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Novel Treatment of Chronic Graft-
Versus-Host Disease in Mice 
Using the ER Stress Reducer 
4-Phenylbutyric Acid
Shin Mukai1,2, Yoko Ogawa1, Fumihiko Urano3, Chie Kudo-Saito2, Yutaka Kawakami2 & 
Kazuo Tsubota1

Chronic graft-versus-host disease (cGVHD) is a notorious complication of allogeneic hematopoietic 
stem cell transplantation and causes disabling systemic inflammation and fibrosis. In this novel study, 
we focused on a relationship between endoplasmic reticulum (ER) stress and cGVHD, and aimed to 
create effective treatment of cGVHD. A series of experiments were conducted using a mouse model 
of cGVHD. Our data suggested (1) that ER stress was elevated in organs affected by cGVHD and (2) 
that 4-phenylbutyric acid (PBA) could reduce cGVHD-induced ER stress and thereby alleviate systemic 
inflammation and fibrosis. Because fibroblasts are thought to be implicated in cGVHD-elicited fibrosis 
and because macrophages are reported to play a role in the development of cGVHD, we investigated 
cGVHD-triggered ER stress in fibroblasts and macrophages. Our investigation demonstrated (1) that 
indicators for ER stress and activation markers for fibroblasts were elevated in cGVHD-affected lacrimal 
gland fibroblasts and (2) that they could be reduced by PBA. Our work also indicated that splenic 
macrophages from PBA-dosed mice exhibited the lower levels of ER stress and M2 macrophage markers 
than those from cGVHD-affected mice. Collectively, this study suggests that the reduction of ER stress 
utilizing PBA can be a clinically translatable method to treat systemic cGVHD.

Chronic graft-versus-host disease (cGVHD) is a disabling complication after allogeneic hematopoietic stem cell 
transplantation (HSCT) and has a highly negative impact on patients’ quality of life. Unfortunately, there has 
been painfully slow progress in developing effective treatment of cGVHD thus far. Acute GVHD (aGVHD) has 
been studied intensively, and there is a growing understanding of aGVHD. In contrast, sparse information about 
mechanisms of cGVHD has been provided. Although immunosuppressant such as cyclosporine has been utilized 
to cure cGVHD in medical practice, it has been only partially effective for cGVHD. Most recently, several strat-
egies to treat cGVHD have been reported1–4. However, there is still vast scope for improvement in the treatment 
of cGVHD. aGVHD is initiated by preparative regimens which induce host tissue damage, proinflammatory 
cytokine release and chemokine production5–8. Donor T-cells subsequently recognize host alloantigens as foreign 
bodies and thereby attack recipient cells9,10. The two types of GVHD should be classified by clinical manifesta-
tions, not by time after HSCT11. However, aGVHD typically appears within 100 days after HSCT, and cGVHD 
usually manifests 6 months or later after HSCT and resembles autoimmune diseases12,13. While cGVHD is largely 
unexplored, it has been reported that cellular senescence is detrimentally involved in ocular cGVHD and that 
cGVHD can be regarded as an age-associated disease14. In clinical settings, gray eyebrows, skin wrinkles and 
conjunctival cancer are observed, which suggests that recipient cells as well as donor immune cells are senescent 
in cGVHD14,15.

Literature precedent indicates that endoplasmic reticulum (ER) stress plays a contributory role in chronic 
inflammation and age-related diseases16,17. The ER is a cellular organelle essential for cells to function properly. 
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When proteins are synthesized in the ER, they need to be folded adequately and ER chaperones assist the pro-
tein folding18. However, hypoxia, calcium ion depletion, oxidative injury, viral infections and inflammatory 
cytokines prevent the ER from performing its normal protein folding19,20. When unfolded and misfolded pro-
teins are accumulated in the ER, it causes ER stress and the following three transmembrane proteins are con-
sequently activated to initiate the unfolded protein response (UPR): inositol requiring (IRE) 1α​, PKR-like ER 
kinase (PERK) and activating transcription factor (ATF) 6α​18. However, if the UPR is prolonged or unsuccessful, 
inflammatory and apoptotic pathways are activated18. Hence, the unsuccessful UPR leads to the expression of (1) 
the proinflammatory molecules thioredoxin interaction protein (TXNIP) and transcription factor nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κ​B), and (2) the apoptotic protein C/EBP homologous pro-
tein (CHOP)21–26.

In this study, we aimed to devise effective treatment of cGVHD. Based on the previous findings, we envisaged 
(1) that ER stress would be increased in cGVHD-impaired organs and (2) that mitigation of ER stress could be 
effective treatment of cGVHD. To achieve this goal, we used 4-phenylbutyric acid (PBA) as an ER stress reducer27. 
(Supplementary Figure 1A) PBA is commercially available and can be an inexpensive starting material in organic 
synthesis28. In clinical settings, PBA is approved by FDA and has been utilized to cure urea cycle disorders27. 
Furthermore, several articles demonstrate that PBA can be effective for chronic inflammation and age-related 
diseases such as type 2 diabetes and obesity-caused chronic inflammation through mitigation of ER stress29,30. 
Hence, it was envisioned that PBA could be a safe and efficacious drug for cGVHD, in which systemic inflamma-
tion and fibrosis are highly problematic. Herein, we report the world-first strategy to treat cGVHD using the ER 
stress reducer PBA.

Results
Elevation of ER stress markers in cGVHD-affected organs.  The initial venture toward our overar-
ching aim was to investigate whether ER stress was elevated in cGVHD-affected organs by measuring ER stress 
markers. Real-time quantitative PCR (qPCR) and immunoblot analysis suggested (1) that the ER stress indicators 
GRP78, CHOP, p-PERK, p-eIF2α​, and p-IRE1α​ were increased in murine organs affected by cGVHD compared 
with control subjects and (2) that accordingly the following two inflammatory molecules were activated and/or 
augmented in the cGVHD-impaired organs: NF-κ​B and TXNIP (Fig. 1A–C). As evidenced by electron micro-
graphs, in cGVHD-impaired lacrimal gland epithelia, accumulated misfolded/unfolded proteins caused the ER 
to expand (Fig. 1D). Conversely, the ER in the controls seemed intact (Fig. 1D). These observations are indicative 
of the elevation of ER stress in cGVHD-affected organs.

Deactivation of the ER stress-induced inflammatory pathways utilizing PBA.  Once we found 
that ER stress was increased in the organs impaired by cGVHD, our next attempt was to treat cGVHD through 
reduction of ER stress by the use of PBA. As depicted in the Methods section, we administered PBA or the 
solvent-vehicle to mice which underwent allogeneic BMT. Immunoblot analysis indicated that organs collected 
from the PBA-treated mice exhibited the lower protein levels of GRP78, CHOP, p-PERK, p-eIF2α​, and p-IRE1α​
compared with those from the vehicle-treated mice (Fig. 2A,B; Supplementary Figure 2A,B). Consequently, the 
associated proinflammatory molecules NF-κ​B and TXNIP were subdued in the organs treated with PBA com-
pared to their vehicle-treated counterparts (Fig. 2A,B; Supplementary Figure 2A,B).

Histological observations of cGVHD target organs.  HE and Mallory pictures of cGVHD-susceptible 
organs indicate that the reduction of ER stress using PBA can be efficacious treatment of cGVHD (Fig. 3). As 
judged by the HE pictures, inflammatory cell infiltration was repressed in the PBA-medicated organs compared 
with their vehicle-medicated counterparts (Fig. 3A; Supplementary Figure 3A). Particularly, (1) the intestinal villi 
of the PBA-treated small and large intestines seemed intact in contrast to those treated with the solvent-vehicle, 
(2) the vehicle-treated skin was thickened, lost the fatty tissues and had the elevated density of collagen bundles 
by contrast with the PBA-treated skin, (3) meibomian glands in the vehicle-medicated eyes were decreased and 
shrunk compared with their PBA-medicated counterparts and (4) the thinning and damage in vehicle-injected 
conjunctival epithelia were observed in contrast to their PBA-injected counterparts, which suggested that a 
symblepharon could be prevented by systemic injection of PBA (Fig. 3A, Supplementary Figure 3A). As indi-
cated by the immunostaining and subsequent counting of CD45+ cells, the number of inflammatory cells in 
the PBA-treated organs was considerably lower than that in their vehicle-treated counterparts (Fig. 3B,E; 
Supplementary Figure 3B,D). These observations are also indicative of the suppression of immune cell migration 
and proliferation in the PBA-treated organs. Furthermore, systemic fibrosis is one of the most serious prob-
lems in cGVHD31. Mallory’s staining revealed that cGVHD-induced fibrosis was substantially subdued in the 
PBA-medicated organs compared with the vehicle-medicated ones (Fig. 3C; Supplementary Figure 3C). Electron 
micrographs of the lacrimal glands indicate that in the case where the lacrimal glands were treated with the 
solvent-vehicle, (1) the ER of the epithelial and endothelial cells were expanded due to the accumulation of 
unfolded/misfolded proteins, (2) there was a large amount of cell debris in the stroma and (3) mitochondria in 
the epithelial and endothelial cells were damaged (Fig. 3D). Electron micrographic analysis of the small intestine 
also demonstrated that when the small intestine was treated with the solvent-vehicle, its microvilli were demol-
ished and the neighboring tissues were damaged (Fig. 3D). These histological findings were not observed in 
the PBA-treated lacrimal glands or small intestine. In addition, PAS staining revealed (1) that goblet cells in the 
PBA-injected small intestine and conjunctival epithelia outnumbered those in their vehicle-injected counterparts 
and (2) that the structures of intestinal and conjunctival mucosal membranes were retained by systemic injection 
of PBA (Supplementary Figure 4A,B). As judged by all the histological observations, PBA can alleviate systemic 
inflammation and fibrosis elicited by cGVHD-related ER stress.
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Figure 1.  ER stress markers in cGVHD target organs. (A) qPCR analysis of GRP78 in cGVHD-affected 
organs (red) and control subjects (blue). Data from one of two similar experiments are shown. The data are 
presented as means, ±​SD, Control: n =​ 5, cGVHD: n =​ 4–5 *P <​ 0.05. (B) Immunoblot analysis of ER stress 
indicators and the associated inflammatory molecules was carried out. (Lanes 1, 3, 5, 7: Syngeneic control 
subjects, Lanes 2, 4, 6, 8: cGVHD-impaired organs) Cropped blots are displayed. (C) The corresponding 
quantitative analysis of the protein bands was conducted. cGVHD-affected organs (red) and control subjects 
(blue). Data from one of two similar experiments are shown. The data are presented as means, ±​SD, Control: 
n =​ 4, cGVHD: n =​ 4 *P <​ 0.05. (D) Electron micrographs of epithelial cells in the cGVHD-affected lacrimal 
gland and those in its syngeneic control counterpart. The pictures were taken at 2000x magnification, and the 
scale bar is 5 μ​m. In the image of cGVHD-affected lacrimal gland epithelia, asterisks are placed where the ER 
was expanded due to the accumulation of proteins.
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Figure 2.  Suppression of cGVHD-caused ER stress by PBA. (A) Immunoblot assays were performed to 
examine the protein levels of ER stress markers and the associated inflammatory molecules in the cGVHD 
target organs. (Lanes 1, 3, 5, 7: PBA-medicated organs. Lanes 2, 4, 6, 8: Vehicle-medicated organs) Cropped blots 
are displayed. (B) The target proteins in each organ were subsequently quantified by densitometry. PBA-treated 
organs (blue) and vehicle-treated organs (red). Data from one of two similar experiments are shown. The data 
are presented as means, ±​SD, PBA: n =​ 4, Vehicle: n =​ 4, *P <​ 0.05.
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Reduction of inflammatory and pro-fibrotic mediators by the use of PBA.  To examine more closely 
whether PBA could mitigate cGVHD-caused systemic inflammation, ELISA was conducted to measure the levels of 
the inflammatory molecules MCP-1, TNF-α​ and IFN-γ​ in sera collected from the PBA- and vehicle-injected mice. 
The sera from the PBA-medicated mice exhibited the lower protein levels of MCP-1, TNF-α​ and IFN-γ​ in compar-
ison to those from their vehicle-medicated counterparts. (Figure 4A) Moreover, we performed more meticulous 
investigation into the alleviation of cGVHD-triggered systemic fibrosis, and immunoblot analysis revealed that the 
pro-fibrotic mediator connective tissue growth factor (CTGF) was overexpressed in the vehicle-treated organs, yet 
it was not observed in those treated with PBA (Fig. 4B,C; Supplementary Figure 5A,B). These data support that PBA 
can repress cGVHD-induced ER stress and consequently mitigate systemic inflammation and fibrosis.

Correlation between ER stress and dysfunctional fibroblasts.  Systemic fibrosis arising from 
cGVHD is a serious problem and causes multiple organ failure31. Although the mechanisms of cGVHD-triggered 

Figure 3.  Mitigation of cGVHD-elicited systemic inflammation and fibrosis using the ER stress mitigator 
PBA. (A) HE pictures of the PBA-treated organs and those treated with the solvent-vehicle. The images were 
taken at 200x magnification, and the scale bar is 200 μ​m. Severely inflamed portions are shown with blue 
asterisks. In the picture of the vehicle-medicated skin, an ellipse is placed where the fatty tissues were lost. The 
thickness of the PBA- and vehicle-treated skin was also displayed with arrows. (B) Immunostaining for the 
generic leukocyte marker CD45 in the PBA-medicated tissues and the vehicle-medicated ones. Cell cytosol 
and nuclei are stained red and blue, respectively. The images were taken at 200x magnification, and the scale 
bar is 20 μ​m. (C) Mallory’s staining for the PBA-injected organs and their vehicle-injected counterparts. The 
photographs were taken at 200x magnification, and the scale bar is 200 μ​m. Aberrantly fibrotic areas are shown 
with white asterisks. (D) Electron micrographs of the PBA-treated lacrimal glands and small intestine, and their 
vehicle-treated counterparts. The pictures of stroma of the lacrimal glands (left) and epithelial cells of the small 
intestine (right) were taken at 2000x magnification, and the scale bar is 5 μ​m. The photographs of blood vessels 
in the lacrimal glands were taken at 15000x magnification, and the scale bar is 500 nm (middle). Cap: Capillary, 
M: Mitochondrion. In the pictures of the vehicle-medicated lacrimal glands, asterisks are placed where the ER 
is expanded due to the accumulation of proteins, and cell debris is shown with a rectangle. In the image of the 
vehicle-treated small intestine, an ellipse is placed where microvilli were demolished, and damaged tissues are 
indicated with an arrow. (E) The density of CD45 positive cells in the PBA-treated organs (blue) and the vehicle-
treated ones (red). Data from one of two similar experiments are shown. The data are presented as means, ±​SD, 
PBA: n =​ 3, Vehicle n =​ 3, *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001.
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fibrosis still need to be elucidated, fibroblasts are conceivably implicated in the development of fibrosis32. Several 
biological signals stimulate fibroblasts so that they can play an integral role in several biological processes such 
as wound healing33,34. However, if fibroblasts are activated in an uncontrolled manner, they produce abnormal 
collagen bundles and thereby induce severe fibrosis although there is little information about what causes their 
abnormality33,34. Hence, we strived to unravel a relationship between cGVHD-elicited ER stress and dysfunc-
tional fibroblasts. To accomplish this goal, we cultured fibroblasts from the PBA- and vehicle-treated murine 
lacrimal glands as described in the Methods section35. As confirmed by immunoblot assays, the cultured lac-
rimal gland fibroblasts (expressing α​-SMA) were not contaminated with epithelial cells (cytokeratin positive 
cells) (Supplementary Figure 13), and the following experiments were carried out by the use of sufficiently pure 
fibroblasts. Immunoblot analysis of the cultured fibroblasts suggested that GRP78, CHOP, phosphorylated PERK, 
phosphorylated eIF2α​ and phosphorylated IRE1α​ were greatly suppressed by treatment of the mice with PBA in 
comparison to the solvent-vehicle (Fig. 5A). Accordingly, (1) the protein levels of HSP47 and CTGF, markers for 
fibroblast activation and fibrosis, respectively, (2) the production of MCP-1 and (3) the mRNA level of IL-6 were 
reduced in the PBA-treated fibroblasts compared with their vehicle-treated counterparts (Fig. 5A–D).

Figure 4.  Reduction of indicators for inflammation and fibrosis utilizing the ER stress alleviator PBA.  
(A) ELISA was carried out to measure the inflammatory indicators MCP-1, TNF-α​ and IFN-γ​ in sera collected 
from PBA-treated mice (blue) and their vehicle-treated counterparts (red) 28 days after BMT. Data from one of 
two similar experiments are shown. The data are presented as means ±​ SD, PBA: n =​ 4, Vehicle n =​ 4, *P <​ 0.05 
(B) Immunoblot analysis of the fibrotic marker CTGF was conducted. (Lanes 1, 3, 5, 7: PBA-treated organs, 
Lanes 2, 4, 6, 8: vehicle-treated organs) Cropped blots are displayed. (C) CTGF in each organ was subsequently 
quantified by densitometry. PBA-treated organs (blue) and vehicle-treated organs (red). Data from one of two 
similar experiments are shown. The data are presented as means, ± ​SD, PBA: n =​ 4, Vehicle n =​ 4, *P <​ 0.05.
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Link between ER stress and the polarization of macrophages.  Macrophages serve a crucial role 
in immune responses and inflammation, and an earlier article indicates that senescent macrophages are det-
rimentally linked with the pathogenic process of cGVHD14. Hence, we scrutinized a relationship between 
cGVHD-induced ER stress and malfunctioning macrophages. In the first instance, immunostaining was 
conducted to investigate whether macrophages in the murine lacrimal glands expressed the ER stress indi-
cator CHOP. As judged by fluorescence images of the lacrimal glands, when mice were medicated with the 
solvent-vehicle, macrophages expressing CHOP migrated to the tissues (Fig. 6A). In contrast, no such mac-
rophages were observed in the lacrimal glands collected from the PBA-medicated mice (Fig. 6A). Our subse-
quent endeavors were to gain greater insights into ER stress in cGVHD-affected macrophages. Toward this end, 
we cultured splenic macrophages from PBA- and vehicle-injected mice as depicted in the Methods section36. 
As evidenced by immunoblot analysis, the induced macrophages (expressing CD68) were not adulterated with 
T-cells (CD3+ cells) or B-cells (CD19+ and/or CD20+ cells) (Supplementary Figure 14), and the following results 
were gleaned utilizing highly pure macrophages. Immunohistochemistry revealed that the vehicle-medicated 
splenic macrophages expressed CHOP in contrast to the PBA-medicated ones (Fig. 6B). Immunoblot analysis of 
the macrophages also indicated that in the case where they were treated with PBA, the ER stress markers GRP78, 
CHOP, phosphorylated PERK, phosphorylated eIF2α​ and phosphorylated IRE1α​ were substantially repressed 
compared with the solvent-vehicle (Fig. 6C,D). We then conducted qPCR to examine the gene expression of (1) 

Figure 5.  Alleviation of cGVHD-triggered ER stress in lacrimal gland fibroblasts utilizing the ER stress 
attenuator PBA. (A) Immunoblot analysis of ER stress, activation and fibrotic markers in murine lacrimal 
gland fibroblasts was carried out. (Lane 1: Fibroblasts from the PBA-treated lacrimal glands, Lane 2: Fibroblasts 
from the vehicle-treated lacrimal glands) Cropped blots are displayed. (B) The corresponding quantitative 
analysis of the protein bands was conducted. PBA-treated fibroblasts (blue) and vehicle-treated fibroblasts 
(red). Data from one of two similar experiments are shown. The data are presented as means, ±​SD, PBA: n =​ 4, 
Vehicle n =​ 4, *P <​ 0.05. (C) ELISA to measure the protein levels of MCP-1 produced by the PBA- and vehicle-
treated fibroblasts. PBA-treated fibroblasts (blue) and vehicle-treated fibroblasts (red). Data from one of two 
similar experiments are shown. The data are presented as means, ±​ SD, PBA: n =​ 4, Vehicle n =​ 4, *P <​ 0.05.  
(D) qPCR analysis of IL-6 and TGF-β​ in the PBA-medicated fibroblasts and their vehicle-medicated 
counterparts. PBA-treated fibroblasts (blue) and vehicle-treated fibroblasts (red). Data from one of two similar 
experiments are shown. The values were means, ±​SD, PBA: n =​ 4, Vehicle n =​ 4, *P <​ 0.05.
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the M1 macrophage markers IL-1β​, IL-6 and MCP-1 and (2) the M2 macrophage markers TGF-β​ and IL-10 in the 
splenic macrophages37. As demonstrated by the data, the mRNA expression of TGF-β​ and IL-10 was increased in 
the vehicle-treated macrophages in comparison to the PBA-treated ones (Fig. 6E). Conversely, when macrophages 
were treated with PBA, they showed the higher gene expression of IL-1β​ and IL-6 than those treated with the 
solvent-vehicle (Fig. 6E). These outcomes are indicative of the connection between cGVHD-elicited ER stress in 
macrophages and their differentiation into an alternatively activated phenotype.

Discussion
cGVHD is a major complication following HSCT and can be deadly for some patients. Although cGVHD has 
been studied intensively over the last decades, sluggish progress in developing efficacious treatment of cGVHD 

Figure 6.  Mitigation of cGVHD-caused ER stress in macrophages by the use of PBA. (A) 
Immunofluorescence images of the PBA- and vehicle-injected lacrimal glands. Macrophages and CHOP are 
stained red and green, respectively. The pictures were taken at 200x magnification, and the scale bar is 20 μ​m.  
(B) Immunofluorescence images of cultured splenic macrophages from the PBA- and the vehicle-dosed 
mice. Macrophages and CHOP are stained red and green, respectively. The photographs were taken at 200x 
magnification, and the scale bar is 20 μ​m. (C) Immunoblot analysis of ER stress markers in murine splenic 
macrophages. (Lane 1: Splenic macrophages from PBA-dosed mice, Lane 2: Splenic macrophages from 
vehicle-dosed mice) Cropped blots are displayed. (D) The corresponding quantitative analysis of each protein 
band. PBA-treated macrophages (blue) and vehicle-treated macrophages (red). Data from one of two similar 
experiments are shown. The data are shown as means, ±​SD, PBA: n =​ 4, Vehicle n =​ 4, *P <​ 0.05. (E) qPCR 
analysis of markers for M1 and M2 macrophages from the spleens. PBA-treated macrophages (blue) and 
vehicle-treated macrophages (red). Data from one of two similar experiments are shown. The data are presented 
as means, ±​SD, PBA: n =​ 4–5, Vehicle n =​ 4–5, *P <​ 0.05.
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has been made. Patients with cGVHD have been treated with immunosuppressant such as cyclosporine in many 
cases, however the desired results have been elusive. Hence, clinical settings are in desperate need of effective 
methods to cure cGVHD. A survey of literature suggests (1) that cellular senescence in donor immune cells and 
recipient cells detrimentally contributes to the pathogenic process of cGVHD14 and (2) that ER stress serves a 
detrimental role in the development of chronic inflammation and age-associated diseases29,30. These reports have 
led us to a new hypothesis (1) that cGVHD-affected organs show the elevated level of ER stress and (2) that allevi-
ation of ER stress can be a robust strategy to ease severe symptoms caused by systemic cGVHD (Fig. 7).

In this proof-of-concept research, cGVHD was experimentally induced in mice. We investigated the patho-
genesis of chronic GVHD in the human lacrimal glands from 2001 to 200932,38–41. Our investigation demonstrated 
that the pathogenesis of lacrimal gland cGVHD in this murine model was reminiscent of that in patients with 
chronic GVHD1,14,31,42. Excessive inflammation and fibrosis observed in this mouse model greatly resemble those 
seen in human samples. Furthermore, our previous reports showed that systemic inflammation and fibrosis were 
observed in this mouse model1,31. Hence, we chose this animal model to tackle systemic cGVHD.

Toward the ultimate goal, we initially elucidated (1) the elevation of ER stress and (2) the increased 
activity and/or expression of its corresponding proinflammatory molecules such as NF-κ​B and TXNIP in 
cGVHD-affected organs. Drobyski and co-workers have demonstrated that NF-κ​B detrimentally correlates with 
the pathogenic process of aGVHD and that inhibition of NF-κ​B can alleviate aGVHD5. Our study suggests that 
NF-κ​B is activated in cGVHD-affected organs and that it results partly from unresolved ER stress caused by 
cGVHD.

With respect to the involvement of TXNIP in the pathogenesis of cGVHD, there is no literature precedent 
which mentioned an association between TXNIP and cGVHD. Our survey of previous articles has revealed (1) 
that TXNIP is generated in the downstream of the PERK and IRE1α​ pathways, (2) that it serves a pivotal role in 
a crossroad where cells subjected to ER stress determine whether to restore homeostasis or undergo apoptosis 
and (3) that it induces extensive inflammation by activating the inflammasome nod-like receptor family, pyrin 
domain containing 3 (NLRP3)22–24. Thus, our investigation indicates that the ER stress-elicited expression of 
TXNIP can correlate with disabling symptoms of cGVHD.

We obtained these scientifically and medically important outcomes, and our subsequent endeavors were to 
develop effective therapeutics to treat cGVHD through mitigation of ER stress. We initially attempted to reduce 
cGVHD-induced ER stress utilizing the ER stress mitigator rapamycin4,43–45 (Supplementary Figure 1B) and 
found that it could ease ER stress and be efficacious for systemic cGVHD (data not shown). However, it also 
acts as an immunosuppressive drug and has been reported to induce extensive side-effects such as viral and 
fungal infections in clinical settings46,47. These reports prompted us to circumvent the setbacks and search for a 
safer compound to mitigate ER stress, and we chose 4-phenylbutyric acid (PBA), which is a commercially avail-
able aromatic fatty acid and can be used as an affordable starting material in synthetic organic chemistry48,49. In 
medical practice, PBA has been proven to be sufficiently safe to treat urea cycle disorders27. Literature precedent 
suggests that PBA can attenuate ER stress, since it serves as a chemical chaperone and assists the ER in dealing 
with unfolded/misfolded proteins50. As demonstrated by previous reports, PBA can be effective for type 2 diabetes 

Figure 7.  Conceivable association between cGVHD and ER stress. cGVHD-affected organs are conceivably 
subjected to oxidative stress. Accordingly, ER stress in epithelial cells, fibroblasts and macrophages can be 
augmented. As a result, (1) inflammation-associated molecules such as NF-κ​B and TXNIP are expressed and/
or activated in an out-of-control manner, (2) fibroblasts are driven to be dysfunctional and whereby produce 
abnormal collagen bundles and (3) macrophages are caused to differentiate into an M2 phenotype, which can 
be associated with aberrant fibrosis. In addition, ER stress is thought to be increased by inflammation. Hence, 
a vicious cycle between ER stress and inflammation can be formed in organs disordered by cGVHD. Thus, 
reduction of cGVHD-caused ER stress can also break the negative cycle. Altogether, the ER stress reducer PBA 
can be an effective drug to treat cGVHD.
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and obesity-elicited chronic inflammation in adipose tissues by lowering ER stress29,30. Taken together, it was 
envisioned that PBA could be a safe and powerful tool to reduce cGVHD-caused ER stress.

A series of our experiments demonstrated that cGVHD-caused ER stress in murine organs could be miti-
gated by PBA and that accordingly the ER stress-associated proinflammatory molecules NF-κ​B and TXNIP were 
greatly subdued.

With these encouraging results, we subsequently investigate the state of cGVHD-vulnerable organs. 
Histological, immunohistochemical and electron microscopic analysis of these tissues was conducted. The HE 
pictures and immunofluorescence images of the cGVHD target organs demonstrated that the PBA-medicated 
tissues were less inflamed than the vehicle-medicated ones. Our survey of previous reports shows (1) that PBA 
can alleviate inflammation by reducing ER stress in endothelial cells and (2) that when ER stress is elevated, mito-
chondria are damaged51–53. As demonstrated by electron micrographs of the lacrimal glands, when mice were 
treated with the solvent-vehicle, mitochondria in the blood vessels were impaired. In contrast, this phenomenon 
was not observed in the lacrimal glands collected from the PBA-medicated mice. Thus, these findings indicate 
that PBA can protect blood vessels from cGVHD-caused ER stress and thereby suppress immune cell migration 
to tissues.

Mallory staining and immunoblot analysis of the fibrosis marker CTGF demonstrate that systemic fibrosis was 
subdued by PBA. Our literature search has revealed that epithelial to mesenchymal transition (EMT) correlates 
with fibrosis observed in human ocular cGVHD and that TXNIP is linked to EMT54,55. Hence, PBA is conceivably 
able to attenuate cGVHD-triggered systemic fibrosis, partly because it precludes EMT by lowering the expression 
of TXNIP. Furthermore, as indicated by ELISA, sera collected from the PBA-dosed mice displayed the lower 
levels of the inflammatory molecules MCP-1, TNF-α​ and IFN-γ​ in comparison to those obtained from their 
vehicle-dosed equivalents. CTGF is known to serve as an indicator for fibrosis56, and our immunoblot analysis 
of the cGVHD-susceptible organs indicates that PBA can prevent the cGVHD-elicited overexpression of CTGF. 
These results have underpinned our claim that reduction of ER stress can attenuate disabling symptoms caused 
by systemic cGVHD, and have encouraged us to conduct more painstaking investigation into the correlation 
between ER stress and the pathogenic process of cGVHD. As mentioned above, cGVHD causes extensive fibrosis 
in various organs. Although there is sparse information about the mechanisms of cGVHD-induced fibrosis, a 
previous report demonstrates that the murine lacrimal glands impaired by cGVHD have the increased number 
of activated fibroblasts and that they are associated with the progression of fibrosis32. Hence, we focused on fibro-
blasts in the lacrimal glands and scrutinized a correlation between cGVHD-induced ER stress and disordered 
fibroblasts. Our data suggest (1) that cGVHD-caused ER stress activates fibroblasts in a detrimental way and 
thereby triggers extensive fibrosis and (2) that PBA can prevent fibroblasts from dysfunctioning through allevi-
ation of ER stress.

Once we gained novel insights into how ER stress affected the function of fibroblasts, our focus was turned to 
macrophages. A previous study demonstrates that senescent macrophages serve a causative role in the develop-
ment of ocular cGVHD14. Other workers have shown (1) that ER stress promotes the polarization into M2 mac-
rophages and (2) that M2 macrophages are implicated in fibrosis-related diseases57–59. These reports captured our 
interest and motivated us to scrutinize the relationship between cGVHD-induced ER stress and M2 macrophage 
differentiation. Judging from immunofluorescence images, the cGVHD-impaired murine lacrimal glands had 
macrophages expressing the ER stress marker CHOP, whereas it was not the case with the PBA-medicated murine 
lacrimal glands. These observations indicate that macrophages subjected to ER stress are linked to the progres-
sion of cGVHD. Furthermore, splenic macrophages from PBA- and vehicle-medicated mice were induced and 
subsequently analysed utilizing sophisticated methods. Both immunohistochemistry and immunoblot analysis 
demonstrated that the PBA-treated splenic macrophages showed the lower protein levels of ER stress markers 
compared to their vehicle-treated counterparts. Quantitative mRNA analysis suggests (1) that the mRNA levels 
of the M2 markers TGF-β​ and IL-10 are enhanced in the splenic macrophages treated with the solvent-vehicle and 
(2) that the gene expression of the M1 markers IL-1β​ and IL-6 is increased in those treated with PBA. Hence, it is 
conceivable (1) that cGVHD-induced ER stress promotes macrophages to differentiate into an alternatively acti-
vated phenotype and (2) that PBA can mitigate cGVHD-induced fibrosis by reducing ER stress in macrophages 
and transforming them into a classically activated phenotype.

Collectively, considering the safety and affordability of the ER stress reducer PBA, the reduction of 
cGVHD-caused ER stress can be an innovative and robust strategy for the treatment of systemic cGVHD and 
open up new prospects to cure other immune-mediated diseases associated with ER stress.

Methods
Eight-week-old B10.D2 and BALB/c mice were purchased from Sankyo Laboratory, Inc. (Tokyo, Japan). All the 
scientific experiments on mice were performed according to the Animal Welfare Act at Keio University School of 
Medicine. Our protocols for experiments on animals were approved by the animal care and use committee at Keio 
University (Approval Number: 09152). We also complied with the ARRIVE guidelines60.

Bone marrow transplantation.  Bone marrow transplantation (BMT) was conducted to furnish a murine 
model of cGVHD42. In the case where the donors were B10.D2 mice and the recipients were BALB/c mice, it was 
allogeneic BMT to produce a murine model of cGVHD. In contrast, BMT from BALB/c to BALB/c mice was 
syngeneic BMT, and therefore cGVHD did not occur in the transplant recipients. The recipient mice without 
cGVHD served as syngeneic control subjects. The recipients were irradiated with 700cGy prior to the BMT, and 
the lethal irradiation was preformed using a Gammacel 137 Cs source (Hitachi Medico, Ltd, Tokyo, Japan). A 
suspension containing 1 ×​ 106 bone marrow cells and 2 ×​ 106 spleen cells from the donors was administered to 
each of the recipient mice via tail vein. The donor cells were suspended in RPMI 1640 (Life Technologies Japan 
Ltd, Tokyo, Japan).
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Treatment of allogeneic BMT recipient mice with PBA.  We performed BMT as described in the 
Methods section, and the allogeneic BMT recipient mice were divided into 2 groups. One group was treated 
with PBA (10 mg/kg) (Aldrich, St. Louis, MO), and the other was given the solvent-vehicle PBS (pH 7.4) by 
intraperitoneal injection. We administered PBA or the solvent-vehicle to the allogeneic BMT recipients once 
per day from Day 10 to Day 27 after BMT. They were sacrificed Day 28 after BMT. In this study, the following 
cGVHD-susceptible organs were analyzed: extra-orbital lacrimal glands, the proximal part of small intestine, 
dorsum skin, liver, salivary glands, lung, large intestine and eyes.

Culture of fibroblasts from murine lacrimal glands.  Fibroblasts derived from the murine lacrimal 
glands were cultured using the well-established method reported by Yaguchi et al.35. The murine lacrimal glands 
were collected and subsequently cut into small pieces. The tissue fragments were incubated at 37 °C in DMEM 
(Life Technologies Japan Ltd, Tokyo, Japan) containing 5% of fetal bovine serum (FBS) (Sigma, St. Louis, MO) 
and 5% of antibiotics. The antibiotics were a 1:1 aqueous mixture of streptomycin sulfate (Meiji Seika Pharma Co., 
Ltd, Tokyo, Japan) and benzylpenicillin potassium (Meiji Seika). Fibroblasts started growing from the minced 
pieces after 3–4 days. The fibroblasts were cultured in DMEM with 5% of FBS and 5% of antibiotics, and used for 
experiments after 3–5 passages. Trypsin (Becton Dickinson, Franklin Lakes, NJ) was used to detach the fibro-
blasts from the culture dishes.  

Culture of splenic macrophages.  We cultured murine splenic macrophages according to the method of 
Alatery and Besta with slight modifications36. Splenocytes suspended in RPMI with 5% of FBS were seeded in 
culture dishes and left at 37 °C overnight. The floating cells were then removed. The desired cells attached to the 
dishes were cultured in RPMI containing recombinant murine M-CSF (5 ng/mL) (Peprotech, Rocky Hill, NJ), 5% 
of FBS and 5% of antibiotics for 7 days. The induced macrophages were subsequently detached from the culture 
dishes utilizing accutase (Thermo Fisher Scientific, Waltham, MA) and used for experiments.

Immunostaining of cultured macrophages.  The induced macrophages were placed in 8-well chamber 
slides (Fibronectin Culture Slide; Corning Inc., Corning, NY) and fixed with 10% neutral buffered formlain. 
They were then blocked with methanol containing 0.3% hydrogen peroxide at RT for 30 min and incubated with 
the primary antibodies CD68 (AbD Serotec) and CHOP (Santa Cruz) at 4 °C overnight. The sections were sub-
sequently treated with goat anti-mouse IgG (H +​ L) secondary antibody, Alexa Fluor 568 conjugate (Molecular 
Probes, Eugene, OR) and 4′​,6-diamidino-2-phenylindole (DAPI) (Life Technologies) at RT for 45 minutes and 
mounted with an anti-fading mounting medium (Dako). Fluorescence images were taken with an LSM confocal 
microscope (Carl Zeiss).

Quantitative polymerase chain reaction.  Total RNA was extracted from extra-orbital lacrimal glands, 
the proximal part of small intestine, dorsum skin, liver, and cultured fibroblasts and macrophages using an miR-
Neasy mini kit (Qiagen, Valencia, CA), and the corresponding complementary DNA was synthesized utilizing a 
Rever Tra Ace qPCR RT Kit (Toyobo Co. Ltd. Osaka, Japan). The primers required to analyze the mRNA expres-
sion of the following genes by the use of TaqMan real-time polymerase chain reaction (PCR) were purchased 
from Applied Biosystems (Applied Systems Inc, Streetsville, Ontario, Canada): the housekeeping gene glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH), glucose regulated protein 78 (GRP78), Interleukin-1β​ (IL-1β​), IL-6, 
IL-10, macrophage chemoattractant protein-1 (MCP-1) and transcription growth factor-β​ (TGF-β​). Quantitative 
real-time PCR was performed using the Step One Plus system (Applied Biosystems). The 2−ΔΔCT method was 
used to analyze the data obtained, and GAPDH was used as an internal standard to measure the expression of 
mRNA.

Statistical analysis.  Statistical significance was determined by the use of unpaired Mann–Whitney U test. 
Differences are considered significant in the case of P <​ 0.05. The acquired data are presented as means ±​ SD.
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