCNA

Interaction network

Diagnostic model

Mitochondria dysfunction related
genes (From: GeneCards)

GSVA analysis

Figure 1: Flow diagram presenting the main plan and process of the study.
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Figure 2: Continued.
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2.11. Total Protein Extraction and Western Blot. Total pro-
teins were extracted with an RIPA buffer (Thermo Fisher
Scientific, USA) and the concentrations were determined
by a BCA kit (Boster, China). Proteins were electrophoresed
in premade polyacrylamide gels containing SDS, and trans-
ferred to polyvinylidene fluoride(PVDF)membranes from
the gels. After blocking with 5% non-fat milk (Solarbio,
China) for 1 h, the PVDF membranes were incubated with
primary antibody overnight at 4°C and then incubated with

secondary antibody (coupled with horseradish peroxidase)
for 1 h at room temperature. The protein signal was visual-
ized by an ECL chemiluminescence kit (EpiZyme, China),
and the grayscale of band was quantified using Image J.

2.12. Statistical Analysis. All data were analyzed and proc-
essed on R 4.1.1. Continuous variables in normal distribu-
tion were compared between groups using independent
Student t test, and those in nonnormal distribution were

ns ns ns ns ns

2.5

5.0

7.5

10.0

In
fil

tr
at

io
n 

ab
un

da
nc

e

Group
Case
Control

CY
P2

1A
2

D
H

H

FL
V

CR
1

KI
T

N
R5

A
1

PO
M

K

SO
X9 SP

1

U
CH

L1

⁎ ⁎ ⁎ ⁎

(e)

SP1
UCHL1

KIT

SOX9
DHH

NR5A1

CYP21A2

(f)

Figure 2: Genes related to mitochondrial dysfunction. (a): box plot and PCA of gene expressions before and after batch effect removal in the
GEO data. (b): correlations among mitochondrial dysfunction genes. Colors indicate correlations. A pinker color means stronger
correlation. Node size indicates -log10 (P-value), and a larger node means higher significance. (c): volcano plots of DEGs, x-axis:
log2FoldChange, y-axis: -log10 (adjust P-value); red, gray and blue nodes indicate the differentially expressed genes are upregulated,
insignificant, and downregulated, respectively. (d): heat maps of DEGs, blue: degeneration group, red: control group. (e): histograms of
expressions of mitochondrial dysfunction genes in test group and control group; x-axis: mitochondrial dysfunction genes, y-axis: gene
expression level; red: test group, blue: control group. P<0.05: significant level. (f): PPI network of mitochondrial dysfunction genes.
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Figure 3: Continued.
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compared using Mann–Whitney U test (namely Wilcoxon
rank sum test). Variables between groups were statistically
analyzed using Chi-square test or Fisher’s exact test. The
correlation coefficients between genes were calculated via
Pearson correlation analysis. All P values are two-sided.
P<0.05 indicates significance.

3. Results

3.1. Data Processing. This study procedure was conducted
methodically based on the steps outlined in the flow diagram
(Figure 1). To build a panorama of mitochondrial dysfunc-
tion genes in all samples, we first integrated the expression
profiles from two data sets. Given the severe batch effect of
data sets from different sources, we first corrected the batch
effect of original data, and log-normalized the data. Results
showed that the expression distributions of all samples after
the above processing were distributed in consistent ways,
which helped improve the accuracy and robustness of down-
stream analyses (Figure 2(a)). The integrated data set after
the removal of batch effect contained 40 IDD samples and
24 control samples.

3.2. Panorama of Mitochondrial Dysfunction Genes. The
expression levels of mitochondrial dysfunction genes were
sent to correlation analysis. Results showed gene NR5A1
and gene DHH were very highly positively correlated, and
gene SOX9 and gene FLVCR1, and gene CYP21A2 and
gen SP1 were highly correlated (Figure 2(b)).

To analyze the differences between the control and test
groups, we obtained 152 DEGs, including 67 upregulated

genes and 85 downregulated genes (Figure 2(c)). A heat
map of these DEGs was plotted, and the two groups of sam-
ples were well differentiated using gene clustering
(Figure 2(d)). Histograms of mitochondrial dysfunction
genes between the test group and the control group were
plotted. Results showed FLVCR1, NR5A1, SOX9, and
UCHL1 were significantly different (Figure 2(e)). A PPI net-
work with 9 mitochondrial dysfunction genes from the gene
expression profile was plotted, of which 7 genes were inter-
active (Figure 2(f)).

3.3. Construction of Risk Model. To analyze the effects of
mitochondrial dysfunction genes on IDD patients, we con-
ducted logistic single-factor regression analysis, and identi-
fied 9 mitochondrial dysfunction genes that largely affected
IDD, including 4 significant genes (FLVCR1, NR5A1,
SOX9, UCHL1) (Figure 3(a)). The coefficients of the 9 genes
were calculated using LASSO (Figures 3(b)–3(c)). The gene
expression level of each gene was multiplied by the corre-
sponding coefficient, and then added together, forming a
IDD predicted score. The final predicted score of each sam-
ple was calculated, and plotted on an ROC curve. Results
showed the prediction curve call well predict IDD
(Figure 3(d)).

3.4. Biological Differences between Groups. To explore the
effects of between-group DEGs on the biological functions
of patients, we first annotated the GO functions of DEGs
(Table S1). Results showed these DEGs are mainly
enriched in bioprocesses of extracellular matrix
organization, epithelial cell migration, endodermal cell

Specificity

Se
ns

iti
vi

ty

1.0 0.5 0.0

AUC: 0.794

95% CI: 0.683 − 0.904

1.0

0.8

0.6

0.4

0.2

0.0

(d)

Figure 3: Construction of IDD model. (a): single-factor regression analysis. (b)–(c): mitochondrial dysfunction genes identified by LASSO
regression. (d): ROC curve of IDD diagnostic model.

9Oxidative Medicine and Cellular Longevity



Ameboidal−type cell migration
Bone trabecula morphogenesis

Cell−substrate adhesion
Cellular response to lipoprotein particle stimulus

Collagen fibril organization
Defense response to symbiont

Defense response to virus
Endoderm development

Endoderm formation
Endodermal cell differentiation

Epithelial cell migration
Epithelium migration

External encapsulating structure organization
Extracellular matrix organization

Extracellular structure organization
Negative regulation of pathway−restricted SMAD protein phosphorylation

Response to lipoprotein particle
Response to UV−A

Response to virus
Tissue migration

2.0 2.5 3.0 3.5

−Log10 (p.adjust)

Bi
ol

og
ic

al
 p

ro
ce

ss
 

–Log10 (p.adjust)

4.0

4.5

5.0

5.5

6.0

6.5

Count
3
6
9
12

15

(a)

Figure 4: Continued.

10 Oxidative Medicine and Cellular Longevity



Basal part of cell

Basal plasma membrane

Basement membrane

Basolateral plasma membrane

Blood microparticle

Clathrin−coated vesicle

Clathrin−coated vesicle membrane

Coated vesicle

Coated vesicle membrane

Collagen−containing extracellular matrix

Dendritic shaft

Early endosome

Endocytic vesicle

Endoplasmic reticulum lumen

Integrin complex

Late endosome

Microvillus membrane

Phagocytic vesicle

Sarcoplasm

Sarcoplasmic reticulum

1 2 3 4 5

−Log10 (p.adjust)

Ce
llu

la
r c

om
po

ne
nt

Count
4
8

12

16

2

4

6

−Log10 (p.adjust)

(b)

Figure 4: Continued.

11Oxidative Medicine and Cellular Longevity



Amyloid−beta binding

Apolipoprotein binding

ATPase−coupled intramembrane lipid transporter activity

Cargo receptor activity

Channel regulator activity

FAD binding

GDP binding

Glutathione transferase activity

Growth factor activity

GTPase activity

Heparan sulfate proteoglycan binding

Hyaluronic acid binding

Insulin−like growth factor binding

Intramembrane lipid transporter activity

Iron ion binding

Iipoprotein particle binding

Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen

Peptide binding

Protein−lipid complex binding

Proteoglycan binding

0.
2

0.
25 0.

3
0.

35 0.
4

−Log10 (p.adjust)

M
ol

ec
ul

ar
 fu

nc
tio

n

Count
2
3
4

5

6

1.6

1.8

2.0

−Log10 (p.adjust)

(c)

Figure 4: Continued.

12 Oxidative Medicine and Cellular Longevity



differentiation, defense response to symbiont (Figure 4(a)),
cellular components of collagen-containing extracellular
matrix (Figure 4(b)), and molecular functions of collagen
binding, glycosaminoglycan binding, extracellular matrix
structural constituent, heparin binding (Figure 4(c)). These
DEGs were also enriched in KEGG pathways related to
Focal adhesion, PI3K-Akt signaling pathway, Chemical
carcinogenesis - receptor activation, and ECM-receptor
interaction (Figure 4(d), Table S2).

Then all genes between groups were subjected to GSEA
(Table S3). Results showed the following biological
processes were significantly enriched between groups. In
the IDD samples, bioprocesses including response to
oxidative stress, response to virus, acute inflammatory
response, wound healing, and positive regulation of protein
kinase activity were activated, while bioprocesses including
tRNA metabolic process, RNA modification, ribosome
biogenesis, and ribonucleoprotein complex biogenesis were
inhibited (Figures 5(a)–5(b)). Moreover, MAPK signaling
pathway, toll like receptor signaling pathway, and nod like
receptor signaling pathway were activated, but purine

metabolism, DNA replication, and ECM receptor
interaction pathways were inhibited (Figures 5(c)–5(d)).

The results of GSVA were basically consistent with the
GSEA results. Especially, cellular response to hydroperoxide,
copper ion import, positive regulation of platelet activation,
and ipaf inflammasome complex were activated in the dis-
ease samples, while cysteine type exopeptidase activity, and
oxidative DNA demethylation were inhibited (Figure 5(e)).
In the meantime, olfactory transduction, nod like receptor
signaling pathway, and gap junction were activated, but pyr-
uvade metabolism, riboflavin metabolism, and DNA replica-
tion were inhibited (Figure 5(f)).

3.5. WGCNA and PPI Network. To probe into the associa-
tions between DEGs, we first subjected the DEGs to
WGCNA (Figure 6(a)). One coexpression gene module was
identified (Figure 6(b)), from which the gene set with the
highest correlation was picked out and used in subsequent
analysis (Figures 6(d)–6(d)), which returned 136 key genes.

From the PPI network involving the 136 key genes, we
analyzed the effects of the genes on all steps of the life
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Figure 4: GO and KEGG enrichment analysis. (a): BP enrichment results, x-axis: -log10 (p value), y-axis: GO terms, node colors indicate
-log10 (p value), node size indicates the number of genes contained the current GO Term. (b): CC enrichment results. (c): MF enrichment
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process, including biosignal transfer, gene expression regula-
tion, energy and substance metabolism, and cell cycle regu-
lation. Through visualization on Cytoscape (Figure 7(a)),
the network contains 120 interaction pairs and 87 genes.
Specifically, CCND1 is closely connected with 11 DEGs,
and CXCL8 is closely associated with 13 DEGs. The func-
tion interactive subnetworks were extracted on CytoHubba
(Figure 7(b)), which included 10 genes. The functional
similarities among the genes on the PPI network were
analyzed (Figure 7(c)). Results showed the genes in PPI
were highly associated in terms of functions. An ROC
curve with the 10 hub genes was plotted, which showed
these genes can well differentiate the two groups of sam-
ples (Figure 7(d)).

3.6. Analysis of Immune Infiltration. CIBESORT
(Figure 8(a)) showed the concentrations of mast cells acti-
vated were significantly the highest in IDD patients. Com-
pared with the control group, the level of T cells CD4
memory resting was the lowest in the patients
(Figure 8(b)). Furthermore, the correlations of mitochon-
drial dysfunction genes or hub genes with immune cell
contents were calculated. Results showed macrophages
M0, and dendritic cells activated were both closely associ-
ated with the expressions of several mitochondrial dys-
function genes (Figure 8(c)). Macrophages M0, NK cells
resting, and mast cells activated were positively correlated
with multiple hug genes, and B cells memory, and T cells
CD8 were negatively correlated with several hub genes
(Figure 8(d)). Moreover, the correlations of immune cell

contents between the control group and the tested group
were computed. Results showed the Mast cells activated
contents in the patients were significantly correlated with
several types of immune cells (Figure 8(e)). In the control
group, the content of T cells CD4 naive was significantly
correlated with several other types of immune cells
(Figure 8(f)).

3.7. Two Mitochondrial Dysfunction Modes Identified Using
Mitochondrial Dysfunction Genes. With ConsensusCluster-
Plus from the R software and based on the 9 mitochondrial
dysfunction genes, the mitochondrial dysfunction modes
were identified using consistency clustering, and two modes
were identified (cluster1, cluster2)(Figure 9(a)). Cluster1
contains 35 samples, and cluster2 involves 5 samples. PCA
showed the two clusters were significantly different
(Figure 9(b)).

The differences of hub genes and mitochondrial dys-
function genes between the two clusters were compared.
Results showed CCND1 and CYP1B1 were significantly
down-expressed in cluster1, and MMP1 was significantly
up-expressed in cluster2 (Figures 10(a) and 10(c)). In the
meantime, UCHL1 expression of cluster1 was significantly
lower than that of cluster2, and FLVCR1 expression of clus-
ter1 was higher than that of cluster2 (Figures 10(b) and
10(d)).

3.8. Validation of the Mitochondria Dysfunction Genes. To
validate the identified mitochondria dysfunction genes, we
collected 36 human intervertebral disc tissues RNA
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Figure 5: GSEA and GSVA. (a)–(b): GSEA-GO, x-axis: gene ratio, y-axis: GO terms, colors indicate -log10 (p value), node size indicate the
number of genes enriched in GO terms. GO pathways activated (a) and inhibited (b) in the tested group. (c)–(d): GSEA-KEGG, x-axis: gene
ratio, y-axis: KEGG pathway, node size indicates the number of genes enriched in the pathway, node colors indicate -log10 (p value). KEGG
pathways activated (c) and inhibited (d) in the tested group. (e)–(f): heat map of functional scores in GSVA, x-axis: samples, y-axis:
biological functions, node colors indicate the corresponding function is activated (red) or inhibited (blue). Red: control group, blue: test
group.

18 Oxidative Medicine and Cellular Longevity



0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

Soft threshold (Power)

Sc
al

e f
re

e t
op

ol
og

y 
m

od
el

 F
it,

 si
gn

ed
 R

^2

1
2

3

4

56
78

9

10

1214
16

1820

222426
2830

0 5 10 15 20 25 30

0

10

20

30

40

Soft threshold (Power)

M
ea

n 
co

nn
ec

tiv
ity

1

2

3

4
567891012141618202224262830

(a)

0.6

0.7

0.8

0.9

1.0
Cluster dendrogram

fastcluste r::hclust (*, " average")
as .dist(diss Tom)

H
ei

gh
t

Module colors

(b)

Figure 6: Continued.

19Oxidative Medicine and Cellular Longevity



including 12 from patients with degenerated discs of Pfirr-
mann level I or II and 24 from patients with degenerated
discs of Pfirrmann level III to V. QPCR showed either in
nucleus pulposus tissues or in anulus fibrous tissues, the
mRNA levels of NR5A1 were upregulated in both degenera-
tive NP tissues and AF tissues than in control groups. While
the mRNA levels of FLVCR1, SOX9 and UCHL1 were
downregulated. These results are shown in Figures 11(a)–
11(b). Additionally, the protein level validation results were
consistent with the gene level results. Western blot showed
the relative expression levels of FLVCR1, SOX9 and UCHL1
proteins in both NP cells and AF cells of the degeneration
group were significantly lower than that in the control
group. But that of NR5A1 was higher than in the control
group in fibrous anulus cells while there was no significant
difference between these two groups in pulposus cells
(Figures 11(c)–11(f)).

4. Discussion

Intervertebral disc (IVD) is a complex fibrocartilaginous
tissue that connects adjacent vertebral bodies and main-
tains mechanical loading to enable spinal motion. In a
healthy IVD, the balance between anabolic and catabolic
processes maintains ECM homeostasis. However, aging
and persistent mechanical stress can disrupt IVD metabo-
lism, forcing an imbalance between the expressions of cat-
abolic factors (e.g. pro-inflammatory cytokines and matrix
metalloproteinases) and anabolic mediators (e.g. growth
factors), leading to the loss of ECM homeostasis, destruc-
tion of macromolecules, and the subsequent development
of IDD [38]. IDD plays an important role in spine-
related diseases, and worsens with age. More than 80%
of IDDs exhibit degeneration-related changes in people
over 50 years [39].
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Figure 6: WGCNA. (a): WGCNA of threshold screening. (b): coexpression gene clustering. (c): correlations between gene clusters and
diseased patients; (d): correlation analysis between most significant gene clusters and IDD.
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The widely-used treatment strategies for IDD include
physiotherapy, drug therapy and surgery. However, these
approaches have limited effects to reverse the IDD progres-
sion with current treatments. Therefore, it is necessary to
fully understand the etiology of IDD. The important biopro-
cesses are related to immune response, innate immune
response, cell division, mitochondrial homeostasis and cell
proliferation. More studies have proved that mitochondrial
dysfunction is pivotal in accelerating IDD. Mitochondria, a
double-layer organelle in eukaryotic cells, is mainly involved
in tricarboxylic acid cycle (TCA) and provides the body with
adenosine-triphosphate enzyme (ATP). ATP is the most
important energy source of cells, but mitochondria, while
providing ATP, also produce ROS that cause oxidized stress
response [40]. Along with cell aging, mitochondrial DNA
injuries will induce mitochondrial dysfunction, destroying
the redox balance, so ROS aggravate cell injuries, forming
a vicious circle ‘cell aging – mitochondrial dysfunction –
ROS maladjustment accelerated cell aging’. In contrast,
mitochondrial respiratory uncoupling reduces the produc-
tion of H2O2, thereby delaying the replicative senescence of

cells. Reportedly, the expression levels of mitochondrial
function genes (including substrate dehydrogenase, cyto-
chrome and substrate vectors) are significantly changed in
aged intervertebral disc tissues.

The function of mitochondria depends on their morpho-
logical structure, and abnormal changes in the morphologi-
cal structure can lead to mitochondrial dysfunction. The
dynamic balance between mitochondrial fusion and division
is one major link in maintaining cell homeostasis, and the
destruction of this balance can cause a series of diseases
[41, 42]. Mitochondrial homeostasis requires mitofusion
and optic atrophy-associated protein 1 (OPA1) regulation
[42, 43]. When mitochondria divide, the outer mitochon-
drial membrane molecule Fis1 recruits dynamin-related pro-
tein 1 (DRP1), a mitochondrial division regulator,
translocating it to the outer mitochondrial membrane and
enriching it at the site of division [43, 44]. OPA1 and mito-
chondrial fusion occur when disc tissue is subjected to exces-
sive mechanical loading. Down-regulation of proteins leads
to mitochondrial fusion disorders, resulting in NP cell dam-
age [44]. When intervertebral disc cells are under hypoxia,
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Figure 7: PPI network. (a): PPI network of key genes; (b): subnetwork of PPI network. (c): analysis of similarities of gene functions in
subnetwork of PPI network; x-axis: magnitude of correlations; y-axis: gene name. (d): ROC curve of hub genes.
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DRP1 migrates from the cytoplasm to mitochondria, aggra-
vating mitochondrial dysfunction [8]. Therefore, an inter-
vention targeting DRP1 is one of the feasible strategies to
prevent IDD. Inhibition of DRP1 by siRNA or mitochon-
drial division inhibitor 1 (Mdivi-1) can prevent programmed
necrosis in NP cells or AF cells exposed to excessive pressure
[45, 46].

ROS are involved in signal transduction and metabolism
of intervertebral disc cells to regulate death and senescence.
Under physiological conditions, the production and clear-
ance of intracellular ROS are under dynamic balance [47].
When the balance is broken, ROS levels in cells will exceed
physiological thresholds, subjecting the cells to a state of oxi-
dative stress dysfunction and excessive mitochondrial ROS
level in intervertebral discs [48–53]. Mitochondrial DNA
(mtDNA) and oxidative damage of respiratory enzymes lead
to mitochondrial dysfunction, forming a vicious cycle [54].

In intervertebral disc tissues, ROS overproduction can lead
to loss of proteoglycan collagen and accelerate IDD progres-
sion [55]. H2O2 significantly increases lysosomal membrane
permeability in rat NP cells, leading to ROS overproduction
and apoptosis [56]. Excessive increase in ROS in the inter-
vertebral disk can cause oxidative damage to disk cells, lead-
ing to activation of NLRP3 inflammatory vesicles and
increased interleukin (IL)1 release, exacerbating the inflam-
matory response. In the IL-1β inflammatory environment,
ROS expression is elevated in NP cells, and ROS activates
p53/P21 and P16/κb pathways to accelerate intervertebral
disc cell senescence [57].

The emergence of bioinformatics methods has acceler-
ated the research progress on the mechanisms of human dis-
eases. In our study, comparative analyses of mitochondria
dysfunction DEGs between normal individuals and IDD
patients were performed. We integrated two databases
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Figure 8: Immune infiltration analysis. (a): Accumulative immune cell concentrations in the test group and control group. Colors indicate
immune cells. x-axis: id of patients. (b): histograms of immune cell concentrations; x-axis: immune cells; y-axis: cell concentration; red: IDD
samples; blue: control samples. (c): correlations between mitochondrial dysfunction genes and immune cells; x-axis: immune cells, y-axis:
mitochondrial dysfunction genes. Node colors indicate the magnitude of correlation, node sizes indicate the significance level. (d):
correlations between hub genes and immune cells; x-axis: immune cells, y-axis: hub genes. Node colors indicate the magnitude of
correlation, node sizes indicate the significance level. (e)–(f): correlations of immune cell concentrations in the test group (e) and control
group (f); red: negative correlation, blue: positive correlation.
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GSE7036 and GSE124272, which contained tissue and blood
sequencing data. The analysis of immune infiltration showed
that compared with the control group, the concentrations of
mast cells activated were significantly the highest in IDD
patients. Previous studies have shown that mast cells might
play a key role in the repair of the injured anulus fibrosus
and subsequent disc degeneration [58]. GSEA analysis indi-
cated that the biological process of response to oxidative
stress is activated in degeneration samples. In addition,
GSVA analysis obtained a similar result: cellular response
to hydroperoxide was overactivated in patient samples.
These results further confirmed the role of oxidative stress
response caused by mitochondrial dysfunction in the pro-
gression of IDD. Further analysis showed that 152 DEGs
were obtained between degeneration group and control
group, including 67 upregulated genes and 85 downregu-
lated genes. Four mitochondrial dysfunction genes
(FLVCR1, SOX9, UCHL1, NR5A1) were identified and val-
idated at the gene and protein levels. After an extensive liter-
ature review of these 4 genes, we found no report about the
associations of three genes with IDD (SOX9 was proved to
be associated with IDD). Hence, our findings may be a
new clue for the diagnosis and treatment of IDD.

Reportedly, mitochondrial injuries during cartilage
degeneration will induce abnormal expressions in SOX9
and its downstream genes. We found in either IDD tissues
or peripheral blood, the SOX9 gene expressions were signif-
icantly different between the degeneration group and the
control group, and the SOX9 expression gradually decreased
with the aggravation of degeneration. SOX9 was first noted
in skeletogenic mesenchymal progenitors for its role in fate
determination and differentiation within the chondrocyte
lineage [59]. SOX9 efficiently binds to single or double

HMG-box site(s) in DNA and thereby transactivates its tar-
get genes such as Col2a1 and aggrecan (Acan), which have
stage-specific features for intervertebral disc cartilage devel-
opment [60, 61].

Inactivation of Sox9 during early stages of chondrogene-
sis in Col2Cre-expressing chondrocytes showed that cells
cannot express SOX9 targets, including Col2a1 and Acan
[62]. Observations in the notochord during axial skeletogen-
esis complement the findings in chondrocytic cells. Sox9
deletion prevents matrix-rich notochordal sheath formation
and results in notochordal cell death [63]. It is suggested that
SOX9 regulates cell survival and differentiation in the inner
AF during disc development [64]. These studies affirmed
that SOX9 is critical in cartilage formation and vertebral col-
umn development [65]. Moreover, Sox9 deletion in Acan-
expressing cells of adult mice results in proteoglycan loss,
disc compression, and downregulation of various ECM-
related genes [66]. A recent study from Maria demonstrated
that SOX9 mutant mice experience early-onset, progressive
disc degeneration characterized by increased cell death,
alterations in ECM organization, and distinct transcriptomic
changes in the NP and AF compartments.

Feline leukemia virus subgroup C receptor-1 (FLVCR1),
a member of the SLC49 family of 4 paralogous genes, is a cell
surface heme exporter essential for erythropoiesis and sys-
temic iron homeostasis. It encodes two heme exporters:
FLVCR1a [67], which localizes to the plasma membrane,
and FLVCR1b, which localizes to mitochondria [68]. Upon
the occurrence of mitochondrial dysfunction, FLVCR1b
abnormality will lead to the accumulation of free heme, high
levels of Hb and heme can be used to mark neovasculogen-
esis in herniated nucleus pulposus, which further promotes
nucleus pulposus degeneration through heme iron-
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Figure 9: Consistency clustering of IDD patients according to mitochondrial dysfunction. (a): consistency clustering, blue: cluster1, red:
cluster2. (b): PCA of cluster1 and cluster2, red: cluster1, blue: cluster2.
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Figure 10: Continued.
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dependent cell death. This finding is consistent with our val-
idation results at the gene and protein levels. When IDD
occurs, the FLVCR1 expression is low in both NP cells and
AF cells.

NR5A1, also known as steroidogenic factor-1 (SF-1) or
adrenal 4-binding protein (Ad4BP), was initially identified
as a steroidogenic cell-specific transcription factor that regu-
lates the transcription of steroidogenic genes. Recent
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Figure 10: Differences of hub genes between two groups of IDD patients. (a)/(c): heatmaps and histograms of hub-related gene expressions
in cluster1 and cluster2; (c): x-axis: hub genes; y-axis: gene expression level; red: cluster1, blue: cluster2. (b)/(d): heatmaps and histograms of
mitochondrial dysfunction gene expressions in cluster1 and cluster2; (d): x-axis: mitochondria dysfunction genes; y-axis: gene expression
level; red: cluster1, blue: cluster2. P<0.05: significance.
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research proves NR5A1 can regulate nearly all glycolytic
genes to adjust the nutrition metabolism of tissues. When
normal IDD tissues are under a low oxygen condition, the
physiologically hypoxic intervertebral disc rely on the
hypoxia-inducible factor (HIF) family of transcription fac-
tors to mediate cellular responses to changes in oxygen ten-
sion. Mechanistically, HIF1 is the master regulator of
glycolytic metabolism and cytosolic lactate levels. In addi-
tion, HIF1 regulates mitochondrial metabolism by promot-
ing flux through the tricarboxylic acid cycle, inhibiting
downsteam oxidative phosphorylation and controlling
mitochondrial health through modulation of the mitopha-
gic pathway [69]. The destruction to the low-oxygen con-
dition of IDD will damage tricarboxylic acid cycle, so the
energy metabolism is destroyed in cells. NR5A1, one of
the important genes of glycolysis regulation and control,
is significantly upregulated to correct energy metabolic dis-
orders and maintain the normal energy metabolism in the
intervertebral disc. Our bioinformatic analysis also vali-
dated this view that NR5A1 expression is significantly
higher in IDD tissues.

Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deu-
biquitinating enzyme that was originally found in neurons.
UCHL1 was first studied in Alzheimer’s disease (AD).
UCHL1 protein expression decreased in the cerebral cortex
of AD patients [70]. Our study confirmed that UCHL1
expression in IDD tissues decreases, which may be related
to the regulating role of UCHL1 in mitochondria. Previous
studies show that when UCHL1 is specifically knocked out,
the key proteins involved in mitochondrial oxidative phos-
phorylation are significantly reduced, suggesting that
UCHL1 may be involved in regulation of mitochondrial
content and function [71]. When dUCH (a homolog of
human UCHL1) was specifically knocked down in motor
neurons, the motor neuron cells exhibited aberrant mor-
phology and function of mitochondria, such as mtDNA
depletion, an increase in mitochondrial size, and overexpres-
sion of antioxidant enzymes [72].

There were several limitations of our study. Firstly, only
few RNA-sequencing datasets of IDD are available on the
GEO database. Clinical data such as disease phenotype and
radiological data are unavailable from published studies
and public databases. Secondly, all of these analyses were
obtained by data mining based on a series of bioinformatic
algorithms, and we did not provide the original sequencing
data with the clinical samples, so we cannot evaluate the
quality of the sequencing samples, such as the actual degrees
of IDD. Thirdly, the exact molecular mechanisms of candi-
date mitochondrial dysfunction related genes in IDD need
to be further investigated using in-depth in vitro and
in vivo scientific experiments. Finally, the nature of retro-
spective research limits the clinical value of this work, indi-
cating multicentre or prospective studies are imperative to
elucidate the relationship between mitochondrial dysfunc-
tion and IDD.

5. Conclusions

In this study, we used bioinformatics methods to compare
tissue and peripheral blood RNA-seq data between IDD
and control groups. We have successfully constructed a risk
model which can call well predict IDD and have elaborated
on the different groups of immune infiltrates and identified
two modes of mitochondrial dysfunction. In addition, we
identified four genes, verified the reliability by molecular
biology experiment, associated with mitochondrial dysfunc-
tion. These findings may provide a new perspective for the
diagnosis and treatment of IDD.

Data Availability

Publicly available datasets were analyzed in this study. This
data can be found here: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE70362;https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE124272.
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Figure 11: Validation of differential genes of mitochondrial dysfunction between normal intervertebral disc tissues and IDD tissues. (a)/(c):
qPCR and WB results of normal intervertebral disc tissues and IDD nucleus pulposus tissues. (b)/(d): qPCR and WB results of normal
intervertebral disc tissues and IDD anulus fibrous tissues. (e)–(f): quantitative analysis of protein expression (relative to GAPDH)∗
p<0.05; ∗∗p<0.01.
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