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Abstract

The rectified surface EMG signal is commonly used as an estimator of the neural drive to

muscles and therefore to infer sources of synaptic input to motor neurons. Loss of EMG

amplitude due to the overlap of motor unit action potentials (amplitude cancellation), how-

ever, may distort the spectrum of the rectified EMG and thereby its correlation with the

neural drive. In this study, we investigated the impact of amplitude cancelation on this corre-

lation using analytical derivations and a computational model of motor neuron activity, force,

and the EMG signal. First, we demonstrated analytically that an ideal rectified EMG signal

without amplitude cancellation (EMGnc) is superior to the actual rectified EMG signal as esti-

mator of the neural drive to muscle. This observation was confirmed by the simulations, as

the average coefficient of determination (r2) between the neural drive in the 1–30 Hz band

and EMGnc (0.59±0.08) was matched by the correlation between the rectified EMG and the

neural drive only when the level of amplitude cancellation was low (<40%) at low contraction

levels (<5% of maximum voluntary contraction force; MVC). This correlation, however,

decreased linearly with amplitude cancellation (r = -0.83) to values of r2 <0.2 at amplitude

cancellation levels >60% (contraction levels >15% MVC). Moreover, the simulations

showed that a stronger (i.e. more variable) neural drive implied a stronger correlation

between the rectified EMG and the neural drive and that amplitude cancellation distorted

this correlation mainly for low-frequency components (<5 Hz) of the neural drive. In conclu-

sion, the results indicate that amplitude cancellation distorts the spectrum of the rectified

EMG signal. This implies that valid use of the rectified EMG as an estimator of the neural

drive requires low contraction levels and/or strong common synaptic input to the motor

neurons.
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Author summary

The rectified surface EMG signal is commonly used to analyze the neural activation of

muscles. However, since this signal is most often exposed to so-called amplitude cancel-

lation (loss of EMG amplitude due to overlap of positive and negative phases of different

motor unit action potentials), the frequency content of the rectified EMG may not fully

reflect that of the neural drive to the muscle. In this study we prove this notion analyti-

cally and demonstrate, using simulations, that the rectified EMG signal accurately

reflects the neural drive to the muscle only in a limited set of conditions. Specifically,

these conditions include low contraction levels and/or high variability of the neural

drive. In other conditions, the rectified EMG signal from a muscle is a poor predictor of

its neural input. This finding has potentially large implications for the way neural drive

to muscles and neural connectivity (e.g. across muscles or between the brain and a mus-

cle) should be analyzed.

Introduction

The pool of motor neurons innervating a muscle receives a large relative proportion of com-

mon synaptic input [1]. The common input is transmitted to the motor neuron output gener-

ating the neural drive to the muscle, which is the ensemble of discharge timings of the motor

neurons of the pool. The input-output transmission of common input is approximately linear

in many conditions [2–4]. Consequently, the analysis of the neural drive to muscles by motor

unit recordings has the potential to reveal neural connectivity, e.g. between pools of motor

neurons innervating different muscles or between motor neurons and the motor cortex [5,6].

Moreover, the low-frequency components of the neural drive accurately predicts the fluctua-

tions in the isometric force produced by the muscle [7]. Although the neural drive to a muscle

can be measured directly from motor unit recordings [8–10], it is more often indirectly

inferred from surface electromyographic (EMG) signals.

The amplitude of the EMG signal is associated to the strength of the neural drive. How-

ever, it is also influenced by the waveforms of the motor unit action potentials that depend

on anatomy and electrode positioning, among other factors [11,12]. The influence of the

shape of the action potentials can be partly reduced by standardizing the recording configu-

rations and normalizing the EMG signal. However, the motor unit action potentials also act

as high-pass filters of the neural drive (with a cut-off frequency in the range 15–35 Hz) and

therefore may reduce the power of low-frequency components of the neural drive [13]. For

this reason, rectification of the EMG signal is typically recommended [14,15]. While rectifi-

cation may recover low frequencies, it introduces distortion in the power spectrum of the

EMG signal due to amplitude cancellation [13]. Amplitude cancellation can be defined as the

difference in amplitude between the sum of the rectified motor unit action potential trains

(no-cancellation condition, which cannot be experimentally measured) and the rectified

EMG (that can be actually measured) and can therefore be modeled as a signal-dependent

noise term influencing the spectral properties of the rectified EMG [16]. Simulation studies

have shown that amplitude cancellation implies a reduction of >50% in the EMG amplitude

(i.e., the standard deviation of the EMG or square root of signal power) with respect to the

no-cancellation EMG, even at low contraction levels [17,18]. Since the difference between

no-cancellation EMG and rectified EMG has a colored spectrum [13], amplitude cancellation

may limit the possibility of accurately inferring individual frequency components of the neu-

ral drive to muscle from the rectified EMG [13,18]. The degree of this distortion in the
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rectified EMG power spectrum is however not yet understood since amplitude cancellation

has been previously investigated in terms of its total power but not of the distribution of its

power across frequency bands.

Here, we present a theoretical and simulation study that unravels the effect of amplitude

cancellation on the frequency components of the rectified EMG. The simulations were based

on a realistic computational model that characterized a motor neuron population and the sur-

face EMG and force generated by the muscle it innervates (Fig 1). Two surface EMG signals

were simulated. The regular EMG as well as a no-cancellation EMG (EMGnc) obtained by rec-

tification of action potentials prior to summation across motor units. Importantly, this implies

that EMGnc cannot be measured experimentally, but can only be obtained in simulations. The

correlations between the simulated neural drive to the muscle (the ensemble of discharge tim-

ings of all motor neurons) and the two simulated EMG signals were quantified to reveal the

degree to which this relation was affected by amplitude cancellation. Together, the theoretical

and the simulation analyses demonstrate that amplitude cancellation in many conditions dis-

rupts the ability of the rectified surface EMG signal to reflect the neural drive in an accurate

way.

Results

Theoretical analysis

We can approximate the rectified EMG (|EMG|) signal as:

jEMGðtÞj ¼ jsðtÞ � pðtÞj ð1Þ

and the no-cancellation EMG (EMGnc) as:

EMGncðtÞ ¼ sðtÞ � jpðtÞj; ð2Þ

where t denotes time, s(t) is the neural drive to the muscle, mathematically represented as a

series of delta functions centered at the discharge instants of the motor neurons, and p(t) is the

average action potential across all motor units. These approximations correspond to assuming

that all motor units have the same action potential, as the average waveform among all action

potential shapes. The effect of amplitude cancellation can be characterized by the signal c(t),
which we define as the difference between the rectified and the no-cancellation EMG:

cðtÞ ¼ EMGncðtÞ � jEMGðtÞj ¼ sðtÞ � jpðtÞj � jsðtÞ � pðtÞj ð3Þ

Amplitude cancellation is the amplitude of the signal c(t).
First, we consider the cross-correlation function (R(τ)) between the no-cancellation EMG

and the neural drive to the muscle. This can be derived as follows [19]:

REMGnc;s
ðtÞ ¼ EfEMGncðtÞ � sðt þ tÞg

¼ EfsðtÞ � jpðtÞj � sðt þ tÞg

¼ Ef
ð1

� 1

sðaÞ � jpðt � aÞjda � sðt þ tÞg

¼ Ef
ð1

� 1

sðaÞ � sðt þ tÞ � jpðt � aÞjdag

¼

ð1

� 1

Rssðt � aþ tÞ � jpðt � aÞjda

ð4Þ
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Fig 1. In the model, the common synaptic input to the motor neurons is the sum of 30 sine waves (frequencies:

1–30 Hz), each with an amplitude determined by a gain (G1F1-F30) that is determined by the values of a random

variable with uniform distribution between 0 and 1. The gain G2 determined the average power of the common

input (low, medium, or high) and an offset was added that determined the average contraction level. For each motor

unit, independent synaptic noise was added before the motor unit model determined the motor unit spike trains

(timing of motor neuron action potentials). For each motor unit, the spike train was convolved with pre-defined

templates for the motor unit twitch forces, and the raw and rectified motor unit action potentials. By summation of the

force and the EMG signals for each motor unit, the force, EMG, and EMGnc for the full muscle were obtained. The

cumulative spike train (CST) was calculated as the algebraic sum of all motor unit spike trains (neural drive to the

muscle).

https://doi.org/10.1371/journal.pcbi.1006985.g001
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By the substitution β = t-α, Eq 4 can be re-written as:

REMGnc;s
ðtÞ ¼

ð1

� 1

Rssðbþ tÞ � jpðbÞjdb

¼ Rssð� tÞ � jpðtÞj
ð5Þ

Since Rss(τ) is symmetric, Eq 5 can be re-written as:

REMGnc;s
ðtÞ ¼ RssðtÞ � jpðtÞj ð6Þ

The cross spectrum (G) between EMGnc and s(t) is the Fourier transform of the cross-corre-

lation function [19]:

GEMGnc;s
ðf Þ ¼ FfREMGnc;s

ðtÞg

¼ FfRssðtÞ � jpðtÞjg

¼ Gssðf Þ � HPðf Þ;

ð7Þ

where F{�} is the Fourier transform operator, Gss(f) is the cross spectrum of the neural drive

and Hp(f) is the power spectrum of the rectified action potential. Eq 7 implies that the cross

spectrum between EMGnc and s(t) is equivalent to Gss only if Hp(f) = 1 for all f. In this case, the

coherence between the no-cancellation EMG and the neural drive to muscle (cross-spectrum

normalized by auto-spectra) would be equal to 1 for all frequencies. This is the case only if the

rectified action potential is a delta function, thus not altering the neural drive. Therefore, a per-

fect correlation between EMGnc and the neural drive never occurs. Instead, the level of correla-

tion depends on the spectrum of the action potential.

Next, we consider the correlation between the rectified EMG and the neural drive. This is

derived as follows:

RjEMGj;sðtÞ ¼ EfjEMGðtÞj � sðt þ tÞg

¼ EfjsðtÞ � pðtÞj � sðt þ tÞg

¼ Efj
ð1

� 1

pðaÞ � sðt� aÞdaj � sðt þ tÞg

ð8Þ

Since s(t)� 0 for all t, Eq 8 can be re-written as:

RjEMGj;sðtÞ ¼ Efj
ð1

� 1

pðaÞ � sðt� aÞ � sðt þ tÞdajg

� Ef
ð1

� 1

jpðaÞj � sðt� aÞ � sðt þ tÞdag

¼

ð1

� 1

jpðaÞj � RssðtþaÞda

ð9Þ

Comparing Eqs 5 and 9, we get:

RjEMGj;sðtÞ � REMGnc;s
ðtÞ; 8t ð10Þ

Eq 10 shows that the correlation between the rectified EMG and the neural drive is always

equal to or smaller than the correlation between the no-cancellation EMG and the neural

drive. The two correlation levels will the same only if the action potential waveform is only

positive, which would correspond to the absence of cancellation. Therefore, although the no-

cancellation EMG is not a perfect estimate of the neural drive, it would provide better esti-

mates of the neural drive to muscle than the rectified EMG. The difference between the
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rectified EMG and the no-cancellation EMG is the cancellation signal term (Eq 3) and cancel-

lation determines the decrease in association between the corresponding EMG signal and the

neural drive. The above derivations show that in all conditions, cancellation is detrimental to

the association between EMG and the neural drive to muscle.

Simulations

Using the computational model (Fig 1), the activity of the motor neuron population, the force,

and the EMG (“regular” rectified EMG and EMGnc) were simulated. Based on a synaptic input

signal, the cumulative spike train (CST; algebraic sum of all motor unit spike trains) represent-

ing the neural drive to the muscle [2,7], the muscle force, the rectified and the no-cancellation

EMG signals were simulated. The no-cancellation EMG was obtained by summing the recti-

fied motor unit action potentials. EMGnc, which cannot be experimentally derived, was used

to assess the effect of amplitude cancellation on the rectified EMG when inferring frequency

components of the neural drive to muscle [17]. The synaptic input to each motor neuron con-

sisted of a signal common to all motor units and an independent noise source [2]. The com-

mon synaptic input was modeled as the sum of a series of 30 sine waves (frequency: 1, 2, 3, . . .

30 Hz) with random phases and amplitudes and with an offset. Across the simulations, we var-

ied the number of motor units and the characteristics of the common input. Each combination

of these settings was repeated 15 times. The amplitude of each imposed sine wave was assigned

a random value in each repetition. Using linear regression analysis, the strength of the associa-

tion between the power of the neural drive and each of the EMG signals (rectified EMG and

EMGnc) at each imposed frequency was obtained across all simulated conditions.

The number of recruited motor units and their average discharge rate increased with the

offset of the common input. Across all simulations with the low offset (contraction level: 1.4%

MVC) and low common input variability, 18% of the motor units were recruited with an aver-

age discharge rate of 5.9 pulses per second (pps). The number of recruited units and their dis-

charge rates increased steadily as the offset increased, reaching 53% recruited motor units, on

average discharging at 27.7 pps at the highest offset (contraction level: 17.1% MVC). The dis-

charge rates across the motor unit pool were highest for the smallest motor units. An increase

in the variability of the common synaptic input also determined an increase in the number of

recruited motor units and their discharge rates. On average, the number of recruited motor

units increased by 22 percentage points and the average discharge rate by 3.7 pps when

increasing the variability of synaptic input in the analyzed range. The impact of these different

recruitment patterns on the evoked force is illustrated in Fig 2. As expected, the main determi-

nant of force variability was the amplitude of the variability of the common input to the motor

neuron population. In addition, the force was less variable when simulated with a larger motor

neuron population, as previously shown [20]. In the simulations with low amplitude of com-

mon input, the standard deviation of force was 0.3–0.5% of MVC, which corresponds to the

variability experimentally observed when young healthy subjects are asked to maintain a

steady contraction level with visual feedback [21–24]. For example, the coefficient of variation

(standard deviation divided by the mean) of force is usually >5% for low contraction levels

(<5% MVC) and stabilizes at<3% at higher contraction levels [21–24], which is similar to the

values for low common input in Fig 2(D). Conversely, force fluctuations are expected to be

substantially greater during most functional tasks, such as gait, where force modulation is

needed. In this way, the simulations with higher variability of the common input (Fig 2B and

2C) represents such conditions in a more accurate way.

Fig 3 shows the neural drive to the muscle (CST), the EMG signals and the force in the time

and frequency domain in one simulation. The median frequency of the raw EMG signal over

Amplitude cancellation influences association between neural drive and surface EMG
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all simulations with low common input variability was 72.0±14.8 Hz, which is within the range

of experimentally observed values [25–27]. This figure enables a visual comparison between

the characteristics of the signals, and the degree to which the neural drive is reflected in the

other signals. The variation in the power of the neural drive across the different frequencies

reflects the random amplitudes of the sine waves composing the common synaptic input [2].

In the time-domain, the amplitude of EMGnc was always greater than for the rectified EMG

indicating the effect of amplitude cancellation (Fig 3C). The two EMG signals, however, were

relatively similar and usually exhibited peaks at the same time instants. Consequently, their

spectral characteristics were similar, but not identical (Fig 3D). The power spectrum of the

EMGnc closely resembled that of the neural drive (Fig 3(B)), to a greater extent than for the

rectified EMG. This illustrates the distortion imposed by amplitude cancellation in the fre-

quency domain. As expected, the low-pass filtering properties of the motor unit twitches

Fig 2. Three representative examples of simulated forces with low (A), medium (B), and high (C) amplitudes of

the variability of the common synaptic input to a population of 400 motor neurons. Panel D illustrates the force

standard deviation (mean±std) for all simulated conditions. Here, the symbols along each line represent different

offsets of the common synaptic input and the different lines represent different amplitudes of common input

variability and/or different number of motor units.

https://doi.org/10.1371/journal.pcbi.1006985.g002
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implied that only the lowest frequency components of the neural drive were transmitted to

force (Fig 3F).

Fig 4 shows examples of the linear relation between the distribution of power across fre-

quencies for the CST and for the two EMG signals across 15 repetitions. Specifically, the power

at 2, 15, and 28 Hz are shown for simulations with high common input amplitude. For the

Fig 3. Temporal and spectral representation of the cumulative spike train (CST; A, B), the rectified EMG and

EMGnc (C, D), and force (E, F). In panel D, the normalized power spectrum of the raw (unrectified) EMG signal in

the 0–250 Hz range is included in the dashed box. In this example, the muscle consisted of 100 motor units, the

amplitude of the variability of the common synaptic input was high (force standard deviation: 1.8%MVC), and the

average contraction level was 14.9%MVC. The power spectra (B, D, F) indicate power only for integer frequencies that

were the frequency components used to simulate the common input.

https://doi.org/10.1371/journal.pcbi.1006985.g003
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EMGnc, an association was present for these three frequencies (r2�0.44), whereas the associa-

tion was much weaker for the rectified EMG. For the rectified EMG, however, the linear corre-

lation was strongest at the highest frequencies (r2 = 0.15 at 2 Hz, Fig 4(A); r2 = 0.29 at 28 Hz,

Fig 4(E)). These observations are confirmed by average values of coefficient of determination

across all simulations (Fig 5). Here, average r2 is represented as a function of contraction level

for different frequency bands across the simulation conditions. Across all conditions, the cor-

relation between EMGnc and CST was high (mean r2 = 0.59±0.08) and was largely unaffected

by contraction level. Conversely, the correlation between EMG and CST was relatively high at

low contraction levels (r2�0.37), and decreased greatly when the contraction level (and thus

Fig 4. Linear relations between the power at three frequencies (2 Hz: A, B. 15 Hz: C, D. 28 Hz: E, F) in the CST

and the rectified EMG (A, C, F) as well as the CST and EMGnc (B, D, F). The data in these examples represent

simulations in which the muscle consisted of 100 motor units, the amplitude of the variability of the common synaptic

input was high (force standard deviation: 1.8%MVC), and the average contraction level was 14.9%MVC. In each panel,

each circle represents the power of the two signals in one of the 15 simulations conducted with these parameter values.

https://doi.org/10.1371/journal.pcbi.1006985.g004
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amplitude cancellation) increased. This trend was observed across all conditions, but the

decrease was strongest when the amplitude of the common input was low. For example, r2 was

0.19±0.05 with low common input and 0.35±0.16 with high common input, for contraction

levels >10% MVC. The lowest correlations were typically observed for the lowest frequencies.

For example, at contraction levels between 5–10% MVC, r2 for the beta band (16–30 Hz) was

on average 0.32±0.14 higher than for the delta band (1–5 Hz). Finally, the number of motor

units did not have a large effect on the values of r2.

The values of amplitude cancellations across all simulations were between 37 and 71%,

which corresponded to the ranges reported in previous simulation studies [17,18]. In general,

the lowest levels of amplitude cancellation were achieved with low contraction levels and high

common input. The level of amplitude cancellation was strongly negatively correlated with the

average correlation between CST and rectified EMG across all imposed frequencies (r = -0.83;

Fig 6). While the values of r2 were similar to those of EMGnc (�0.5) at low levels of amplitude

cancellation (<40%), these values decreased at higher levels of amplitude cancellation. Con-

versely, in the simulations where the correlation between the rectified EMG and CST was low

(i.e., those with high levels of amplitude cancellation) the correlation between EMGnc and CST

was unaffected.

Fig 5. Values of r2 for the linear relations between CST and rectified EMG and EMGnc respectively, as functions of the contraction levels across all simulations. In

each panel, black lines represent the relation between CST and rectified EMG (symbols represent average values for the 1–5 Hz, 6–15 Hz, and 16–30 Hz frequency bands,

respectively; see inset in panel C), while grey lines represent the relation between CST and EMGnc (each line represents the same frequency bands as for CST-EMG).

Panels A, B, C show results for simulations with 100 motor units, while panels D, E, F represent 400 motor units. Panels A, D represent low variability of the common

synaptic input to the motor neurons, panels B, E medium variability, and panels C, F high variability.

https://doi.org/10.1371/journal.pcbi.1006985.g005
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Discussion

In this study, we systematically investigated the relation between the magnitude of amplitude

cancellation in the rectified surface EMG signal and the ability of this signal to reflect the neu-

ral drive to the muscle. The neural drive is the ensemble of discharge timings of all motor neu-

rons innervating the muscle. We imposed common synaptic input to the motor neurons in

the frequency band 1–30 Hz and therefore analyzed the neural drive in this frequency range.

First, using an analytical approach we demonstrated that amplitude cancellation implies that

the rectified EMG is not an optimal estimator of the neural drive. Next, the simulation results

indicated that amplitude cancellation strongly impairs this ability to a degree where some fre-

quency components of the neural drive would only be weakly present in the EMG (Fig 6). As

also shown in previous studies, the level of amplitude cancellation was low when few motor

units were active, but increased when more motor units were recruited [17,18]. This trend was

clearly reflected in the simulations, where the correlation between the frequency components

in the neural drive and in the rectified EMG was high at low contraction levels, but decreased

rapidly when the contraction level increased (Fig 5). An important finding of the study was

that the rate of this decrease depended on the strength and frequency band of the neural drive

component. Specifically, this implies that strong oscillating components in the neural drive

are required to overcome the distortion arising due to amplitude cancellation. Moreover, the

result suggests that low-frequency components of the neural drive in the rectified EMG are

more susceptible to this distortion. Finally, the simulations confirmed the observation from

the derivations (Eq 7) that even without amplitude cancellation, the EMG signal does not pro-

vide a perfect characterization of the neural drive (average r2 for EMGnc and CST was 0.59),

because of the effect of the shape of the action potentials.

Fig 6. The relation between the average r2 (across all frequencies) for CST-EMG and the degree of amplitude

cancellation in the EMG (black circles) across all simulation conditions. In addition, the average r2 for CST-EMGnc

(grey x’s) is included. Here, the value on the axis represents the level of amplitude cancellation from the EMG in the

same simulation.

https://doi.org/10.1371/journal.pcbi.1006985.g006
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These finding can explain a number of previous experimental observations. For example,

although the neural drive during steady isometric contractions often contains strong low-fre-

quency components (<5 Hz) [1], these are typically not observed in coherence analyses involv-

ing the rectified EMG [28–31]. Conversely, in dynamic tasks such as gait, where strong low-

frequency components of the neural drives determine substantial force fluctuations [7], high

levels of EMG-EMG coherence (indicating strong shared neural drive between two EMG sig-

nals) can be observed in the delta band [32–36]. Similarly, when subjects are asked to generate

a steadily increasing isometric force from rest to maximum (i.e., the strongest low-frequency

variation in the neural drive that can be generated), the EMG amplitude typically displays an

increasing trend similar to that of force [37–39]. Together, these observations indicate that

low-frequency components of the neural drive can be detected by the rectified EMG, but only

if their power is sufficiently high. Furthermore, whereas low-frequency components of the

neural drive appear to be disrupted in the rectified EMG during steady contractions, neural

inputs to motor neurons at higher frequency bands (>20 Hz) have been observed in such con-

ditions from EMG analysis [15,28–31], which supports the finding that EMG amplitude can-

cellation primarily distorts the low frequencies.

Overall, the results identify a limitation related to the analysis of the neural drive to muscles

based on the EMG signal. This limitation has implications for many methods for investigating

the neural control of movement. Such applications include muscle synergy analysis that investi-

gates modular control of activation of multiple muscles [40,41]. In such analysis, the rectified

EMG signals are usually low-passed filtered—sometimes with cut-off frequencies as low as 4 Hz

[42]—which implies a risk that the signals considered (only the lowest frequencies) are heavily

corrupted due to amplitude cancellation. This may particularly be the case when applied to con-

ditions with little muscle force variability such as postural control [43,44], whereas applications

such as gait [45] likely involves sufficiently large variations in the low-frequency content of the

neural drive to minimize the distortion of the EMG spectrum. Similarly, the results also have

implications for the comparison between the rectified EMG and mechanical measures (force/

acceleration), which have been used, e.g., to explain the role of neural oscillations in physiologi-

cal tremor [46]. It should be underlined, however, that this study does not suggest that all analy-

ses of rectified EMG signals are invalid. Conversely, the results imply that the rectified EMG is

often exposed to some degree of distortion due to amplitude cancellation, which may affect

study outcomes to varying degrees depending on the characteristics of the motor task.

Since amplitude cancellation reflects the amount of overlap of motor unit action potentials,

its magnitude can be reduced by increasing the selectivity of the recording and/or recording

derivation. The most selective interface is intramuscular EMG, where recordings with almost

no overlap between action potentials can be achieved at low contraction levels [47]. Although

the amplitude cancellation, and thus the distortion of the EMG signal, is minimal in such

recordings, the high selectivity may imply a poor representation of the neural drive from a

global analysis of the signal properties. Depending on the contraction characteristics, the activ-

ity of a critical number of motor units needs to be reflected in the signal for it to accurately rep-

resent the neural drive [2]. In this way, increasing the recording selectivity as a solution to this

problem implies a trade-off between reducing amplitude cancellation and maintaining a suffi-

cient number of motor units contributing to the signal. It is, however, unknown, what charac-

terizes the optimal trade-off between these factors and if a precise characterization of the

neural drive can be achieved, even in the optimal case. Instead, a more plausible solution to

the problem could be to base the analysis on motor unit spike trains rather than on EMG [2].

Although the process of spike train identification adds an additional level of complexity to

experimental protocols, recent advances in EMG decomposition enable non-invasive identifi-

cation of large numbers of spike trains [8–10].
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In the theoretical analysis, the EMG signals were analytically described on the basis on one

action potential waveform (Eqs 1 and 2). This is a simplification with respect to experimental

conditions where action potentials across a motor unit pool exhibit variations in amplitude as

well as duration [48]. Whereas such variations will affect the filtering properties of the action

potentials (Eq 7), they will not impact on the main conclusion drawn from the theoretical anal-

ysis. Indeed, the theoretical predictions have been fully confirmed by the numerical simulation

results, that were achieved using realistic action potentials for each individual motor unit.

The primary limitation of the model is that the simulated discharge rate of the motor units

does not saturate above a critical excitation limit. Experimentally, this is observed when dis-

charge rates of motor units recruited at low forces cease to increase with increasing force,

while the discharge rate of motor units recruited at higher forces continue to increase [49].

Conversely, in the model, the discharge rates of all motor units (once recruited) increase

monotonically with input excitation level. The rate at which motor unit discharges saturate

varies substantially across muscles [50], but the simulated discharge rates for the smallest

motor units at the highest contraction levels (approximately 30 pps) are above the rates that

would normally be assumed as their maximum [24]. In spite of the fact that the discharge rates

of low-threshold motor units at some point cease to increase, evidence suggests that their dis-

charge rates continue to reflect variation in the common synaptic input [51]. To the best of

our knowledge, no computational motor neuron model accurately captures this behavior.

Instead, we selected the model with the most realistic amplitude and phase response [52] and

limited the simulations to relatively low contraction levels where discharge rates of low-thresh-

old motor units did not greatly exceed those observed experimentally. Nevertheless, the failure

of the model to fully recreate realistic conditions may have biased the results. When the simu-

lated discharge rates of low-threshold motor units exceeded the rate required for tetanic force

(approximately 20–24 pps [53]), an increase in the offset of the synaptic input would imply

not only recruitment of new motor units (serving to increase the contraction level) but also

additional action potentials discharged by low-threshold units (not generating more force).

Thereby, the density of action potentials, and thus the level of amplitude cancellation, would

be higher than in experimental conditions for that particular contraction level. This would

imply that the simulations to some degree overestimated the rate by which the correlation

between the rectified EMG and the CST declined with contraction level (Fig 5). However, we

believe that the impact of this error on the outcome of the study is relatively small. Indeed,

first, in most simulation conditions the correlation already began to decline at approximately

12% MVC where simulated discharge rates presumably corresponded to natural conditions

(Fig 5). Second, the additional action potentials at the highest simulated contraction levels are

those with the lowest amplitude due to the relatively low innervation numbers of low-thresh-

old motor units. Therefore, their potential impact on the EMG signal is minimal.

Finally, a limitation of the simulation strategy is that, the average amplitude of the sine

waves imposed as common synaptic input to all motor neurons across the 15 repetitions was

uniform for all frequencies. This assumption may not apply to experimental conditions. Since

synaptic inputs at different frequency bands are often attributed to specific neural structures

[51,54,55], some frequency-dependent variability in the amplitude would be expected across

tasks. For example, synaptic input at approximately 8 Hz has been attributed to stretch-sensi-

tive afferent feedback [56], whose synaptic strength can be modulated by presynaptic inhibi-

tion in task-dependent ways [57]. In addition, the strength of the synaptic input in the beta

band also depends on the motor task [58]. This implies that the relation between the variability

of the neural drive and the muscle force (Fig 2) cannot be generalized to all conditions. For

example, it is possible that a contraction with low variability of synaptic input at low frequen-

cies (i.e. little force variability) has a strong beta band input. In this case, the force steadiness
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cannot be used as a measure for the potential distortion of the spectral components of the rec-

tified EMG at high frequencies. However, the linearity of the motor neuron pool [2–4] implies

that the components of the neural drive reflecting synaptic input from different neural struc-

tures can be identified more accurately from the CST than from EMG.

In conclusion, the study demonstrates that amplitude cancellation impairs the degree to

which the rectified EMG signal reflects the neural drive to the muscle, except in conditions

with low contraction levels and/or highly variable common synaptic input. This distortion of

the EMG signal affects primarily its lowest frequency components.

Methods

Computational model

The model architecture is illustrated in Fig 1. To summarize, the synaptic input to the pool of

motor neurons determined their discharge pattern. Based on those patterns, the force, EMG,

and EMGnc were simulated.

Motor neuron model

The number of motor neurons was set to 100 or 400. Each motor neuron was simulated with

Hodgkin Huxley-type models [59,60] and consisted of two compartments (soma and dendrite)

for motor neurons with six conductances (leak conductances for the soma and dendrite, com-

partment coupling conductances between the 2 compartments, and 3 voltage-dependent con-

ductances, sodium Na, fast potassium Kf, and slow potassium Ks) and four state variables (m,

h, n, q). Membrane-specific capacitance was set to μ1 F and axial resistivity to 70 Ocm. The

soma-specific resistance ranged from 1.15 to 0.65 kOcm2 and the dendrite-specific resistance

from 14.4 to 6.05 kOcm2. Equilibrium potentials were 120 mV for sodium and 10 mV for

potassium, while the equilibrium potential of the membrane and leakage voltages were 0 mV.

Input to the motor neurons was simulated as injected currents into the soma compartment.

The ranges of model parameters were adopted from a previous study [61] with exponential

distributions across the motor neuron population (i.e. many low-threshold motor units, few

high-threshold motor units) [53]. The differential equations of the model were solved in

MATLAB 2015a with the function “ode15s.”

The simulated motor neuron spike trains were used as inputs to simulate EMG and force.

In addition, the algebraic sum of all motor unit spike trains (CST) was obtained as a represen-

tation of the neural drive to the muscle.

EMG model

A library of motor unit action potentials was simulated using a previously proposed model

[62]. The model included 101,276 individual muscle fibers (average length: 100 mm) with

innervation zones distributed in a 10 mm region around half of the fiber length. The muscle

fibers were located in a cylindrical shape (thickness: 27.5 mm; conductivity: 0.1 S/m in radial

and transverse directions, 0.5 S/m in longitudinal direction) around a bone (radius: 7.5 mm;

conductivity: 0.02 S/m). In addition, a subcutaneous layer (thickness: 1 mm; conductivity: 0.05

S/m) and skin (thickness: 2 mm; conductivity: 1 S/m) surrounded the muscle. For the simula-

tions, 15 electrode pairs (circular; radius: 2 mm; inter-electrode distance: 10 mm) were

included equally distributed around this cylinder halfway between the innervation zone and

the end of the fibers. For each electrode, 100 or 400 motor units were selected within a circular

area (radius: 7 mm or 14 mm, respectively) centered 5.3 or 10.5 mm below each electrode. For

each motor unit pool, the innervation numbers were exponentially distributed (range: 6–69).
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In this way, 15 different sets of motor unit action potentials were generated for each of the two

muscles consisting of 100 or 400 motor units. Interference EMG signals were simulated as the

sum of the motor unit action potential trains (convolution of the motor neuron spike trains

with the action potentials assigned to that motor neuron). In addition to the interference EMG

signal, a EMGnc was simulated by rectifying the action potentials prior to convolution with the

spike trains.

Force model

Muscle force was simulated based on the motor unit spike trains using a previously proposed

model [53]. According to this model, the motor unit twitches were modelled as critically

damped second-order system where the peak amplitude varied 100-fold across the motor unit

population. The contraction time (time from twitch onset to peak) ranged from 30 to 90 ms.

Both twitch parameters were distributed according to an exponential relation, so there were

most low-amplitude, slow-twitch units. In addition, the gain of each twitch depended in a

non-linear way on the instantaneous motor unit discharge rate.

The MVC force was estimated in pilot simulations as the force elicited by the muscle when

all motor units were active at a discharge rate equivalent to the peak discharge rate proposed in

previous simulation studies [53].

Simulation strategy

The synaptic input to each motor neuron consisted of a common and an independent term

and an offset. The independent term was low-passed filtered (<100 Hz) white Gaussian noise

scaled in order to get a realistic variability of the inter-spike intervals (coefficient of variation:

10–30% [22,63,64]) in the absence of common input. The common synaptic input was the

sum of 30 sine waves (frequency: 1–30 Hz) with random phases. This range of frequencies

were selected as they represent those most often analyzed in experimental conditions. The

gains G1F1-F30 (Fig 1) were random values selected from a uniform distribution between 0 and

1. The gain G2 determined the average variability of the common input and was scaled to get

different values of the strength of the common input and of the variability of force. Across sim-

ulations, three different values were assigned to G2: 5.7�10−5, 1.5�10−4, 2.4�10−4. These values

ensured standard deviations of force equivalent to those observed when subjects aim to main-

tain stable force with visual feedback and equivalent to more functional, force-varying tasks,

respectively (see Results). The offset was scaled to simulate different average contraction levels

and was assigned the values 3.5�10−3, 3.8�10−3, 4.0�10−3, 4.3�10−3. These values ensured average

contraction levels between 1 and 20% MVC. All combinations of these values for G2 and

offset were simulated using motor neuron populations consisting of 100 and 400 motor units,

respectively. The combination with the highest G2 (2.4�10−4) and the highest offset (4.3�10−3)

was excluded since it evoked contraction levels >20% MVC and thereby involved unrealistic

motor unit discharge patterns (see Discussion for details). In total, this implied 22 simulated

conditions. Each condition was repeated 15 times. In each of these repetitions, the indepen-

dent synaptic noise, the phase of each sine wave, and the values assigned to G1F1-F30 varied.

Furthermore, the EMG signals for each of these repetitions were based on different sets of

motor unit action potentials (see EMGmodel for details).

Analysis

Across the 15 repetition of each simulation condition the amplitude of each of the 30 imposed

frequencies (1–30 Hz) were extracted from the power spectra of the CST and the two EMG sig-

nals (rectified EMG and EMGnc). The linear correlations between these power amplitudes of
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the CST and the rectified EMG, and the CST and EMGnc were analyzed separately for each fre-

quency. For each simulation condition, the average values for r2 in the 1–5 Hz band (delta

band), the 6–15 Hz band (alpha band), and the 16–30 Hz band (beta band) were calculated. In

this way, the association between the neural drive and the EMG was identified across input fre-

quencies. For each condition, the level of amplitude cancellation was calculated as the ratio

between the average values of the cancellation term (Eq 3) and EMGnc.
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