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Abstract

Follicular fluid (FF), a product of vascular transudate and granulosa and thecal cell secretions, is the milieu that has evolved to 
support oocyte growth and maturation which plays a central role in oocyte quality determination. Therefore, a suboptimal FF 
composition may be reflected in compromised oocyte progression through maturation, fertilization, or embryo development. 
To date, the composition of bovine FF remains understudied. To address this, we comprehensively characterized the 
metabolomic constituency of bovine FF in the period during which the oocyte undergoes meiotic maturation. More 
specifically, FF from pre (−24 h) and peri (−2 h)-ovulatory follicles was profiled by high-throughput untargeted ultra-HPLC 
tandem mass spectroscopy. A total of 634 metabolites were identified, comprising lipids (37.1%), amino acids (30.0%), 
xenobiotics (11.5%), nucleotides (6.8%), carbohydrates (4.4%), cofactors and vitamins (4.4%), peptides (3.6%), and energy 
substrates (2.1%). The concentrations of 67 metabolites were significantly affected by the stage of follicle development, 33.3% 
(n = 21) were reduced (P ≤ 0.05) by a mean of 9.0-fold, whereas 46 were elevated (P ≤ 0.05) by a mean of 1.7-fold in peri- vs 
pre-ovulatory FF. The most pronounced individual metabolite concentration decreases were observed in hypoxanthine (98.9-
fold), xanthine (65.7-fold), 17β-oestradiol (12.4-fold), and inosine (4.6-fold). In contrast, the greatest increases were in retinal 
(4.9-fold), 1-methyl-5-imidazoleacetate (2.7-fold), and isovalerylcarnitine (2.7-fold). This global metabolomic analysis of bovine 
FF temporal dynamics provides new information for understanding the environment supporting oocyte maturation and 
facilitating ovulation that has the potential for improving oocyte quality both in vivo and in vitro.

Lay Summary

The ovaries are part of the female reproductive system, and they produce and store eggs in structures known as ‘follicles’. 
Depending on the species, one or more follicles release an egg from the ovary during ovulation. FF, which is formed from 
the secretions of follicle cells and substances delivered from the bloodstream, bathes the eggs as they develop within 
their follicles. For pregnancy to happen, the egg must be capable of being fertilised by a sperm cell, developing into an 
embryo and implanting it in the womb. FF has evolved to support the egg to achieve this. Using the cow as a model, this 
study looks at the composition of FF during the final hours before ovulation, when the egg becomes mature and ready 
for fertilisation. More than 600 different substances were identified, providing new information, that has the potential to 
improve egg quality.
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Introduction

Genetic and environmental factors are major determinants 
of oocyte developmental potential, measured as the ability 
of the oocyte to complete meiosis, undergo fertilization 
and subsequent mitotic cleavage, develop into a blastocyst, 
establish pregnancy, and generate a healthy offspring 
(Fair 2010, Lonergan & Fair 2016). Thus, an appropriate 
biochemical environment is required to support optimal 
oocyte growth and maturation in vivo or in vitro. Follicular 
fluid (FF) is a product of both the transfer of blood plasma 
constituents across the blood–follicle barrier and of the 
secretory activity of granulosa and thecal cells, as well as 
the cumulus–oocyte complex (COC) (Gosden et al. 1988). 
The FF and cumulus cells (CC) support oocyte integrity and 
competence, by conferring protection against proteolysis, 
as well as providing the necessary intracellular metabolites 
for ovulation. These metabolites include hormones, amino 
acids, lipids, carbohydrates, nucleotides, and other small 
molecules derived from serum and the metabolic activity 
of follicular cells (Da Broi et  al. 2018). Moreover, these 
constituents are modified during follicle development 
(Fortune et  al. 2004), suggesting that FF is adapted to 
provide an optimal microenvironment which promotes 
the quality and subsequent developmental competence 
of the oocyte within (Bender et  al. 2010, Leroy et  al. 
2011, Matoba et  al. 2014, Forde et  al. 2016). The chemical 
composition of peri-ovulatory FF is particularly important, 
because this medium bathes the oocyte, serving as an 
energy source during oocyte meiotic resumption and 
maturation (Dumesic et al. 2015).

Several analytical techniques have been used to 
evaluate and characterize the biochemical profile of bovine 
FF with a particular emphasis on the usefulness of the FF 
metabolomic profile as a non-invasive predictor of bovine 
oocyte developmental potential (Fair 2014). The fatty acid 
and amino acid profiles of bovine FF were reported to be 
predictive of oocyte in vitro developmental competence 
(Matoba et al. 2014). The predictive nature of the FF, in terms 
of association with cow fertility or oocyte competence, was 
also demonstrated by Moore et  al. (2017), who identified 
several fatty acids and amino acids in the FF of cows that 
correlated with cow fertility. More recently, differential 
metabolite concentrations in FF samples between inactive 
vs physiological bovine ovaries at 45–60 days postpartum 
were detected using ultra-HPLC tandem mass spectrometry 
((UHPLC)-MS/MS) technology (Bai et al. 2020).

While the bovine FF metabolomic profile has been 
investigated during the pre-ovulatory (Orsi et  al. 2005, 
Forde et  al. 2016) and peri-ovulatory (Bender et  al. 2010) 

period, to our knowledge, this is the first study to compare 
the global metabolomic FF landscape of pre- and peri-
ovulatory follicles in beef cattle. Ovulation is a well-
controlled inflammatory process, where immune cells 
are recruited to the ovulatory follicle from the circulation 
(Espey 1980, Okuda & Sakumoto 2003, Townson & Liptak 
2003). Moreover, immune cell activation, differentiation, 
and function have specific metabolic requirements to meet 
their energetic and biosynthetic demands, and successful 
pregnancy has been attributed to the involvement of a 
number of metabolic pathways in conjunction with the 
maternal immune system (Thiele et  al. 2018). However, 
knowledge of immunometabolism in respect of ovulation is 
scant. Therefore, the objectives of the current study were to 
identify and record alterations of the FF metabolomic profile 
during the ovulatory window, placing particular emphasis 
on factors associated with oocyte meiotic maturation and 
maturation and identifying potential immunomodulatory 
biomarkers of an optimal peri-ovulatory environment. To 
achieve this, FF from synchronized cattle was obtained 
either 24 or 2 h before the estimated time of ovulation and 
subjected to high throughput untargeted UHPLC-MS/MS.

Our overarching hypothesis was that the broad 
metabolomic profiles of pre- vs peri-ovulatory FF would 
differ, particularly in steroid hormone and immune-
metabolite composition.

Materials and methods

All experimental procedures involving live animals were 
approved by the Institutional Animal Research Ethics 
Committee of University College, Dublin (UCD), and 
licensed by the Irish Health Products Regulatory Authority 
in accordance with European Union (EU) Protection of 
Animals used for Scientific Purposes regulations (2010/63/
EU). All animals were housed at UCD Lyons Farm.

Animal synchronization and husbandry

A description of the experimental design, animal 
synchronization, and follicle dissection and processing has 
been presented previously (Alrabiah et  al. 2021). In brief, 
following confirmation of reproductive tract normality by 
transrectal ultrasonographical assessment, the oestrous 
cycles of 16 nulliparous beef (predominantly Limousin 
and Charolais cross) heifers, with a mean age of 2.0 ± 0.5 
years and mean weight of 587.6 ± 98 kg, were synchronized 
as follows: gonadotropin-releasing hormone (GnRH) 
analogue (Ovarelin, Ceva Santé Animale) administration 
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by i.m. injection, immediately followed by insertion of 
a progesterone (P4)-releasing intravaginal device (PRID; 
Ceva Santé Animale). After 7 days, all heifers received a 
prostaglandin F2α (PGF2α) analogue (Enzaprost; Ceva 
Santé Animale) intramuscularly followed by PRID removal 
the next day. A second GnRH injection was administered 
36 h post PRID removal (Fig. 1A). Heifers were transported 
to a local EU-licensed abattoir and ovaries were retrieved 
immediately post-mortem, corresponding to either 24 or 2 
h before the estimated time of ovulation. Previous studies 
report that the peak of oestrus onset occurs at about 36 h 
after PRID removal and the LH surge occurs within ~2 h of 
oestrus onset (van de Leemput et al. 1999). Ultrastructural 
analysis of oocytes recovered from the peri-ovulatory follicle 
19 h after the LH peak classifies them as oocytes in the final 
stage of maturation (Kruip & Dieleman 1985, Hyttel et al. 
1986), and thus, FF collection at ~24 h before ovulation is 
the approximate time of the systemic luteinizing hormone 
(LH) surge which induces oocyte meiotic resumption and 
maturation and ~2 h before ovulation corresponds with 

the peri-ovulatory period when the oocyte should be fully 
mature and surrounded by an expanded CC mass. Only 
FF from follicles from which such a COC with expanded 
cumulus was retrieved was used for metabolomic analysis 
at T2.

Follicular fluid recovery and processing

Ovaries were returned to the laboratory on ice within 1 h of 
retrieval. Ultimately, ten heifers were included in this study 
as the dominant follicles of six were ruptured on retrieval. 
Differentiated (i.e. 24 h before, (n = 6) pre-ovulatory and 
luteinized (i.e. 2 h before, n = 4) peri-ovulatory follicles 
were dissected from the ovaries, diameters were measured, 
and follicular tissues and fluid were recovered on ice, as 
previously described (Alrabiah et  al. 2021). FF was then 
centrifuged at 100 g for 5 min at 4°C. The supernatant 
was distributed into three aliquots and stored at −80°C 
until analysis. The first aliquot was sent for metabolomic 
profiling, the second for steroid hormone analysis, and the 
third for total protein content quantification, as described 
below (Fig. 1B).

Metabolomic profiling

High-throughput semi-quantitative untargeted 
metabolomic profiling was performed by Metabolon Inc. 
(Durham, NC, USA) by ultra-high performance liquid 
chromatography-tandem mass spectroscopy (UPLC-MS/
MS) as described by  Simintiras et al. (2021a).

Briefly, protein in each sample was precipitated with 
methanol and extracted using the automated MicroLab 
STAR system (Hamilton Company) under centrifugation 
at 680 g for 2 min (Geno/Grinder 2000, Glen Mills), prior 
to methanol removal using a TurboVap (Zymark) and 
overnight incubation in nitrogen. Each deproteinated 
sample was then divided into four aliquots for analysis 
as follows: 1 and 2, reverse phase (RP) UPLC-MS/MS with 
positive ion mode electrospray ionization (ESI) analysis; 
3, RP UPLC-MS/MS with negative 4 ion mode ESI analysis; 
and 4, hydrophilic interaction liquid chromatography 
(HILIC) UPLC-MS/MS with negative ion mode ESI analysis. 
Samples were then reconstituted in solvents compatible 
with each analysis, as described below.

Aliquot 1 (RP-UPLC-MS/MS +ESI) was subject to 
gradient elution in water and methanol with 0.05% 
perfluoropentanoic acid and 0.1% formic acid (Waters 
UPLC BEH 1.7 μm C18 2.1 × 100 mm column). Aliquot 
2 (also RP-UPLC-MS/MS +ESI) was identically eluted, 
using the same column, with the addition of acetonitrile 

Figure 1 Schematic depiction and validation of experimental design. (A) 
Ten heifers were synchronized by administration of gonadotropin-
releasing hormone (GnRH), progesterone (P4)-releasing intravaginal 
device (PRID), and prostaglandin (F2α). Follicular fluid (FF) was aspirated 
24 (n = 6) and 2 (n = 4) h prior to ovulation. (B) Follicular fluid (FF) was 
snap-frozen in liquid nitrogen (N2(l)) until analysis for total protein, P4 
content, or high-throughput untargeted metabolomics. (C) Mean 
diameter (±s.d.) of 24 h (pre (n = 6)) and 2 h (peri (n = 4)) ovulatory follicles. 
(D) Mean (±s.d.) protein content in 24 h (n = 6) and 2 h (n = 4) ovulatory FF. 
(E) Mean (±s.d.) FF P4 levels in 24 h (n = 6) vs 2 h (n = 4) ovulatory FF – 
wherein ** represents P ≤ 0.01.
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to the elution buffer. Aliquot 3 (RP-UPLC-MS/MS –ESI) 
was similarly eluted using a gradient buffer comprising 
methanol, water, and 6.5 mM ammonium bicarbonate 
(pH 10.8). Aliquot 4 (HILIC-UPLC-MS/MS –ESI) was eluted 
using a HILIC (Waters UPLC BEH Amide 1.7 μm 2.1 × 150 
mm column) with a water plus acetonitrile plus 10 mM 
ammonium formate (pH 10.8) gradient. Each of the four 
aliquots of each sample was subsequently analysed using 
a Waters Acquity UPLC coupled to a Thermo Scientific 
Q-Exactive high-resolution MS interfaced with heated 
electrospray ionization (HES-II) source and Orbitrap mass 
analyzer operating at 35,000 mass resolution and with a 
scan range between 70 and 1000 m/z.

Metabolites were quantified against internal and 
recovery standards, run in parallel. These controls were 
(1) a pooled aliquot of all experimental samples, serving 
as a technical replicate control; (2) ultra-pure water as 
process blanks, also run in between experimental samples; 
and (3) a cocktail of quality control (QC) metabolites, 
absent from endogenous compound measurements, were 
spiked into each sample. The latter internal standard 
enabled instrument performance monitoring and 
chromatographic alignment. Metabolite identification was 
based on retention time/index (RI), mass to charge ratio 
(m/z) within ±10 ppm, and MS/MS forward and reverse 
scores between the experimental data vs Metabolon Inc. 
in-house authentic standards. Where this was not possible, 
metabolite identification was predicted by comparing 
metabolite RI, m/z, and chromatographic (MS/MS spectral 
data) to those of purified standards. Technical (instrument) 
median relative s.d. was 3% with a total process variability 
of 6%.

Progesterone and protein quantification

FF P4 was measured by solid-phase RIA (PROG-RIA-CT 
KIP1458; DiaSource ImmunoAssays S.A., Belgium), 
according to manufacturer’s instructions. Assay range 
and sensitivity were 0.12–36 ng/mL and 0.05 ng/mL, 
respectively. FF protein content was quantified by Bradford 
assay by Metabolon Inc.

Metabolomic data analysis and interpretation

Raw chromatographic data were logarithmically (ln) 
transformed (scaled). These values were then either divided 
by the total protein concentration in each individual 
corresponding sample (protein-normalized) or not. 
Protein-normalized data are provided as supplementary 
material. Non-normalized data are discussed herein unless 

otherwise stated. Missing values were imputed with the 
minimum observed value for each compound within each 
group. Pathway enrichment (E) was calculated using the 
formula: (k/m)/(n/N) whereby k = number of significant 
(P ≤ 0.05) metabolites per pathway, m = total number 
of detected metabolites per pathway, n  = number of 
significant (P ≤ 0.05) metabolites in the study, and N = total 
number of detected metabolites in the study, as described 
by Brown et al. (2016).

Statistical analyses

Follicle diameter (Fig. 1C), FF protein (Fig. 1D), and FF P4 
composition (Fig. 1E) data were analyzed by unpaired 
two-tailed t-test using Prism 9.0 (GraphPad). Principal 
component analysis (Fig. 2D) was performed using 
the open-access Past4 software (Hammer et  al. 2001). 
Transformed metabolomic data (Figs. 3 and 4) were 
statistically contrasted using Welch’s two-sample t-test with 
a P ≤ 0.05 (significant) or 0.05 < P < 0.10 (trend) cut-off.

Results

Follicle development, progesterone, and 
protein composition

Mean diameter (±s.d.) of pre- (18.5 ± 1.9 mm) vs peri 
(18.5 ± 2.3 mm)-ovulatory follicle did not differ (Fig. 1C). 
Similarly, mean (±s.d.) protein content (28.7 ± 5.1 and 
31.5 ± 2.4 mg/mL in pre- and peri -ovulatory FF, respectively) 
was not different (Fig. 1D). However, mean (±s.d.) FF 
P4 concentration increased from 24 h (55.7 ± 41.3 
ng/mL) to 2 h (204.9 ± 63.8 ng/mL) before ovulation 
(Fig. 1E) (P = 0.0091), confirming the temporal phenotypic 
divergence of FF collected.

Follicular fluid qualitative metabolomics

A total of 634 metabolites were identified, see full list in 
Supplementary Table 1 (see section on supplementary 
materials given at the end of this article), comprising 
lipids (37.1%), amino acids (30.0%), xenobiotics (11.5%), 
nucleotides (6.8%), carbohydrates (4.4%), cofactors and 
vitamins (4.4%), peptides (3.6%), and energy substrates 
(2.1%), as represented by Fig. 2A. The qualitative 
metabolomic profiles of pre- (24 h) and peri-ovulatory 
(2 h) FF were broadly identical, as metabolite presence 
was 99% (630 of 634) common to both groups. However, 
between groups, prostaglandins E2 (PGE2) and F2 alpha 
(PGF2α) were absent from all 24 h pre-ovulatory FF 
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samples, whereas oestrone and 1-myr​isoyl​-2-pa​lmito​
yl-gl​ycero​phosp​horyl​choli​ne were absent from all 2 h 
peri-ovulatory FF samples (Fig. 2B). Within groups, the 
presence/absence of 51 metabolites was inconsistent. For 
example, arachidonoyl-choline was present in 83% of pre- 
and 75% of peri-ovulatory FF samples. These are listed in 
Fig. 2C. The original normalized raw area counts for each 
metabolite are listed in Supplementary Table 2.

Follicular fluid quantitative metabolomics

Despite the near-identical qualitative metabolomic 
profiles observed, principal component analysis (PCA) 
revealed distinct separation of the pre- vs peri-ovulatory FF, 

with greater variation within the 24 h pre-ovulatory group 
(Fig. 2D). This is attributable to concentration differences 
of 67 metabolites between the two FF groups (Figs. 3 and 4). 
More specifically, 21 (33.3%) were reduced (P ≤ 0.05) by a 
mean of 9.0-fold, whereas 46 were elevated (P ≤ 0.05) by a 
mean of 1.7-fold in peri- vs pre-ovulatory FF, the differences 
were primarily due to variable lipid (43.3%) and amino acid 
(28.4%) flux. The most pronounced individual metabolite 
concentration decreases in the same comparison 
were hypoxanthine (98.9-fold), xanthine (65.7-fold), 
17β-oestradiol (12.4-fold, E2), and inosine (4.55-fold). In 
contrast, the greatest corresponding increases were retinal 
(4.9-fold), 1-methyl-5-imidazoleacetate (2.7-fold), and 
isovalerylcarnitine (2.7-fold).

Figure 2 Metabolomic snapshot of pre- and peri-ovulatory follicular fluid (FF). (A) Pie chart of FF metabolite super-pathway distribution. (B) Venn diagram 
of metabolites unique or common to pre- (green) vs peri- (blue) ovulatory FF. (C) The percentage of samples from each group in which the corresponding 
metabolite was identified (% filled Values). All other metabolites were identified across all samples. Dark blue cell shading (100%) indicates complete 
presence, whereas dark orange (0%) highlights complete absence. Light orange indicates presence in 17–25% of samples, whereas light blue shading 
denotes a percentage fill between 50–83%. (D) Principal component analysis of FF metabolomic profiles 24 h (green; n = 6) vs 2 h (blue; n = 4) pre-
ovulation.
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Figure 3 Quantitative metabolomic analysis of pre- (24 h) and peri-(2 h) ovulatory follicular fluid (FF). Metabolites are grouped by either (A) lipid or (B) 
nucleotide super-pathway metabolism. Corresponding sub-pathways are also provided. Dark green shading indicates a decrease (metabolite ratio <1.0) 
between the aforementioned time-points (P ≤ 0.05), with light green depicting a decreasing trend (0.05 < P < 0.10). In contrast, dark red shading indicates 
an increase (metabolite ratio ≥1.0) between groups (P ≤ 0.05), with light red depicting an increasing trend (0.05 < P < 0.10). Asterisks denote predicted 
metabolites. RC, relative concentration; RCFC, relative concentration fold-change.
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Figure 4 Quantitative metabolomic analysis of pre- (24 h) and peri-(2 h) ovulatory follicular fluid (FF) continued. Metabolites are grouped super-pathway 
metabolism: (A) amino Acid; (B) xenobiotic; (C) carbohydrate; (D) cofactor and vitamin; (E) energy substrate; and (F) peptide metabolism. Corresponding 
sub-pathways are also provided. Dark green shading indicates a decrease (metabolite ratio <1.0) between the two time-points (P ≤ 0.05), with light green 
depicting a decreasing trend (0.05 < P < 0.10). In contrast, dark red shading indicates an increase (metabolite ratio ≥1.0) between groups (P ≤ 0.05), with 
light red depicting an increasing trend (0.05 < P < 0.10). Asterisks denote predicted metabolites. RC, relative concentration; RCFC, relative concentration 
fold-change.
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Corresponding metabolic pathway enrichment analysis 
revealed the following pathways as comprising the greatest 
proportion of temporally dynamic metabolites: estrogenic 
synthesis (E = 9.2; k = 2, m = 2); advanced glycosylation 
end-product (E = 9.2; k = 1, m = 1); dipeptide (E = 4.6; k = 1, 
m = 2); mevalonate (E = 4.6; k = 1, m = 2); and corticosteroid 
(E = 4.6; k = 1, m = 2) metabolism (Fig. 5). However, as these 
pathways comprise very few metabolites (m = 1 or 2), the 
data were re-analysed by percentage difference (PD (i.e. the 
number of metabolites corresponding to a specific pathway 

exhibiting significant flux in pre- vs peri-ovulatory FF as 
a percentage of all differences observed)). This revealed 
leucine, isoleucine, and valine (E = 1.7; PD = 9.5%), food 
component (E = 0.9; PD = 4.8%), and dicarboxylate fatty 
acid (E = 0.4; PD = 1.6%) as pathways comprise the most 
temporally dynamic metabolites (Fig. 5). Sixty-two (62) 
sub-pathways were unenriched (i.e. E = 0). Further analysis 
of the global metabolomic data (Supplementary Table 1) 
shows that FF becomes a less metabolically concentrated 
environment (P ≤ 0.05) with time.

Figure 5 Sub-pathway metabolomic analysis of pre- (24 h) and peri-(2 h) ovulatory follicular fluid (FF). Specifically, pathway representation by percentage 
differences (i.e. the number of metabolites corresponding to a specific pathway exhibiting significant flux in pre- vs peri-ovulatory FF as a percentage of 
all differences observed in this study); percentage abundance (i.e. the number of metabolites corresponding to a specific pathway as a percentage of all 
identified metabolites); and enrichment (i.e. measure of intra-pathway metabolite flux relative to inter-pathway metabolite flux).
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Discussion

This study provides a detailed characterization of the 
metabolic fingerprint of bovine FF at two critical stages 
of oocyte development around the time of the LH surge-
induced resumption of meiotic maturation and just 
prior to ovulation of the fully mature oocyte. Therefore, 
dependent experimental variables were inherently (a) 
local E2 and P4 concentrations and (b) COC maturation. 
Principal findings include (a) the identification of 634 
metabolites in FF, of which 67.1% pertain to lipid and 
amino acid metabolism; (b) the significant flux of 67 
metabolites (just 10.6% of total) over time; (c) FF becomes 
a less metabolically concentrated environment with time; 
and (d) a major flux of select metabolites occurs during this 
critical window. This study advances our understanding 
of the environment supporting oocyte maturation and 
ovulation, data which could be exploited to improve 
oocyte quality both in vivo and in vitro.

The current study greatly expands on previous work 
by our group, which used gas chromatography-mass 
spectrometry to analyse dairy cow preovulatory follicular 
fluid and identified ~20–30 aqueous metabolites and 23–37 
fatty acids ((Bender et al. 2010, Forde et al. 2016, Moore et al. 
2017). Here, we reveal FF to be a surprisingly metabolically 
diverse environment (634 metabolites organised into 
over 8 super pathways and 97 metabolic activities or sub 
pathways). Recent studies using the same metabolomic 
profiling platform have identified 173 metabolites in IVM 
medium and 369 metabolites in cumulus cells (Uhde et al. 
2018), between 233 and 317 metabolites in bovine uterine 
lumen fluid (Simintiras et al. 2019, Simintiras et al. 2022); 
between 132 and 280 metabolites in bovine embryo and 
conceptus conditioned medium (Simintiras et  al. 2021b); 
and 374 metabolites in human endometrial organoid 
conditioned medium (Simintiras et  al. 2021a). The lower 
number of identified metabolites in these studies may be 
due to sample dilution, which was not required here. As 
such, our data provide a very high-resolution snapshot of 
the composition of bovine FF coinciding with final oocyte 
maturation just prior to ovulation.

Despite this high metabolic diversity, just 67 (10.6 %) 
metabolites exhibited (P ≤ 0.05) flux, with a further 42 
trending (0.05 < P < 0.10) towards exhibiting flux (17.2% 
in total), within the follicle during the final 22 h period of 
ovulatory follicle development (Figs. 3 and 4). This modest 
flux in the FF metabolome is in contrast to the findings in 
vitro, where 25–30% of metabolites exhibited significant 
fluctuations over a 24 h period (Uhde et  al. 2018). Thus, 
despite the complex events of oocyte maturation and 

follicle luteinization and rupture occurring within the 
ovulatory follicle, a dynamic equilibrium appears to be 
maintained during this period by the consumption and 
secretion activities of the oocyte, cumulus, granulosa, and 
theca cells, to protect the COC. These metabolites and 
their associated metabolic and molecular pathways are 
considered in relation to the competing activities of the 
COC and the follicle cells during the peri-ovulatory period.

Biomarkers of follicle ovulatory status

The greatest flux magnitudes observed were almost a 
100-fold decrease in hypoxanthine (HX) and a 66-fold 
decline in xanthine levels in less than 22 h. Closely 
related compounds inosine and xanthosine were also 
depleted by 5.0- and 2.7-fold, respectively (Fig. 3B). 
This is reassuring, as HX is a known inhibitor of bovine 
(Kadam & Koide 1990) as well as murine (Eppig et  al. 
1985, Downs et  al. 1986) resumption of oocyte meiotic 
maturation, and starts declining in bovine FF as early as 
8 h post the GnRH-induced LH surge (Romero-Arredondo 
& Seidel 1994). Hypoxanthine has also been identified in 
porcine (Miyano et al. 1995), caprine (Ma et al. 2003), and 
human (Lavy et  al. 1990) FF. More specifically, granulosa 
cell inosine-5′-monophosphate (IMP) dehydrogenase 
(IMPDH), also known as GMP reductase (GMPR), is 
crucial for maintaining oocyte-follicular synchrony and 
meiotic arrest via two coordinated pathways. The first 
revolves around IMP catalysis by IMPDH into xanthosine 
monophosphate (XMP), eventually further catalyzed by 
the natriuretic peptide C/natriuretic peptide receptor 2 
(NPPC/NPR2) system to cyclic GMP (cGMP) to sustain 
oocyte meiotic arrest. IMPDH is the rate-limiting step in 
this cascade (Kiyosu et al. 2012, Ni et al. 2021). The second 
mode of IMPDH-regulated meiotic arrest maintenance is 
the preservation of an intracellular HX pool, which inhibits 
cyclic nucleotide phosphodiesterases (Downs et al. 1989), 
including adenylyl cyclase, resulting in the accumulation 
of intracellular cAMP, which too sustains oocyte meiotic 
arrest (Jones 2004, Pan & Li 2019). The observed steep 
decline of HX and associated compounds in FF between 
24 and 2 h pre-ovulation reflects the culmination of 
LH-activated signalling cascades within the preovulatory 
follicle leading to the release of the oocyte from meiotic 
arrest and resumption of oocyte meiotic maturation. There 
is an interest in delaying the spontaneous resumption 
of meiosis in vitro, for improving oocyte quality and 
developmental potential, by recapitulating some of the 
naturally occurring biochemical and cellular events. 
The most promising approach is the so-called simulated 
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physiological oocyte maturation system of oocyte IVM 
which incorporates a pre-maturation treatment (Albuz 
et  al. 2010, Li et  al. 2016). This system has improved 
embryo yield in murine, bovine, porcine, and human 
IVM COCs and may bridge the efficiency gap between 
IVM and IVF. However, since the initial reports, few new 
data have emerged to demonstrate the repeatability of 
these results, and others have failed to achieve similar 
outcomes (Guimarães et  al. 2015). These concerns have 
been acknowledged (Gilchrist et al. 2015). The current data 
set may enable further refinement of this or similar cAMP-
mediated pre-IVM culture systems that have the potential 
to improve the efficiency of IVM in the future.

The next biggest decline in metabolite concentration 
was that of E2 (12.37-fold (Fig. 3A)), concomitant with P4 
elevation (3.7-fold (Fig. 1A)), hallmarks of the late follicular 
phase of the bovine oestrous cycle (Dieleman et al. 1983). 
Our data captured the characteristic preovulatory follicle 
change from an E2-dominated environment at oestrus 
onset to one that becomes progressively dominated by 
P4 following the LH surge (Dieleman et  al. 1983). This 
window coincides with the resumption of oocyte meiotic 
maturation and dramatic morphological and metabolic 
changes to cumulus cells but without a corresponding 
change in dominant follicle dimensions (reviewed in 
Lonergan & Fair (2016)), consistent with our observations 
(Fig. 1C). Further model validation was gleaned from 
the absence of prostaglandins (PG) PGE2 and PGF2α in 
pre-ovulatory FF samples and their first detection in peri-
ovulatory FF (Fig. 2C).

Polyunsaturated fatty acids (PUFA) are precursors 
to PG synthesis (Cheng et  al. 2001), the major one being 
arachidonic acid (Smyth & Fitzgerald 2003). An almost 
three-fold depletion of arachidonic acid over time was 
observed (Fig. 3A). High arachidonic acid levels are 
associated with bovine ovarian granulosa cell death 
induction and decreased E2 secretion (Zhang et al. 2019). 
Thus, it is likely that arachidonic acid depletion was 
due to PGE2 and PGF2α conversion. This corroborates 
the finding that PG secretion commences late in the 
periovulatory period, i.e. between 18 and 24 h after GnRH 
administration (Bridges et al. 2006). Moreover, studies on 
sheep (Wonnacott et  al. 2010) and cattle (Adamiak et  al. 
2005) support the hypothesis that depleted PUFA is due 
to their conversion by granulosa cells to PG at ovulation 
(Algire et  al. 1992). Intrafollicular PG concentrations 
increase in the hours preceding ovulation in several 
species (Armstrong 1981, Sirois & Doré 1997, Sirois et  al. 
2000), while PG synthesis inhibitor administration blocks 
ovulation in cattle (De Silva & Reeves 1985) and blocks 

fertilization, embryo development, and implantation in 
mice (Chakraborty et al. 1996). Prostaglandin E2 (PGE2) is 
the most common PG in animals (Niringiyumukiza et al. 
2018); a key paracrine mediator of the LH surge, it acts 
through multiple PGE2 receptors (PTGERs) (Harris et  al. 
2011). Moreover, accumulation of PG, a pro-inflammatory 
factor (Ricciotti & Fitzgerald 2011) in the peri-ovulatory 
follicle, supports the concept of ovulation being an 
inflammatory-like process (Espey 1980), discussed below.

Immunomodulation and metabolism

Polyunsaturated fatty acids are bioactive lipids capable 
of modulating inflammation and immunity (Michalak 
et  al. 2016). Like all fatty acids, they comprise aliphatic 
hydrocarbon chains with methyl and carboxyl groups at 
either end. Two main immune metabolically relevant PUFA 
categories are recognized, those with an unsaturated carbon 
(double bond) at the third carbon from the methylated 
end (ω-3 or n - 3) and those with a double bond at the sixth 
carbon (ω-6 or n - 6). The ω-3 PUFA include α-linoleic acid 
(ALA), eicosapentaenoic acid (EPA), and docosahexaenoic 
acid (DHA), whereas ω-6 PUFA include linoleic acid (LA) and 
arachidonic acid (AA). The ω-3 and ω-6 PUFA are generally 
considered anti-inflammatory and pro-inflammatory, 
respectively (Michalak et  al. 2016). PUFA were jointly the 
most abundant metabolite class identified and one of the 
most enriched sub-pathways (Fig. 2). Moreover, of the PUFA 
we could categorically identify as ω-3 or ω-6, 4 were ω-3 
and 2 were ω-6. On the surface, this suggests that the PUFA 
anti- vs pro-inflammatory balance in FF is tipped towards 
an anti-inflammatory state. However, the concentrations 
of all PUFA decreased or trended towards a decrease in FF 
with time (Fig. 3A) – including ALA. In cattle, FF ALA levels 
correlate with oocyte competence to form blastocysts 
(Matoba et  al. 2014), likely due to scavenging reactive 
oxygen species (ROS) (Marei et al. 2012). Similar results have 
been reported in pigs (Lee et al. 2017). Moreover, reduced 
pregnancy loss has been reported in cows fed dietary ALA 
(Ambrose et al. 2006). Other antioxidants identified in FF 
include carotenes, glutathione, urate, and ascorbic acids 
(Vitamin C), though significant flux in their levels was not 
observed (Supplementary Table 1).

The metabolite exhibiting the greatest increase in 
FF over time was retinal (4.9-fold). Retinal is one of three 
vitamin A (or retinoid) forms, the others being retinol and 
retinoic acid (RA), of which two forms – trans-retinoic acid 
and 9-cis retinoid acid – exist. Retinol was also detected 
in FF but did not exhibit significant flux (Supplementary 
Table 1). Retinoids act on cells of both the innate and 
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adaptive immune systems (Oliveira et  al. 2018) and are 
generally considered anti-inflammatory (Huang et  al. 
2011). Numerous alcohol dehydrogenases catalyse the 
bidirectional conversion of retinol to retinal (Huang et al. 
2011). Three cytosolic retinaldehyde dehydrogenases 
(RALDH1, 2, and 3) – also known as ALDH1A1, 2, and 3 
irreversibly oxidize retinaldehyde into RA, see reviews 
by Duester 2008 & Gudas 2022. Within the ovary, it is 
presumed that granulosa cells uptake retinol and convert 
it to retinal and RA (Liu et al. 2018). However, there is also 
evidence that CC contain endogenously active retinoid 
receptors and may also be competent to synthesize RA 
(Mohan et al. 2003). The role of RA as an antioxidant in the 
bovine ovary has long been hypothesized (Ikeda et al. 2005). 
However, additional roles of RA in female reproduction 
and more specifically ovarian function were identified. 
For example, several investigations report RA regulation 
of steroidogenesis (for review see Damdimopoulou et  al. 
(2019). Supplementation of in vitro chicken, rat, and 
murine granulosa cell cultures promoted P4 secretion 
(Bagavandoss & Midgley 1987, Pawłowska et  al. 2008, 
Manna et al. 2015). The effect is likely due to RA regulation 
of steroidogenic enzyme activity; however, evidence of 
retinoid involvement in FSH-stimulated induction of FSH 
and LH receptor expression in granulosa cells has been 
reported in in vivo mouse models (Kawai et al. 2016, Kawai 
et  al. 2018). Interestingly, RA supplementation of oocyte 
in vitro maturation medium within an IVP protocol was 
shown to enhance blastocyst development rates in cattle 
(Livingston et al. 2004, Lima et al. 2006); the effect is likely 
to be associated with improved oocyte meiotic maturation 
(Hidalgo et al. 2003, Gad et al. 2018).

Similarly, tryptophan, an essential amino acid, 
trended towards an increase in FF at T2. Essential amino 
acids are involved in immune system regulation (Moffett & 
Namboodiri 2003, Schröcksnadel et al. 2006); Tryptophan 
metabolism specifically has been implicated in the 
control of hyperinflammation and long-term immune 
tolerance induction, as it is a precursor for serotonin and 
melatonin synthesis (Badawy 2019, Platten et  al. 2019). 
Melatonin is a potent antioxidant able to scavenge ROS 
and reactive nitrogen species (RNS) (Galano et  al. 2011). 
Inflammation-related proteolytic enzyme production 
generates toxic oxygen derivatives (Espey & Lipner 1994). 
Thus, it could be argued that the increased tryptophan at 
the time of ovulation may underpin a need to produce 
melatonin. Indeed, melatonin can reduce oxidative 
damage in rat oocytes (Tamura et  al. 2008) and protect 
bovine CCs from oxidative damage, by promoting CC 
secretion of self-protective antioxidant proteins, such as 

CuZn-SOD, Mn-SOD, and glutathione peroxidase (GPx) 
(Valerino Da Cunha et  al. 2015). In addition, melatonin 
reportedly influences bovine oocyte maturation and 
embryo development by upregulating ATPase 6, BMP-
15, GDF-9, SOD-1, GPX-4, and BCL-2 mRNA expression 
and downregulating expression of apoptotic caspase- 3 
(Yang et  al. 2017). Moreover, indoleacrylate, involved in 
tryptophan metabolism, also elevated in peri-ovulatory 
FF (Fig. 3A) and promoted anti-inflammatory responses by 
enhancing IL10 expression and reducing the expression 
of IL6 and Tnf in LPS-stimulated murine macrophages 
(Wlodarska et al. 2017).

Several sphingomyelins, specifically, d18:1/22:0 
(behenoyl), d17:1/16:0, d18:1/15:0, d16:1/17:0, d18:2/24:1, 
and d18:1/24:2 were also elevated at the time of ovulation, 
with sphingomyelins d18:1/16:0 (palmitoyl), 18:1/23:0, 
d18:1/17:0, d17:1/18:0, d19:1/16:0, d18:1/18:1, d18:2/18:0, 
d18:2/23:0, d18:1/23:1, and d17:1/24:1 trending (0.05 < P < 
0.10) towards an increase (Fig. 3A); intriguing observations 
given that sphingomyelin production is correlated with 
acute inflammation (Balsinde et al. 1997) and dysfunctional 
ovarian sphingolipid metabolism is associated with 
polycystic ovarian syndrome (Liu et al. 2019).

The FF concentration of lysophospholipid (LysoPCs) 
metabolites, including 1-oleoyl-GPC (18:1), 1-linoleoyl-
GPC (18:2), 1-linolenoyl-GPC (18:3),1-arachidonoyl-GPC 
(20:4n6), and 1-linoleoyl-GPE (18:2), decreased following 
the LH surge. Lysophosphatidic acid (LPA) was reported 
to induce IL8 and IL6 expression through LPA receptors 
and NF-κB-dependent pathways in granulosa-lutein cells 
recovered from preovulatory follicles of women undergoing 
IVF (Chen et al. 2008). The authors proposed that LysoPCs 
play a crucial role in CL angiogenesis by increasing 
endothelial cell permeability (Chen et al. 2008). However, 
higher FF concentrations of LysoPC (18:1), LysoPC 
(18:2), and LysoPC (18:3) were recently associated with 
adverse outcomes in women who underwent IVF (Song 
et  al. 2019). The published data around the relationship 
between LysoPCs and oocyte competence are somewhat 
contradictory; on the one hand, LysoPCs have been highly 
correlated with apoptosis (Lauber et  al. 2003), but, LPA 
supplementation during IVM was shown to improve bovine 
oocyte maturation, reduce the extent of apoptosis in CCs, 
and sustain the expression of developmental competence-
related factors during oocyte maturation (Boruszewska et al. 
2015). The authors proposed that LysoPCs may influence 
the maturation process by providing proper conditions 
for glucose transport and metabolism by increasing CCs 
glucose uptake and stimulating lactate production. A 
regulatory role for lactate during the follicular-luteal 

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International 
License.

https://doi.org/10.1530/RAF-22-0090
https://raf.bioscientifica.com� © 2023 The authors
� Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/RAF-22-0090
https://raf.bioscientifica.com


N Abdulrahman Alrabiah 
et al.

4:1 e220090

transition, specifically in attenuating E2 production and 
promoting luteinization, has been proposed (Baufeld et al. 
2019, Baufeld & Vanselow 2022), possibly in response to 
the hypoxic conditions of the ovulatory follicle (Shweiki 
et al. 1992, Levy et al. 1995), via hypoxia-inducible factor-
independent mechanism of lactate accumulation under 
hypoxic conditions (Lee et al. 2015).

Xenobiotic metabolites

While growing interest in the interaction between the 
reproductive system and xenobiotics has identified 
associations between xenobiotics and reproductive 
dysfunction in livestock species, including infertility, 
early embryonic loss, decreased oestrus behaviour, and 
reduced ovulation rate and abortion (Panter & Stegelmeier 
2011), the current study is the first to report their presence 
in bovine preovulatory FF. Moreover, metabolites in this 
group represent 12% of all identified metabolites and 
6.8% of the total differentially abundant metabolites. 
In livestock species, xenobiotics gain access to the body 
primarily through feed, drinking water, and veterinary drug 
administration and indeed the 73 xenobiotics identified 
in the current study mainly mapped to the sub pathways, 
food component/plant, drug, benzoate metabolism, and 
chemical. Feed contaminants may be chemical, such as 
dioxins, endocrine disruptors, pesticides, fertilizers, and 
detergents, or biological, ranging from bacterial, fungal, 
or parasitic pathogens to novel organisms (e.g. genetically 
engineered feed) (Scialabba 2022). Following ingestion, 
xenobiotics undergo a broad range of detoxication 
processes to render them less toxic, more polar, and readily 
excretable (Patterson et  al. 2010). The concentration 
of xenobiotic-derived metabolites included benzoate, 
3-(3-hydroxyphenyl) propionate, gluconate, mannonate, 
thymol sulfate, and dimethyl sulfone, the concentration 
of which increased in FF (P < 0.05) between 24 and 2 h pre-
ovulation. The increasing level of xenobiotic metabolites 
in peri-ovulatory FF may be a consequence of increased 
blood flow within the preovulatory follicle, which is 
associated with the LH surge (Acosta et  al. 2003), and/
or the generation of toxic oxygen derivatives during the 
inflammatory-like process of ovulation (Espey & Lipner 
1994), which must be detoxified. Several animal-based 
studies have shown that chemical mixtures can affect 
folliculogenesis and steroidogenesis in vivo (for review, see 
Mourikes and Flaws (Mourikes & Flaws 2021)). Most relevant 
to the current study is working in sheep, exposing pregnant 
ewes to sewage sludge, recognized source of environmental 
contaminants, resulted in increased cell death in ovarian 

follicles, acceleration of follicle development, and altered 
candidate protein expression in ovarian tissue in their 
female offspring (Fowler et al. 2008). There is some evidence 
to suggest that these metabolites possess anti-inflammatory 
properties; for example, gluconate was observed to inhibit 
tumour growth in mice by blocking citrate transport 
into cancer cells (Mycielska et  al. 2019), while thymol, 
circulating as thymol sulphate (Nagoor Meeran et al. 2017), 
reduces inflammation in a rat ulcerative colitis model, by 
suppressing PTGS2 protein expression, as well as IL6 and 
IL1 concentrations (Tahmasebi et al. 2019). Additionally, in 
several rodent models, thymol promotes wound healing by 
inhibiting leucocyte influx to the site of injury, subsequently 
preventing oedema (Riella et al. 2012). Similarly, dimethyl 
sulfone is a potent anti-inflammatory agent with anti-
oxidant properties, although whether the mechanism is 
direct or indirect is unknown (Butawan et al. 2017).

Summary

This study demonstrates that FF metabolites that are 
differentially regulated around the time of ovulation may 
have essential roles in the final stages of oocyte maturation 
and the ovulatory inflammatory cascade, where increased 
metabolites, mainly related to inflammatory/immune 
responses, modulate inflammation and contribute to cellular 
homeostasis. In addition, the identification of xenobiotic 
metabolites in bovine preovulatory FF is interesting, as it 
highlights the exposure of the oocyte within a developing 
follicle to environmental contaminants and raises questions 
about their actions. In conclusion, the dynamic pre-
ovulatory FF content should be considered in the context of 
immunomodulation and as an important milieu regulating 
the balance between oxidants and antioxidants.

This high-resolution analysis of the metabolomic 
dynamics of preovulatory bovine follicular fluid supports 
the hypothesis of the ovulatory process as an inflammatory/
immune cascade and further describes the environment for 
final oocyte maturation, implicating additional metabolic 
pathways as being important including responses to 
external contaminants.
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