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* Correspondence: renata.francik@uj.edu.pl (R.F.); slawomir.francik@urk.edu.pl (S.F.);

Tel.: +48-12-62-05-512 (R.F.); +48-12-662-46-41 (S.F)

Abstract: One of the aspects of biological activity of vanadium is its influence on carbohydrate
metabolism. For more than 30 years, various vanadium complexes have been tested as antidia-
betic agents. This study researched organic vanadium complexes with bipyridinium ligands and
their influences on metabolic rate, as well as on the antioxidant activity of adipose tissue. The
effects of sodium (2,2′-bipyridine) oxidobisperoxovanadate (V) octahydrate (known as the V com-
plex), bis(2,2′-bipyridine) oxidovanadium (IV) sulfate dehydrate (known as the B complex), and
bis(4.4′-dimethyl-2,2′-bipyridine) oxidovanadium (IV) sulfate dihydrate (labelled as the BM complex)
were assessed. Solutions of the tested complexes were introduced intraperitoneally with a probe to
animals fed with either a control diet or a high-fat diet. The BM complex had a significant influence
on the increase in ferric reducing antioxidant power, as well as on the concentration of glutathione
in the adipose tissue of rats fed with a high-fat diet. The V complex increased the concentration of
glutathione in the adipose tissue of rats fed with control fodder, as well as significantly reduced the
relative change in rat weight for the high-fat diet. Furthermore, the presence of each tested vanadium
complex had an impact of statistically significant increase in basal metabolic rate, regardless of
applied diet. Further research on these organic vanadium complexes is necessary to understand the
mechanisms responsible for their ability to affect adipose tissue.

Keywords: organic vanadium complexes; adipose tissue; antioxidants; high-fat diet; metabolic rate

1. Introduction

Nowadays, excess body weight and obesity have become a worldwide problem [1].
Over the last decade, the percentage of the population with an obesity problem has in-
creased from 10% to 40% in most European countries [2]. These dependencies are explained,
among others, by disturbance in redox states [3], especially if taken into consideration
that antioxidant body capacity inversely correlates with central obesity and body fat [4].
Moreover, a diet rich in fats and carbohydrates may induce more severe oxidative stress
and inflammation in obese people in comparison to those with a healthy BMI (Body Mass
Index) [5].

At present, adipose tissue is considered to be an endocrine organ. Adipocytes produce
adipocytokines, such as adiponectin, resistin plasminogen activator inhibitor–1, tumor
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necrosis factor alpha, or interleukin-6 [6]. The profile of biological effects of these molecules
is broad and includes, inter alia, regulation of energy expenditure, insulin sensitivity, and
fatty acid oxidation [7]. The excess of oxidative stress in adipocytes may influence the
disturbance of adipocytokine secretion, which might explain the coexistence of obesity
with metabolic syndromes [8]. The intensification of oxidative stress in fatty tissue, in turn,
may be associated with various factors, such as cellular damage because of the enormous
size of adipocytes [9] or disturbance in mitochondrial metabolism by excessive oxidation
of fatty acids [10]. Moreover, adipocytes constitute a source of proinflammatory cytokines
that lead to chronic inflammation under obesity conditions [11].

For these reasons, the attempt to find new strategies to alleviate oxidative stress in
obesity by influencing fatty tissue seems to be justified and, thus, has become the object of
many research studies [12–14]. Alcalá et al. [12], investigated the influence of vitamin E
combined with a high-fat diet on the activity of selected antioxidative enzymes and on the
parameters characterizing the level of oxidative stress in adipose tissue. Farhangi et al. [13]
and Sohet et al. [14], studied the effects of vitamin D combined with a high-fat diet and
CoQ10 combined with a fat-fructose diet on selected parameters of oxidative stress in
adipose tissue, respectively. As vanadium complexes also have shown antioxidant activity
in rats with streptozotocin-induced diabetes [15,16], they may prove to be an interesting
alternative in the case of antioxidative status disturbance in adipose tissue in the context
of obesity.

The evaluation of the influence of vanadium complexes on the parameters of the
oxidative state in adipose tissue has not yet been investigated, both with regard to their
beneficial health effects in living organisms, as well as to their contributions to pathological
changes. Such complexes have been shown to possess insulinomimetic properties, and
their efficacy has been relatively low in doses [17–19].

Considering the above, we aimed to test the influence of three organic vanadium
complexes (sodium [2,2′-bipyridine)oxidobisperoxovanadate (V) octahydrate, bis (2,2′-
bipyridine)oxidovanadium (IV) sulfate dehydrate, and bis (4,4′-dimethyl-2,2′-bipyridine)
oxidovanadium (IV) sulfate dihydrate) combined with high-fat and control diets on the
antioxidant activity in adipose tissue. Nowadays, the prevailing view is that adipose tissue
is actively involved in metabolic changes in organisms. Based on our conducted research,
we present the effects of vanadium complexes on the antioxidant state in adipose tissue,
the importance of this tissue in metabolic changes, and its participation in protection from
excessive amounts of free radicals.

2. Materials and Methods

All rats were treated according to the “Guide for the Care and Use of Laboratory
Animals” of the National Academy of Sciences. All procedures were conducted with the
ethical approval of the I Local Ethics Committee for Animal Experiments of Jagiellonian
University in Krakow (80/2009 17 September 2009).

Using the MetaSite computer program (v 6.0.3, Molecular Discovery Ltd., Boreham-
wood, Hertfordshire, UK), which allows for the prediction of xenobiotic metabolism,
applicable metabolites were selected for the tested ligands. MetaSite is a computational
model that enables the prediction of cytochrome P450 (CYP450) dependent metabolism in
phase I biotransformations. This software is primarily designed to indicate the atoms in
the molecular structure that are most vulnerable to metabolic changes resulting from the
cytochrome action.

2.1. Reagents

The reagents were purchased from Sigma Aldrich Chemical Company (Steinheim,
Germany) and Avantor Performance Materials (Gliwice, Poland).
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2.2. Synthesis of Vanadium Complexes

The findings concerning synthesis of the tested vanadium complexes were described in
our previous publication [20]. In this study, the following complexes were used: sodium (2,2′-
bipyridine)oxidobisperoxidovanadate (V) octahydrate, Na[VO(O2)2(2,2′-bpy)]·8H2O, marked
as V (453.9 g/mol); bis(2,2′-bipyridine)oxidovanadium (IV) sulfate dihydrate, [VO(SO4)(2,2′-
bpy)]·2H2O, marked as B (511.21 g/mol); and bis(4,4′-dimethyl-2,2′-bipyridine)oxidovanadium
(IV) sulfate dihydrate, [VO(4,4′-Me-2,2′-bpy)2]SO4·2H2O, marked as BM (567.21 g/mol). Synthe-
ses of the V and B complexes were described by Przybylski et al. [21] and Krośniak et al. [22],
respectively. The process of synthesis for the BM complex was similar to the one of the B
complex, except for the molar ratio of ligand to vanadium, which was 2:1. The purity of all
analyzed complexes was confirmed by microanalysis and IR spectroscopy. The chemical
structures of the vanadium complexes are presented in Figure 1.
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date(V) octahydrate; complex B, bis (2,2′-bipyridine)oxidovanadium(IV) sulfate dehydrate; and 
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Figure 1. Formulas and structures of the organic vanadium complexes. Metabolites of ligands con-
tained in the complexes based on MetaSite 6: complex V, (2,2′-bipyridine) oxidobisperoxovanadate(V)
octahydrate; complex B, bis (2,2′-bipyridine)oxidovanadium(IV) sulfate dehydrate; and complex BM,
bis(4,4′-dimethyl-2,2′-bipyridine)oxidovanadium (IV) sulfate dehydrate.

2.3. Animals

A total of 48 male Wistar rats, aged 3 months and weighing 250 ± 15 g, were di-
vided into 8 groups. Each group of animals was fed with a different diet: control diet
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(group CN: 62% starch, 20% casein, 5.0% oil, 2.8% calcium carbonate, 2.9% Ca3(PO4)2,
1.0% lecithin, 0.3% NaCl, 4.7% cellulose, 1.0% minerals and vitamins mix, 0.07% MgO,
and 0.23% K2SO4); control diet with the vanadium complex V—(2,2′-bipyridine) oxidobis-
peroxovanadate (V) octahydrate—(group CV); control diet with the vanadium complex
B–bis (2,2′-bipyridine)oxidovanadium (IV) sulfate dehydrate—(group CB); control diet
with the vanadium complex BM—bis(4,4′-dimethyl-2,2′-bipyridine)oxidovanadium (IV)
sulfate dehydrate—(group CBM); high-fat diet (group FN: 32% starch, 20% casein, 5.0% oil,
30% lard, 2.8% calcium carbonate, 2.9% Ca3(PO4)2, 1.0% lecithin, 0.3% NaCl, 4.7% cellulose,
1.0% minerals and vitamins mix, 0.07% MgO, and0.23% K2SO4); high-fat diet with the
vanadium complex V (group FV); high-fat diet with the vanadium complex B (group FB);
and high-fat diet with the vanadium complex BM (group FBM). The tested complexes of
vanadium were administered once a day for 5 weeks in a dose of 20 mg/kg of body mass.
The rats were kept in a room with a constant temperature of 23 ◦C, 50–60% humidity, and
a 12 h day-night cycle. The animals were euthanized by an intraperitoneal injection of
sodium thiopental in a dose of 50 mg/kg of body mass. On each day of the experiment,
the animals were weighed. On this basis, the necessary amount of test compounds was
prepared, suspended in methylcellulose, and administered intragastrically by gavage.

2.4. Sample Collection and Analysis

The samples of adipose tissue were taken from visceral parts and were minced in
0.15 M phosphate buffer with pH 7.4 to 10% final concentration using an homogenizer
Ultra-Turrax T25 ultra-speed tissue grinder (1200 r/min bursts) (IKA, Warszawa, Poland).
All procedures were performed on ice. Homogenized tissues were centrifuged at 3000× g
for 15 min (at temperatures up to 4 ◦C). From each obtained sample, a liquid layer was
pipetted from under the fat layer, put into an Eppendorf tube, and frozen at −80 ◦C until
the time of analysis [22].

2.5. Measurement of the Vanadium Content in Adipose Tissue

The analysis was performed on 111± 10 mg adipose tissue samples obtained from each
tested animal group. The samples were treated with 2 mL of spectrally pure concentrated
nitric acid (65%). The samples were incubated for 72 h and then diluted to a total volume
of 3 mL. The measurement of vanadium was conducted using a 5100 ZL graphite furnace
atomic absorption spectrometer with Zeeman correction and a L’vov platform (Perkin
Elmer, Norwalk, CO, USA).

2.6. Relative Change of Rat Weight

The relative change in rat weight (∆rw [%]) was calculated as follows:

∆rw [%] =
m33 −m3

m3
·100 (1)

where m33 is the weight of the rat on day 33 of the experiment [g], and m3 is the weight of
the rat on day 3 of the experiment [g].

2.7. Basal Metabolic Rate

The experiment was conducted in the following way: rats (n = 6) from a given group
were divided into two subgroups (of 3 animals). For every subgroup, the total amount of
feed and the total increase in body weight were calculated. In order to calculate how many
grams of feed were needed for a 1 g increase in the animals’ body weight, a basal metabolic
rate indicator was used. This indicator was calculated in the following way: the total feed
consumption of the rats was divided by the total weight gain of the animals. The obtained
result was then recalculated to the caloric demand for the animals’ body weight increase
by 1 g, taking into consideration the applied diet (1 g of protein equals 4 kcal, 1 g of fat is
9 kcal, and 1 g of carbohydrates is 4 kcal). For the control diet, we calculated that 1 g of
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feed was equal to 3.8 kcal, and, in turn, 1 g of feed for the high-fat diet was 5.8 kcal. The
results obtained for the tested animals from both subgroups were then averaged.

2.8. Measurement of the Total Antioxidant Capacity—Ferric Reducing Antioxidant Power (FRAP)

The Ferric Reducing Antioxidant Power (FRAP) assay, which was a modification of
the Benzie and Strain method [23], was applied to measure the ability to reduce Fe3+ to
Fe2+ ions in an acidic environment (pH 3.6). The absorbance was read at a wavelength of
593 nm after 30 min. The final results were expressed in mmol Fe2+/mg of protein. The
protein content in all samples was determined by Bradford methods [24] using BSA as
a control.

2.9. Measurement of Glutathione (GSH) Concentration

The concentration of glutathione (GSH) was measured according to the Ellman
method [25]. The reduction of DTNB (5,5′-dithiobis(2-nitrobenzoic acid)) by thiol com-
plexes was analyzed. The absorbance was read at a wavelength of 412 nm. The final results
were expressed in nmol/mg of protein. Before the analysis of GSH, 2.5% trichloroacetic
acid was used to remove interfering proteins from the samples.

2.10. Measurement of Catalase (CAT) Activity

The activity of catalase (CAT; EC 1.11.1.6) was determined with the use of the kinetic
method described by Aebi [26]. The measurements were performed spectrophotometrically
at 240 nm, 25 ◦C. CAT concentrations were expressed in U/mg of protein. One unit of CAT
activity was defined as the amount of enzyme decomposing 1 µmol of H2O2 per minute.

2.11. Measurement of Superoxide Dismutase (SOD) Activity

The Cu/Zn superoxide dismutase (E.C.1.15.1.1) enzyme activity was marked accord-
ing to the Sun et al. [27], method. Superoxide dismutase (SOD) activity involves the
inhibition of nitroblue tetrazolium reduction, with xanthine-xanthine oxidase used as a
superoxide generator. The activity of this enzyme was marked based on the linear reading
of absorbance changes between the fifteenth s and the second min at 550 nm wavelength,
and it was expressed as U/mg of protein.

2.12. Statistical Analysis

All of the quantitative data are presented as the mean values ± standard deviation
(food intake, energetic balance in animals, and concentration of vanadium element in
adipose tissue). Two-way analysis of variance (ANOVA) was used to check if the analyzed
parameters had influence on the variables. ANOVA was conducted for each of the following
dependent variables: FRAP [mmol Fe2+/mg of protein], GSH [nmol/mg of protein], CAT
[U/mg of protein], SOD [U/mg of protein], and ∆rw [%]. The type of diet (X1-diet) and the
type of supplement (X2-supplement), in turn, were the intragroup factors. The type of diet
(X1-diet) was analyzed on 2 levels (C and F), while the type of supplement (X2-supplement)
was analyzed on 4 levels (N, B, V, and BM). In order to determine homogeneous groups
(marked on graphs by the same letters), the least significant differences (LSD) of Fisher’s
test were used. Data analysis was performed using Statistica (StatSoft, Inc. 2011 Inc., Tulsa,
Oklahoma, USA). Values of p < 0.05 were considered statistically significant.

3. Results

Based on the results of previous research [28] in which the toxicity of the complex
[VO (SO4) (2,2’-bpy)] 2H2O expressed as LD50 (mg/kg) was assessed, the animals were
administered a dose of the tested complex in the amount of 20 mg/kg of body weight.
The tested complexes were administered by gavage once a day for 5 weeks. Due to the
lack of information on speciation in aqueous solution and on thermodynamic stability,
the researched complexes were administered via an intragastric probe in the form of
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a methylcellulose mixture, which is a medium for distributing a weighed amount of
complex compound.

Supplementation of each tested vanadium complexes, both in the control diet and in
the high-fat diet, caused a statistically significant increase in its content in adipose tissue.
No significant differences were observed between the individual vanadium complexes and
the types of diet (Table 1).

Table 1. Food intake and energetic balance in the animals, and the concentration of vanadium
elements in adipose tissue.

Animal
Group

Water Intake ± SD
[mL/Day/Animal]

Feed Intake
± SD

[g/Day/Animal]

BWG ± SD
[g/Animal]

BMR ± SD
[kcal/g Body
Weight Gain]

VI ± SD
[mg/kg/day]

VCAT ± SD
[µg/kg of Dry

Adipose Tissue]

CN 27.0 ± 4.9 a 18.4 ± 4.9 b 105.3 ± 13.9 a 21.0 ± 0.3 a ND 0.81 ± 0.09 a

CV 30.3 ± 5.2 a 17.3 ± 1.9 b 96.8 ± 18.3 a 22.6 ± 0.2 b 2.25 ± 0.2 a 3.48 ± 0.37 b

CB 26.6 ± 2.5 a 17.7 ± 3.6 b 83.5 ± 15.4 ab 26.1 ± 0.6 c 1.99 ± 0.2 a 3.67 ± 0.22 b

CBM 28.0 ± 5.2 a 17.9 ± 1.5 b 76.8 ± 15.1 b 27.6 ± 0.1 c 1.80 ± 0.2 a 4.02 ± 0.31 b

FN 25.6 ± 3.6 a 13.5 ± 0.8 a 109.7 ± 21.5 a 19.8 ± 1.2 a ND 0.78 ± 0.12 a

FV 24.5 ± 3.8 a 11.9 ± 2.2 a 78.3 ± 14.1 b 24.7 ± 1.0 b 2.25 ± 0.2 a 3.55 ± 0.29 b

FB 29.2 ± 8.1 a 12.3 ± 2.4 a 95.6 ± 21.1 a 23.1 ± 2.9 b 1.99 ± 0.2 a 3.53 ± 0.31 b

FBM 29.6 ± 6.6 a 13.3 ± 2.4 a 94.5 ± 24.6 a 24.6 ± 1.0 b 1.80 ± 0.2 a 4.19 ± 0.30 b

BWG: body weight gain; BMR: basal metabolic rate; VI: vanadium intake; VCAT: vanadium concentration in
adipose tissue; CN: standard diet without additives; CV: V vanadium complexes with standard diet; CB: B
vanadium complexes with standard diet; CBM: BM vanadium complexes with standard diet; FN: high-fat diet
without additives; FV: V vanadium complexes with high-fat diet; FB: B vanadium complexes with high-fat diet;
and FBM: BM vanadium complexes with high-fat diet. Bars with a different letter are significantly different
(p < 0.05), and ND means “not detected”.

The parameters related to metabolic rate are presented in Table 1. The results of
Fisher’s test for ∆rw, FRAP, GSH, and SOD are presented in Figures 2–5, respectively.
Homogeneous groups are marked with the same letters. Statistical analysis was performed
for p < 0.05.
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B: vanadium complexes; and BM: vanadium complexes). All data are expressed as means ± SEM,
and p < 0.05 was accepted as statistically significant. Bars with a different letter are significantly
different (p < 0.05).
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Figure 3. The total antioxidant capacity of homogenate of adipose tissue of rats is expressed as
FRAP [mmol Fe2+/mg protein] after day 30. Diet (C: standard diet, and F: high-fat diet) without or
with organic vanadium complexes (N: without organic vanadium complex; V: vanadium complexes;
B: vanadium complexes; and BM: vanadium complexes). All data are expressed as means ± SEM,
and p < 0.05 was accepted as statistically significant. Bars with a different letter are significantly
different (p < 0.05).

Based on two-way ANOVA, a statistically significant effect was demonstrated both
for the applied diet model and for the tested vanadium complexes (p = 0.031) in the case
of a relative change in rat weight (∆rw). The high-fat diet had a significant effect on
the reduction of feed consumption compared to the control diet, regardless of the tested
vanadium complexes.

The rats on the high-fat diet with the tested vanadium complexes (FV, FB, and FBM
groups) consumed similar amounts of feed compared to the FN group (Table 1). Never-
theless, the effects of the vanadium complexes in combination with the high-fat diet on
∆rw were varied. In the group of rats fed with vanadium complexes and the high-fat diet
(FV group), a significant decrease in the ∆rw value was observed. A similar effect on this
parameter was observed in the group of rats on the control diet and BM complex (CBM
group) (Figure 2). The rats in the control group consumed the same amount of feed, regard-
less of the supplemented vanadium complexes. Thus, the ∆rw reduction effect was due to
the administration of the BM complex. The high-fat diet had a significant effect on reducing
feed consumption compared to the control diet, regardless of the vanadium complexes.

The presence of the researched vanadium complexes in both types of diet significantly
increased the basic metabolic rate and did not affect water intake (Table 1).
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All data are expressed as means ± SEM, and p < 0.05 was accepted as statistically significant. Bars
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The types of diet (p = 0.003) and vanadium complex (p = 0.008), as well as the in-
teraction between them (p = 0.017), had significant influences on FRAP (Figure 3). For
the high-fat diet, the BM complex significantly increased the value of this parameter in a
comparison of high-fat diet alone to the other tested complexes, i.e., V and B. Statistically
significant differences were also observed between the types of diet. The high-fat diet
caused a statistically significant increase in the FRAP value compared to the control diet.
None of the tested vanadium complexes had a significant influence on the FRAP value in
the control diet (Figure 3).

In the case of concentration of GSH, two-way ANOVA indicated a statistical effect
only for the interaction of the tested diet with the vanadium complexes (p = 0.000). The
BM complex in the high-fat diet induced a significant increase in GSH concentration in
comparison to the other tested complexes, i.e., B and V, as well as in comparison to the
high-fat diet (Figure 4). In the control diet, the V complex significantly increased the GSH
concentration in comparison to both the BM complex and to the control diet (Figure 4).
Statistical differences in the GSH concentration were also observed between the types of
diet. The high-fat diet caused a statistically significant increase in the GSH concentration in
comparison to the control diet.

In the case of CAT activity, neither the tested factors–diet and vanadium complex–
nor the interaction of these factors had a significant influence on the parameter (data
not shown).

The vanadium complex B (p = 0.027) had a significant effect on the activity of SOD in
the high-fat diet. It significantly decreased the activity of SOD in comparison to the V and
BM complexes, as well as to the high-fat diet itself. There were no significant changes in
SOD activity in the groups of rats fed with the control diet without vanadium complexes
or the control diet combined with the tested vanadium complexes (Figure 5). Statistical
differences in SOD activity were also observed between the diet types without the addition
of the tested complexes. The high-fat diet caused a statistically significant increase in SOD
activity in comparison to the control diet.

4. Discussion

Vanadium complexes have been mainly studied as potential agents in the treatment
of both types of diabetes [29–34]. Additionally, the vanadium (IV) complex called Met-
van (where the ligand is 4,7-dimethyl-1,10-phenanthroline) has shown strong anticancer
effects [35,36].

The results of various studies have indicated that an insufficient amount of vana-
dium in the diet may cause delayed growth and impaired reproduction or metabolism of
lipids [37–39]. It was shown that organic vanadium complexes do not cause gastrointestinal
complaints or liver and kidney toxicity [29]. However, in order to have clarity on the
mechanisms of action for potential drugs based on organic vanadium complexes, it is
important to understand how the complexes are absorbed and transported through the
bloodstream to target tissues.

For some V(IV) complexes that increase insulin levels, it was shown that solutions at
pH 7.4 contain other forms of the complex than the solid state [40]. Sanna et al., investigated
the method of connecting V(IV)O with bipyridine (bpy) ligands in aqueous solutions at
various pH values, pointing to the role of the resulting cis-octahedral derivative forms
at pH 7.4 in metal ion transport and mechanism of action [41]. The above-mentioned
authors stated that the bis-chelated species of monomeric oxovanadium (IV) in solutions
transformed into “the corresponding mono-hydroxido complex after the deprotonation of
the water molecule“. This transformation occurred in solutions with pH 4.89.

The transformation of cis-[VO(bpy)2(H2O)]2+ into cis-[VO(bpy)2(OH)]+ was also pre-
sented by Triantafillou et al., who reported that the above-mentioned complexes were
formed in an aqueous environment [42]. It was shown that the resulting form of cis could
interact with bioligands and red blood cells. The speciation of the Metvan complex depends
on the concentration of vanadium in blood [43]. At low concentrations (10 µM), its migra-
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tion to the cell takes place in the form of the V(IV)O2+ ion, which is partially converted to
V(V)O/V(V)O2.

The role of ligands in the cytotoxicity of V(IV) complexes was investigated by testing
the stability of the complexes in neutral aqueous solutions and in cell culture media [44].
We noted the need to carefully consider the stability of the V(IV) and V(V) complexes in
the media and the human toxicity of phen and bpy ligands. However, Levina et al., noted
that the speciation of metal complexes critically depended on the nature of the medium in
which the speciation was studied [45].

Tsave et al., conducted research using 3T3-L1 pre-adipocytes and did not confirm the cy-
totoxicity of organic ligands, such as 2-aminophenol, o-vanillin, 2-hydroxy-1-naphthaldehyde,
salicylaldehyde, or 4,4′-bipyridine. [46]. Instead, they found that ligation increased the
bioavailability of complexes and reduced the cytotoxic profile. However, the combination
of ligands with V(V) showed in most cases a proliferative effect [46].

Several studies have shown that vanadium complexes with organic ligands are more
active than inorganic salts and that they are not associated with adverse effects on the
gastrointestinal tract [47,48]. Therefore, in our previous study, the influence of three
organic vanadium complexes—sodium (2,2′-bipyridine)oxidobisperoxovanadate (V) oc-
tahydrate, bis(2,2′-bipyridine)oxidovanadium (IV) sulfate dehydrate, and bis(4,4′-dimethyl-
2,2′-bipyridine)oxidovanadium (IV) sulfate dihydrate—on lipid metabolism under the
condition of a high-fat diet in a non-diabetes animal model was analyzed [20]. In turn, our
current research focused on the influence of the above-mentioned vanadium complexes on
parameters related to metabolic rate, as well as selected antioxidant parameters in adipose
tissue in the same animal model.

Likewise, the studies by Zhang et al. [49] showed that vanadium complexes with con-
centrations below 20 µg/mL have low cytotoxicity. During an excessive supply of nutrients,
the growth of white adipose tissue (WAT) prevents ectopic fat accumulation by affecting
the rate of differentiation to adipocytes in preadipocytes [50]. Obesity has been shown
to be closely related to adipocyte hyperplasia and the size of adipose tissue. Vanadium
complexes in a dose-dependent manner can participate in the process of converting human
preadipocytes into adipocytes and block the accumulation of cellular lipids, thus inhibiting
the adipogenesis process, which, in turn, has an anti-obesity effect [49].

One of the hypotheses explaining the effect of vanadium complexes on the reduc-
tion of lipid concentration indicates the possibility of the formation of vanadium-protein
complexes [49,51,52].

In obesity, there is increased oxidative stress in adipose tissue, as mitochondrial
functions are impaired, which, in turn, leads to excessive production of reactive oxygen
species (ROS) [53]. Obesity-related metabolic syndrome has its consequences, one of
which is elevated oxidative stress in adipose tissue. Under these conditions, adipocytes,
in which the production of adipocytokines may be disturbed, become the main source of
increased levels of ROS, which leads to adipocyte dysfunction [50]. An increased ROS
pool reduces the expression and secretion of adiponectin, an important protein for insulin
sensitivity, which also exhibits anti-atherosclerotic and anti-inflammatory properties [54,55].
Under these conditions, adipocytes also show increased expression of NADPH oxidase
and decreased expression of antioxidant enzymes, such as catalase, glutathione peroxidase,
and superoxide dismutase [8,50].

Additionally, high-fat diets are involved in the induction of oxidative stress in adipose
tissue as a key factor in the development of obesity [56,57]. Obesity, in turn, is related to
systemic oxidative stress [58]. That is why some authors see the necessity of searching for
new therapies enhancing the redox state in adipocytes [8]. Moreover, Tinkov et al. [59],
put forward the hypothesis that the balance of some trace elements, such as vanadium,
chromium, or zinc, in adipose tissue might be altered by caloric excess. Consequently, a
decreased level of such minerals in that tissue might have deleterious effects on, inter alia,
insulin resistance induction or proinflammatory adipocytokines production [59]. Therefore,
research on the influence of vanadium complexes on antioxidative parameters in white
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adipose tissue under the condition of a high-fat diet seems to be well grounded. To the best
of our knowledge, this issue does not seem to have been discussed so far.

In our study, the BM complex in the high-fat diet (FBM) significantly increased the
activity of FRAP and the concentration of GSH in comparison to the high-fat diet (FN).
The B complex in the same type of diet (FB) significantly reduced the activity of SOD in
comparison to the FN, FV, and FBM groups.

Pillai et al. [15], observed the anti-oxidative properties of the vanadium-3-hydroxyflavone
complex (vanadium on IV oxidation state, as well) in streptozotocin-diabetic rats. They
demonstrated that the tested complex induced an increase in antioxidative parameters in the
pancreas and in plasma. The activity of antioxidative enzymes (CAT, SOD, and GPx) was
measured in the pancreas, while the concentration of GSH—a non-enzymatic antioxidant—
was measured both in the pancreas and in plasma [15]. Liu et al. [48], also researched
the influence of IV oxidation state vanadium complexes (oxovanadium (IV)/chitosan
nanocomposites and the vanadyl (IV)–ascorbate complex) combined with high-fat and
high-sucrose diets on the oxidative stress in liver tissue. The vanadium complexes analyzed
significantly increased the antioxidant status in the liver tissue [47,48]. Xie et al. [60],
also noted the influence of an organic vanadium complex (a vanadium-chlorodipicolinate
compound) on changes in the activity of selected antioxidative parameters in the livers
of streptozotocin-diabetic rats. This effect was dependent on the oxidation level of the
vanadium in the complex. The vanadium (V)-chlorodipicolinate compound caused a
statistically significant increase in both CAT and GPx activity in comparison to an animal
group with diabetes. Simultaneously, the values were similar to those noted in the control
group. A similar effect was also noted for the vanadium (IV)-chlorodipicolinate compound
regarding GPx activity. In turn, the vanadium (III)-chlorodipicolinate compound had
no effect on the values of these parameters. Regarding SOD activity, no influence of the
three complexes was observed [60]. In our research, an increase of certain antioxidative
parameters (FRAP and GSH) was seen in the case of the BM complex in a high-fat diet model.
It should be underlined that in the cited works of the other authors the measurements of
antioxidative parameters were performed in other tissues than in our research (i.e., in the
pancreas, liver, and plasma). While the research model of those authors used also IV or
V oxidation state vanadium complexes, the ligands linked with vanadium were different
in comparison with ours. In the work of Pillai et al. [15], organic vanadium complexes
containing flavone derivatives were used; Liu et al. [48], used polysaccharide ligands or
L-ascorbic acid derivatives; and Xie et al., used chlorodipicolinate [60].

In our research, bipyridine (V and B complexes) or dimethylbipyridine (BM complex)
were used as ligands; therefore, it is difficult to directly compare observations from our
research to the results of other authors. Using MetaSite v 6.0.3, computer software Molecular
Discovery (which mimics the natural metabolisms of compounds in different tissues,
including liver tissue), changes in ligand lipophilicity in the vanadium complexes were
analyzed for metabolism occurring in cytochrome P450 isoforms. Metabolic transformation
of bipyridine (logP 1.72, Figure 1) leads to a change in compound lipophilicity as a result of
aromatic hydroxylation that produces (4′–methyl [2,2′–bipyridin]–5–yl)methanol (LogP
1.37, Figure 1) or aliphatic carbonylation (4′–methyl[2,2′–bipyridine]–5)carbaldehyde (logP
1.86, Figure 1) and aliphatic carboxylation (4′–methyl[2,2′–bipyridine]–5)carboxylic acid
(logP 2.05, Figure 1).

Our observations concerning the influence of vanadium in the BM complex on en-
hancing antioxidative status in adipocytes for a high-fat diet seem extremely interesting
when compared to the results of Zhang et al. [51]. These authors suggested that vanadium
(IV) in the form of vanadium (IV)-chlorodipicolinate plays a role in inhibiting processes of
differentiation and adipogenesis in preadipocytes by lowering the expression or activity of
adipogenic transcriptional factors and their target genes [51].

In the case of CAT, no differences were observed between the two types of diets
(i.e., high-fat and control), which is a surprising observation. Interestingly, Sohet et al. [14]
noted a statistically significant decrease in TBARS value (lipid peroxidase marker) in the
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visceral adipose tissue of a group of mice fed on a high-fat diet with 21% fructose in
the drinking water compared to the control group in an 8-week experiment (3 weeks
longer than ours), which may prove the complexity of the mechanisms responsible for
maintaining oxido-reduction balance in adipose tissue when exposed to an excessive
supply of calories. The only significant change observed in the case of the tested vanadium
complexes combined with the control diet was an increase in GSH concentration in the
case of supplementing with the V complex; the other tested complexes did not show any
significant influence.

The type of diet may be a factor affecting vanadium content in adipose tissue [61].
Tinkov et al., noted that a high-fat diet induced a decrease in the content of vanadium in
the fat tissue of Wistar rats by about 33% compared to control diet [62]. In turn, in our
research, we noted a decrease in vanadium content in adipose tissue for the high-fat diet by
only 4% in comparison to control diet. Regardless of the diet model (control or high-fat), a
significant decrease in vanadium content in adipose tissue was noted.

It should be stressed that our research has some limitations, including a lack of inflam-
mation markers in rat adipocytes, which undoubtedly would allow a broader overview
of changes in adipose tissue for a high-fat diet and in the presence of the tested organic
vanadium complexes. Furthermore, the lowest level of toxicity (LD50) of the newly synthe-
sized vanadium complexes was not determined. The rating of the metabolic processes of
individual ligands in the tested complexes was carried out solely in silico.

Based on our own experiments and other cited research results, vanadium seems to
be an interesting alternative in the prevention and mitigation of obesity-related disorders,
and, possibly, it will find a practical application in the future. However, continued research
is indispensable in order to verify the above assumptions. Particular attention in future
research should be paid to the BM complex. In our previous research, the BM complex
in a high-fat diet had a statistically significant influence on both the increase in HDL
concentration and total cholesterol in Wistar rat blood plasma in comparison to a high-fat
diet [20]. These results, combined with observations from our current research, position the
BM complex as a particularly interesting factor that may help reduce the negative health
effects of an excessive supply of fats.

5. Conclusions

To summarize, among the tested organic derivatives of vanadium, the V and BM
complexes significantly decreased the relative change in weight, which is particularly
interesting in the context of the current overweight and obesity problem.

High-fat diets cause imbalance between the processes of reduction and oxidation
in adipocytes. The BM complex combined with a high-fat diet had a beneficial effect on
the total antioxidant capacity of adipocytes, as well as on the non-enzymatic parameter
glutathione, influencing an increase in its concentration. The V complex combined with
the control diet also had an impact on antioxidant status by increasing the concentration
of glutathione, which might be important in the prevention of disturbance in the redox
status of fatty tissue. Nevertheless, molecular research is necessary to understand the
mechanisms of the interactions between the tested vanadium complexes and antioxidant
status or energetic balance. It would also be interesting to examine properties of these
complexes in other dietary models.
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Abbreviations

V complex sodium (2,2′-bipyridine)oxidobisperoxovanadate (V) octahydrate
B complex bis(2,2′-bipyridine)oxidovanadium(IV) sulfate dehydrate
BM complex bis(4,4′-dimethyl-2,2′-bipyridine)oxidovanadium (IV) sulfate dehydrate
CN standard diet without additives
CV V complex with standard diet
CB B complex with standard diet
CBM BM complex with standard diet
FN high-fat diet without additives
FV V complex with high-fat diet
FB B complex with high-fat diet
FBM BM complex with high-fat diet
∆rw relative change in rat weight
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