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Abstract

Chondrocytes, comparable to many cells from the connective tissue, dedifferentiate and

end up in a similar fibroblastoid cell type, marked by the loss of the specific expression pat-

tern. Here, chondrocytes isolated from osteoarthritic (OA) patients were investigated. The

OA chondrocytes used in this work were not affected by the loss of specific gene expression

upon cell culture. The mRNA levels of known cartilage markers, such as SOX5, SOX6,

SOX9, aggrecan and proteoglycan 4, remained unchanged. Since chondrocytes from OA

and healthy tissue show different DNA methylation patterns, the underlying mechanisms of

cartilage marker maintenance were investigated with a focus on the epigenetic modification

by DNA methylation. The treatment of dedifferentiated chondrocytes with the DNA methyl-

transferase inhibitor 5-aza-2´-deoxycytidine (5-aza-dC) displayed no considerable impact

on the maintenance of marker gene expression observed in the dedifferentiated state, while

the chondrogenic differentiation capacity was compromised. On the other hand, the pre-cul-

tivation with 5-aza-dC improved the osteogenesis and adipogenesis of OA chondrocytes.

Contradictory to these effects, the DNA methylation levels were not reduced after treatment

for four weeks with 1 μM 5-aza-dC. In conclusion, 5-aza-dC affects the differentiation

capacity of OA chondrocytes, while the global DNA methylation level remains stable. Fur-

thermore, dedifferentiated chondrocytes isolated from late-stage OA patients represent a

reliable cell source for in vitro studies and disease models without the need for additional

alterations.

Introduction

The loss of environmental signals occurring during injuries in multicellular organisms leads to

a stepwise reprogramming or dedifferentiation of cells. On the other hand, cell fate is stabilized

by epigenetic modifications, such as those found in histone tail marks or DNA methylations.

In this context, tissue-dependent differentially methylated regions can be identified in differ-

entiated cells. These cell type-specific sequences are demethylated in the tissue regarded and
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are associated with active histone marks, while these sequences in other tissues are transcrip-

tionally inactivated by methylation [1]. Therefore, the methylation status of key regulatory

sequences represents a crucial factor in differentiation processes and cell phenotype mainte-

nance and should be taken into consideration for successful regenerative applications [2,3].

The enzymes responsible for the DNA methylation are encoded by the genes DNMT1,

DNMT3a and DNMT3b (DNA methyltransferases: DNMTs). However, the introduction and

the removal of DNA modifications are necessary for cellular development. No in vivo mecha-

nism of direct DNA demethylation has been described so far, nevertheless, modified interme-

diates, such as 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine, have been

found [4]. These further modifications of 5-methylcytosine are catalyzed by the TET (ten-

eleven translocation) family.

Cells dedifferentiate upon in vitro cell culture, caused by the withdrawal of tissue-specific

microenvironmental cues, and this reflects the loss of tissue specificity. The dedifferentiation

process of isolated human chondrocytes affects the epigenetic pattern of the cells on a DNA

methylation and histone modification level [5,6]. Alterations in DNA methylation are also

identified in comparative studies of healthy chondrocytes with cells from osteoarthritic tissues

[7,8].

Osteoarthritis (OA) is the most common disease of the osteochondral unit. It is character-

ized by the loss of permanent cartilage, reduced joint spaces, osteophyte development, sub-

chondral bone cyst formation and sclerosis. Clusters of proliferating chondrocytes emerge in

early osteoarthritic cartilage to compensate for the loss of matrix integrity. The proliferation of

hitherto resting articular chondrocytes is initiated by changes in the environment of the peri-

cellular matrix. The disruption of the connection between chondrocytes and their pericellular

matrices compromise the HA-CD44 signaling (hyaluronan and its receptor) and results in the

upregulation of matrix metalloproteinases with a decreased survival of cells [9]. Fissures in the

cartilage extracellular matrix can be detected with the progression of the disease. The degrada-

tion leads to an increase in oxygen tension that further accelerates the process of tissue destruc-

tion. The subchondral bone layer is subsequently affected, marked by tissue mass reduction.

Furthermore, the subjacent calcified layer expands into the articular zone, and tissue vasculari-

zation is induced in late OA stages. The disease does not only affect the osteochondral unit of

the joint but also the ligaments and the synovium [10]. Pharmaceutical intervention is the only

option for patients to reduce pain since OA is incurable. The replacement of the joint by sur-

gery in late state OA is the only option for patients.

Tissue engineering applications provide a promising strategy to regenerate the damaged tis-

sues. In these technologies, the dedifferentiation process is reversed by the cultivation of dedif-

ferentiated cells or stem cells in appropriate conditions capable of inducing the differentiation

desired [11]. The cultivation conditions are oriented towards the in vivo process of chondro-

cyte differentiation and cartilage development by endochondral ossification [12]. The process

of endochondral ossification is initiated by the condensation of mesenchymal stem cells fol-

lowing differentiation steps of proliferative chondrocytes, hypertrophic chondrocytes and sub-

sequent bone formation [13]. In parallel, articular cartilage differentiation and joint formation

are regulated in a precisely orchestrated developmental process [14]. Sets of marker molecules

are well-described for both the differentiation of articular chondrocytes and the differentiated

cartilage tissue. These sets include transcription factors, such as SOX5 and SOX9, signaling

molecules from the FGF-, BMP- and WNT-family and matrix molecules, such as collagen type

2 and aggrecan [13,15].

The molecules 5-azacytosine (5-aza) and 5-aza-2´-deoxycytosine (5-aza-dC) were first syn-

thesized in 1964 [16] and have had FDA approval for myelodysplastic syndrome treatment

since 2004 and 2006, respectively. This base is a modification of cytosine, replacing the carbon
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at position 5 by nitrogen. This small alteration inhibits the functionality of DNMTs by forming

an irreversible covalent bond between the DNMT and the 5-aza-dC-incorporated DNA strand

[17]. Hence, the incorporation of 5-aza-dC into the DNA leads to a decreasing amount of

functional DNMTs in the nucleus. It is reported by Cameron and colleagues [18] and many

others that cell lines treated with 5-aza-dC led to a decrease in DNA methylation and expres-

sion of formerly repressed genes.

In order to assess the impact on regenerative applications, we analyzed the influence of a

DNMT inhibitor on chondrocytes isolated from patients with late-stage OA. The differentia-

tion potential towards adipogenic, osteogenic and chondrogenic lineages was tested, and DNA

methylation levels for specific target sites were analyzed.

Material and methods

Ethics statement

The acquisition of cartilage tissue was approved by the Ethics Committee Charité Berlin (EA1/

047/09) and all patients gave written consent for this research.

Cell culture

Cartilage was extracted from hip and knee replacement surgeries of OA patients. Samples were

isolated from non-weight bearing sections with no visible lesions. Human chondrocytes are

the sole cellular component in articular cartilage, therefore, no sorting strategy was necessary.

The extracted cartilage was washed twice with phosphate-buffered saline (PBS) and briefly

with 80% (v/v) ethanol, followed by PBS and dissected from the underlying bone. The tissue

was cut in small 2 x 2 mm pieces using a scalpel.

The pieces were digested with 1 mg/ml protease K (Sigma Aldrich) for 30 min, washed in

PBS and digested in collagenase (2 mg/ml) overnight. A 70 μM cell strainer was used to

remove the extracellular matrix debris from the cells. Chondrocytes were counted, and 5 x 105

cells were lysed for nucleic acid isolation. All the remaining cells were seeded in a T25 cell cul-

ture flask for adherent growth using DMEM with 10% FBS and 1% penicillin/streptomycin.

Chondrocytes were passaged at 80% confluence. Cells were used at passage 4 to passage 13 for

the experiments. No indications of senescence were found, even at late passages.

AZA treatment

For the differentiation studies, the non-confluent adherent cells were treated with 1 μM 5-aza-

dC (100 mM stock solution in 25% acetic acid) in growth medium for a minimum of three to

four weeks to ensure the incorporation of 5-aza-dC into the DNA. Fresh 5-aza-dC was added

every 24 h, while the complete medium exchange was performed every other day. Afterwards,

the chondrocytes were detached and used for osteogenic, adipogenic and chondrogenic differ-

entiation studies or lysed for specific gene expression analysis on mRNA level.

Osteogenic differentiation

Cells were seeded in 6-well plates (2.5 x 105/well), 5-aza-dC was removed, and media was

changed to osteogenic differentiation media containing 10 mM beta-glycerophosphate, 10 nM

cholecalciferol (vitamin D3), 100 μM ascorbate phosphate and 10 mM dexamethasone in final

concentrations for 28 days. The medium was changed every other day. Differentiation was

visualized by Alizarin Red staining and confirmed with quantitative PCR (qPCR) by testing

the mRNA level for osteopontin (OPN).
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Alizarin Red staining

The medium was carefully aspirated from the cell culture wells and washed twice with dH2O.

Alizarin Red solution (2% in dH2O at pH 4.1–4.3) was applied to the wells and incubated at

room temperature for 5–10 min. The staining solution was removed carefully, and the wells

were gently washed twice with dH2O. Pictures were taken immediately.

Adipogenic differentiation

The cells were seeded in 6-well plates (2.5 x 105/well), 5-aza-dC was removed, and media was

changed to Adipogenic differentiation media containing 10 μg/ml insulin, 500 μM 3-isobutyl-

1-methylxanthine, 0.2 mM indomethacin and 1 μM dexamethasone. The medium was

changed every other day. After 28 days, differentiation was visualized by Oil Red O staining

and confirmed with qPCR by testing the mRNA level for fatty acid binding protein 4 (FABP4).

Oil Red O staining

The media was removed, and the cells were gently washed with PBS to visualize the lipid vesi-

cles in them. The cells were fixed in 10% formalin for 10–30 min. The formalin was removed,

and the wells were washed using, firstly, PBS and then 60% isopropanol. Subsequently, the

wells were emptied to dry completely. Three parts of the Oil Red O stock solution (3% in iso-

propanol) were mixed with two parts of dH2O before staining to prepare the staining solution.

After 10 min, the working solution was filtered and added to the dried wells for 10 min. The

staining solution was removed, and the cells were gently washed four times with dH2O. The

cells were prevented from drying out. Staining was examined under the microscope and pic-

tures were taken.

Chondrogenic differentiation

Cells were seeded in a 24-well ultra-low attachment plate (106 cells/well, Corning) in DMEM

supplemented with 10% FBS and 1% penicillin/streptomycin without 5-aza-dC. During this

cultivation step, the cells undergo mesenchymal condensation, forming one self-organized

aggregate. After condensation is completed (one to two weeks), the media was changed to

chondrogenic conditions using serum-free DMEM (1% penicillin/streptomycin) with 100 nM

dexamethasone, 200 nM ascorbate phosphate, 40 μg/ml L-proline, 100 μg/ml sodium pyruvate,

1% ITS-Premix and 10 ng/ml TGF-beta-3 (PromoKine) in final concentrations for four weeks.

The media was changed three times a week. Differentiation was visualized after cryosectioning

by proteoglycan staining with Alcian blue and Safranin O/Fast green on glass slides. The

expression of collagen type II chain α1 (COL2A1) and aggrecan (ACAN) was further con-

firmed by qPCR and the glycosaminoglycan content was determined.

Cryosections

Cell condensates were embedded in O.C.T Compound (Tissue-Tek), snap frozen and stored at

-80˚C. The tissue was cut at -16 to -18˚C using a specialized knife for hard tissues and 8 μm

sections were placed on glass slides (Histobond, Marienfeld, Germany). After drying, slides

were stored at -20˚C. Samples were cut at a thickness of 25–30 μm and were collected in 2 ml

centrifuge tubes for RNA extraction. A quantity of 1 ml QIAzol (Qiagen, Germany) was

added, and RNA samples were stored at -80˚C until extraction.
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Immunostaining

Slides were thawed at room temperature for 10 min and then fixed in ice cold acetone for 20

min. After 3 washing steps with PBS, the sample was blocked with 10% serum for 30–60 min

to prevent unspecific binding of antibodies. The incubation of the primary antibody (collagen

type II, Merck Millipore #MAB8887, 1:20) was done overnight at 4˚C. Then 3 washing steps

with PBS were performed prior to the addition of the secondary antibody (goat anti mouse

Alexa594, Invitrogen #A11005, 1:200) for 45 min at room temperature. During the last 10 min

of this step Hoechst staining was performed, adding the dye solution at a final concentration

of 0,5 μg/ml to the sample. After a last washing step, the sample was protected with a coverslip

using an aqueous cover solution. An isotype control or a no primary antibody control was pre-

pared simultaneously to detect background intensity. Pictures were taken on the same day.

Alcian blue staining

Sample slides were thawed at room temperature for 30 min and then fixed in 10% formalin for

10 min. After fixation has been completed, the slides were brought to dH2O and then incu-

bated in 3% acetic acid for 3 min. Alcian blue staining, using 1% Alcian blue 8G (Sigma

Aldrich) in 3% acetic acid at pH 1.5–2.5 for 15–20 min, followed. The slides were washed in

water, then dehydrated and mounted. Glycosaminoglycans were stained in turquoise to light

blue.

Safranin O/Fast green staining

Sample slides were thawed at room temperature for 30 min and then fixed in 10% formalin for

10 min. The slides were stained for 10 min in freshly mixed Weigert’s iron hematoxylin solu-

tion (Roth). In order to differentiate the color, the slides were washed in running tap water for

10 min. Nuclear counterstain was performed by adding the slides to Fast green solution

(0.05% in dH2O) for 5 min. Sections were briefly (10 s) rinsed with 1% acetic acid and then

stained with Safranin O (0.1% in dH2O) for 5 min. The slides were dehydrated and mounted.

Glycosaminoglycans were stained in red, nuclei in black and cytoplasm in light green.

Measurement of glycosaminoglycans

The content of glycosaminoglycans was measured using DMMB staining (1,9 dimethyl methy-

lene blue). Therefore, the condensates were firstly digested overnight at 56˚C in 700 μl diges-

tion buffer (50 mM Tris-HCl, 10 mM Na Cl, 3 mM MgCl2, 1% Triton X 100 at pH 7.9)

containing proteinase K (50 ng/ml). The digestion was stopped at 90˚C for 20 min. The sample

was divided in half. One volume of 350 μl was used to isolate genomic DNA (Macherey Nagel,

NucleoSpin Tissue Kit) and the other half was further processed by digesting DNA with three

units of DNase I at 37˚C overnight. The sample was centrifuged at 13,000 x g for 20 min, and

the supernatant was divided into three samples, each of 100 μl. A quantity of 1 ml of DMBB

solution (0.0016% DMBB, 5% EtOH, 0.2 M GuHCl, 0.2% sodium formate and 0.2% formic

acid, adjusted to pH 1.5 with HCl) was added to each 100-μl sample and incubated for 30 min

on a shaker. The color complex was pelleted by centrifuging at 12,000 x g for 10 min. The

supernatant was removed, and the pellet was resuspended on a shaker for 30 min by adding

300 μl DMBB de-complexation solution (4 M GuHCL in 50 mM sodium acetate (pH 6.8)

+ 10% 1-propanol). The OD at 656 nm was measured in triplicate. A standard series of chon-

droitin sulfate in DMBB de-complexation solution (0–60 μg/ml) was performed for quantifica-

tion. Column-isolated DNA was quantified spectrometrically with a NanoDrop2000 (Thermo
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Scientific, USA) and glycosaminoglycan values were presented as a ratio normalized to the

DNA content of related samples.

RNA isolation

Adherent cells were lysed directly on the plate or after collection. The total RNA was extracted

and purified using a Nucleospin RNA II Kit (Macherey-Nagel, Germany), according to the

manufacturer’s protocol. Samples were snap frozen and cut into 25–30 μm sections before

lysis for RNA isolation from cell condensates. The sections were transferred to 1 ml QIAzol

(Qiagen) and stored at -80˚C until isolation. Phenol/chloroform extraction of total RNA was

performed. The RNA pellets were resuspended in 20–60 μl RNase free water, depending on

the pellet size. The RNA content was measured spectrometrically at 260 nm using a Nano-

Drop2000 (Thermo Scientific, USA).

Genomic DNA isolation

Genomic DNA was extracted with the NucleoSpin Tissue Kit (Macharey Nagel), according to

the manufacturer’s protocol. The DNA was eluted in 60 μl dH2O measured spectroscopically

and stored at -20˚C.

Bisulfite sequencing

An amount of 500 ng of genomic DNA was bisulfite-converted using an EZ DNA Methylation

Gold Kit (Zymo Research Europe, Germany). The sequence of the proximal promoter of

PECAM was obtained from the UCSC genome browser (human genome assembly hg18). All

cytosine bases not in a CpG dinucleotide context were converted to thymine in a text editor,

and PCR primer was designed on the converted template using the primer3 software [19,20].

The PCR product spanned the promoter from -164 bp to +285 bp regarding the transcriptional

start.

Proliferation assay

The cells were harvested by trypsinization, washed twice with PBS and prepared in a cell den-

sity of 2 x 106 cells/ml. A 2X CFDA-SE (10 μM) working solution was prepared. Equal volumes

of cell suspension and the 2X working solution were mixed and incubated for 7 min at room

temperature away from light. The labeling was stopped by adding five volumes of cold growth

medium and incubation of 5 min on ice in the dark followed. The cells were centrifuged and

washed twice with growth medium and then seeded in the desired density to perform the

assay. Cells were seeded at a high density to exclude cell proliferation by contact inhibition for

the nonproliferating control. Other wells were seeded at 20% confluence to monitor cell dou-

blings and were treated with 0.5 to 5 μM 5-aza-dC (Sigma Aldrich).

Karyotyping

Dedifferentiated chondrocytes from three different donors were cultivated for 4 weeks with

1 μM 5-aza-dC prior to karyotype analysis. The karyotyping was performed at the Institute of

Human Genetics at Charité Berlin.

cDNA synthesis and quantitative PCR

An amount of 200 ng total RNA was reverse transcribed using the TaqMan kit (Thermofisher).

The cDNA level was analyzed on an MxPro3005 (Agilent Technologies) using a SensiFast

SYBR No-ROX Kit (Bioline, UK), 1 μl cDNA and 250 nM of each primer. The qPCR was done
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using the following thermal profile: 95˚C for 2 min, then 40 cycles of 12 s at 95˚C, 7 s at 64˚C

and 3 s at 72˚C with additional melt point analysis. Gene expression was calculated using an

amplification efficiency (E) of 1.95 and values were normalized on reference gene UBE2D2

(NM_181838) expression. The sequences of the qPCR primers and the gene identifiers used

are listed in the S1 Table. The students t-test was performed for statistical analysis and differ-

ences in expression for p-values < 0.05 = � (< 0.01 = ��, < 0.001 = ���,< 0.0001 = ����) were

regarded as significant. Paired or unpaired t-tests were performed, depending on the experi-

mental setup, using GraphPad Prism version 6 for Mac (GraphPad Software, La Jolla, Califor-

nia, USA).

Results

Primary chondrocytes dedifferentiate upon isolation from articular cartilage characterized by

a morphological transition from round to fibroblastoid shape. Interestingly, the impact on

marker molecule expression seems to be bivalent (Fig 1). Although both isoforms of transcrip-

tion factor SOX5 tested were downregulated and the extracellular matrix molecule encoded by

COL2A1 was not even detectable after cultivation, the mRNA levels for the cartilage-specific

markers SOX6, SOX9, ACAN and proteoglycan 4 were unaffected after several weeks of

cultivation.

The impact of the DNA methylation on the marker gene expression was assessed by treat-

ing cultivated chondrocytes with the DNMT inhibitor 5-aza-dC. The treatment with 1 μM

5-aza-dC for four weeks did not alter the expression of SOX5L (isoform b), SOX6, SOX9,

PRG4 or ACAN. Only SOX5M (isoform a) was further downregulated after 5-aza-dC adminis-

tration. COL2A1 was not re-expressed after the treatment with the DNMT inhibitor (Fig 1).

Fig 1. Gene expression in osteoarthritic (OA) chondrocytes w/o 5-aza-2´-deoxycytosine (5-aza-dC) treatment. The mRNA levels of SOX5, SOX6, SOX9, ACAN,

PRG4 and COL2A1 normalized on reference gene expression UBE2D2. Cells were cultivated for four passages and then treated with 1 μM 5-aza-dC for four weeks.

Statistical analysis was done using a ratio paired t-test. Values are mean ± SD (n = 10; �p< 0.05, ��p< 0.01, ���p< 0.001).

https://doi.org/10.1371/journal.pone.0234641.g001
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Since the incorporation of 5-aza-dC could lead to chromosomal instabilities, we analyzed

the karyotype. In Fig 2D–2F, our results show no increased incidence of chromosomal aberra-

tions compared to untreated chondrocytes (Fig 2G–2I). Microscopically, neither the cells alter

their appearances, nor did we find an accumulation of detached cells even with increasing

amount of 5-aza-dC (Fig 2A–2C).

Articular chondrocytes do not proliferate in their natural environment, but the cells reenter the

cell cycle after isolation and in vitro cultivation. Since the incorporation of 5-aza-dC during prolif-

eration is necessary to inhibit the DNMTs, we performed a proliferation assay. The half-life period

of 5-aza-dC varies between 4 and 12 h [17,21], therefore, a concentration of 1 μM as well as 0.5 μM

were used during this assay. Significant proliferation inhibition in chondrocytes was observed in

our experiments with as little as 0.5 μM 5-aza-dC in the growth medium (Fig 2J and 2K).

The cells regain mesenchymal stromal cell properties, such as multiple differentiation

potentials, upon dedifferentiation. The capacity for adipogenic, osteogenic and chondrogenic

differentiation was determined in the respective cells to assess the influence of the DNMT

inhibitor treatment. Compared to the untreated control, adipogenic and osteogenic differenti-

ation was further improved by 5-aza-dC treatment (Figs 3 and 4, S1 Fig). The staining of the

calcified matrix with Alizarin Red as well as lipid vesicles by Oli Red O staining was positive

for both populations after differentiation. However, DNMT inhibitor-treated cells displayed a

more pronounced lipid vesicle staining and higher expression of FABP4. Furthermore, gene

expression of OPN showed increased levels after osteogenic differentiation in cells pretreated

with 5-aza-dC (Fig 4).

The most striking difference upon 5-aza-dC administration was observed during chondro-

cyte differentiation. Although no changes in the cartilage marker expression were seen after

5-aza-dC treatment (Fig 1), the chondrogenic differentiation capacity was significantly com-

promised upon 5-aza-dC treatment (Fig 5). The stimulus of 3D culture and chondrogenic

media was not sufficient to induce proper cartilage matrix formation (Fig 5A), and the glycos-

aminoglycan content was significantly reduced (Fig 5B). The staining of collagen type II was

also decreased in the 5-aza-dC treated samples (Fig 6). Furthermore, the coupling of 5-aza-dC

expansion with subsequent chondrogenic differentiation reduced the cartilage marker expres-

sion (Fig 7). These data strongly indicate that DNMT inhibition impaired a regulator of carti-

lage formation, whose activity is essential for active chondrogenic differentiation and

assumedly dispensable for phenotype maintenance.

The global DNA methylation level was determined comprehensively to assess the effect of

DNMT inhibitor treatment on the DNA methylation status. As seen in Fig 8, the long-term

treatment of the isolated human OA chondrocytes with 1 μM 5-aza-dC exerted no significant

influence on the global methylation level, while the treatment of HEK293T cells with 1 μM

5-aza-dC diminished the DNA methylation after only 72 h. However, the analysis of an indi-

vidual CpG at site +242 of the PECAM promoter demonstrated, even though not significantly,

a tendency of 5-aza-dC as a concentration-dependent DNMT inhibitor by demethylation of

the former strongly methylated sequence (Fig 8). The gene expression of DNMTs were ana-

lyzed to determine possible influences of cell culture or 5-aza-dC treatment on the gene

expression of DNA modifying enzymes. The gene expression of DNMT1, DNMT3a and

DNMT3b was downregulated upon expansion in vitro with no further impact by additional

DNMT inhibitor treatment (Fig 9).

Discussion

Osteoarthritis is highly prevalent in the elderly population. Implantation of cartilage tissue

built from autologous chondrocytes is a treatment which provides pain relief and delays the
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Fig 2. Effect of 5-aza-dC on chondrocyte morphology, stability and proliferation. (A-D) Dedifferentiated chondrocytes were cultured in the presence of

10 μM (B) and 20 μM (C) 5-aza-dC or without (A) to observe morphological changes in these cultures. (D-I) Dedifferentiated chondrocytes from three

different donors were treated with 1 μM 5-aza-dC (D-F) for 4 weeks and karyotyping was performed to exhibit chromosomal aberrations compared to controls

(G-I). (J,K) Carboxyfluorescein succinimidyl ester-labeled chondrocytes were treated with 0.5 and 1 μM for 16 days. The values represent mean fluorescence

(normalized on nonproliferative control (J) and to untreated chondrocytes (K)). Statistical analysis was done using a ratio paired t-test. Values are the

mean ± SD (n = 10; �p< 0.05, ��p< 0.01, ���p< 0.001). Measure bars (A-C) represents 500 μm.

https://doi.org/10.1371/journal.pone.0234641.g002
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disease progression [22]. Various biotechnological approaches could improve the cartilage tis-

sue engineering [23]. Several publications report on the dedifferentiation and loss of function-

ality in healthy chondrocytes upon cell culture [24,25]. In these studies, the focus is mainly on

the regenerative potential of chondrocytes. Even though the cartilage we extracted was from

even and uninjured areas of the joint, the environmental signaling was, nevertheless, of late-

stage OA and should be taken into consideration. The transcriptional differences between

healthy and osteoarthritic chondrocytes were described repeatedly [6,24]. In these studies, the

loss of cartilage marker expression was reported, as shown in the downregulation of collagen

type 2, aggrecan and SOX9, coupled with the upregulation of collagen type 1. Nevertheless, the

dedifferentiated chondrocytes showed a high potential for cartilage formation in three-dimen-

sional culture systems. As shown previously, imitating the physiological environment of the

tissue without further assistance was sufficient for the dedifferentiated chondrocytes to redif-

ferentiate [26].

In the current study, we demonstrated a maintenance of marker expression in OA chon-

drocytes after several passages. Our data suggest, that the downregulation had already taken

place during disease progression. Interestingly, Lin et al. showed similar gene expression pro-

files of cultured chondrocytes isolated from healthy and OA joints [27], indicating that both

chondrocyte populations were equal after completed dedifferentiation.

For chondrocytes, comparative studies of healthy and OA chondrocytes revealed different

DNA methylation patterns [28,29]. In the present study, the treatment of OA chondrocytes

with 5-aza-dC led to a decreased cell proliferation even at low doses. Unterberger et al.

reported the subjacent mechanisms for the proliferation inhibition observed after DNMT

reduction [30]. The dissociation of DNMT1 from the replication fork activates a replication

Fig 3. Influence of 5-aza-dC on the adipogenic potential of OA chondrocytes. After 5-aza-dC treatment, OA chondrocytes were differentiated towards adipocytes. (A)

After four weeks, lipid vesicles were stained with Oil Red O. Pictures were taken at the same magnification. (B) Gene expression of FABP4. Expression was normalized on

reference gene UBE2D2. Values are mean ± SD and statistical analysis was done using a paired ratio t-test. (n� 4; �p< 0.05, ����p< 0.0001).

https://doi.org/10.1371/journal.pone.0234641.g003
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stress checkpoint in an ataxia telangiectasia mutated Rad3-related dependent manner.

Through this mechanism, one single incorporated cytosine analog could stall one replication

complex until the missing enzyme is replaced.

The increased expression of OPN and FABP4 during osteogenic and adipogenic differentia-

tion after 5-aza-dC treatment are in line with the work of Kim et al. [31], where the chondro-

genic, osteogenic and neurogenic differentiation of human bone marrow mesenchymal stem

cells was enhanced in the presence of 5-aza-dC. Further studies showed an increase in stem-

ness (expression of markers as SOX2 and NANOG) in cells treated with 5-aza-dC [32,33]. In

our study, the 5-aza-dC treatment had the most significant impact on cartilage differentiation.

Matrix production was reduced, and marker expression was downregulated. These data are

contrary to the work of Duan et al. [5], where the treatment of healthy chondrocytes with

5-aza-C could partially reverse the dedifferentiation of chondrocytes, seen in the increase of

the cartilage marker SOX9 and the decrease of collagen type 1 expression restoring the chon-

drogenic phenotype. Duan et al. isolated chondrocytes from trauma patients, while the chon-

drocytes in this work were extracted from late-stage OA joints. There, 2 μM 5-aza-C (RNA

nucleotide) was used for 24 h, while the cells in this study were treated for four weeks with

1 μM 5-aza-dC (DNA nucleotide). Komashko and Fanham reported the differences between

long- and short-term treatment of 5-aza-C on DNA methylation and histone modification

Fig 4. Influence of 5-aza-dC on the osteogenic potential of OA chondrocytes. After 5-aza-dC treatment, the OA chondrocytes were differentiated towards osteoblast.

(A) After four weeks, the calcified matrix was stained with Alizarin Red. (B) Gene expression of OPN was measured and normalized on reference gene UBE2D2. Values

represent mean ± SD and statistical analysis was done using paired ratio t-test. (n� 4; �p< 0.05, ��p< 0.01, ���p< 0,001).

https://doi.org/10.1371/journal.pone.0234641.g004
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patterns [34]. They showed a regulatory effect of the inhibitor mostly on genes which were

already unmethylated before treatment and that short-term treatment only slightly reduced

the DNA methylation of HEK293 cells. Alvarez-Garcia et al. analyzed the influence of short

(48 h) and long-term (four to five weeks) treatment of 5-aza-dC by determining the expression

of a few tested markers in chondrocytes, where short-term treatment enhanced the transcrip-

tion of more genes compared to long-term stimulus [28]. Epigenetic differences between nor-

mal and osteoarthritic chondrocytes are described by Alvarez-Garcia et al., where the DNA

methylation profiles differ significantly between these two groups [28]. Taken these findings

together, the duration of treatment influences transcription by different mechanisms, since the

incorporation rate in short-term treatment is very low due to the small number of cell dou-

blings during that time frame.

We demonstrate, the long-term treatment of OA chondrocytes with 5-aza-dC not affect the

global DNA methylation levels. Interestingly, the incubation of 5-aza-dC in chondrocytes in

the work of Hashimoto et al. leads to a decrease of DNA methylation of specific CpGs within

the IL1b promoter, while global DNA demethylation was not shown [35]. In other studies, the

methylome analysis by next-generation sequencing illustrates the differences in DNA methyla-

tions of chondrocytes at different passages as well as 5-aza-dC treated versus untreated cells

[5]. Their findings indicate a directed change in DNA methylation, since the regions which

Fig 5. Effect of 5-aza-dC on cartilage matrix formation. After 5-aza-dC treatment, the OA chondrocytes were differentiated towards cartilage for six weeks in three-

dimensional culture. (A) Frozen sections were stained for proteoglycans with Alcian Blue and Safranin O / Fast Green. (B) The glycosaminoglycan content was

normalized on a DNA amount of the same sample. Values represent mean ± SD and statistical analysis was done using a paired ratio t-test. (n = 3; �p< 0.05).

https://doi.org/10.1371/journal.pone.0234641.g005
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were hypomethylated by 5-aza-dC most prominently were hypermethylated upon artificial cell

culture. Furthermore, the treatment of 5-aza-dC in primary healthy chondrocytes indeed

demethylate DNA but preferably of distinct and possibly cartilage-specific regions. Our data

and the study by Hagemann et al. indicate, that the DNA demethylation was found to be non-

random and reproducible [36]. They reported that specific CpGs within CpG islands become

re-methylated upon treatment with 5-aza-dC and, furthermore, they identified sequences

which were never affected by treatment at all [36]. The inhibiting effect of 5-aza-dC on carti-

lage marker expression during chondrogenesis is the focus of further investigations. Whole

genome methylation analysis is required to identify the key player of the changes observed

regarding the duration of treatment.

Without fully exploring the mechanisms behind the cartilage marker maintenance in OA

chondrocytes, their beneficial properties represent a helpful tool for in vitro applications. The

Fig 6. Reduction of collagen type II staining after 5-aza-dC treatment. After 5-aza-dC treatment, the OA chondrocytes were differentiated towards cartilage for six

weeks in three-dimensional culture. Immunohistochemistry for collagen type II in cartilage (B), after chondrogenic differentiation with (D) and without (C) 5-aza-dC pre-

treatment. Negative control without primary antibody (A).

https://doi.org/10.1371/journal.pone.0234641.g006
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Fig 7. Influence of 5-aza-dC on cartilage marker expression. After 5-aza-dC treatment, the OA chondrocytes were differentiated towards cartilage. After six weeks,

the gene expression of specific cartilage markers was measured and normalized on reference gene UBE2D2. Values represent mean ± SD and statistical analysis was

done using a paired ratio t-test. (n� 4; �p< 0.05, ��p< 0.01).

https://doi.org/10.1371/journal.pone.0234641.g007

Fig 8. Global DNA methylation level in OA chondrocytes. (A) ELISA of 5-methylcytosine in OA chondrocytes after four weeks of 5-aza-dC treatment. (B) Bisulfite

sequencing of CpG at +242 of PECAM promoter after four weeks of 5-aza-dC exposure. (C) ELISA of 5-methylcytosine in HEK293T cells after 72 h of 5-aza-dC

treatment. Values represent mean ± SD and statistical analysis was done using a student t-test. (n = 4; �p< 0.05).

https://doi.org/10.1371/journal.pone.0234641.g008
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present study provides evidence that late-stage OA chondrocytes have a high cartilage forma-

tion capacity, and our data are in line with multiple publications which report that OA chon-

drocytes are a source of osteochondroprogenitors and have equal capacity to healthy

chondrocytes [37–40].

Conclusion

Chondrocytes isolated from late-stage OA do not show the same changes as healthy chondro-

cytes during dedifferentiation upon cell culture. They can differentiate towards adipogenic,

osteogenic or chondrogenic lineages. The adipogenic and osteogenic differentiation was fur-

ther enhanced under long-term treatment with DNMT inhibitor 5-aza-dC, while the prolifera-

tion of cells slowed down. On the other hand, the chondrogenic differentiation was inhibited.

Although the DNMT inhibitor was added every second day for four weeks during the expan-

sion of cells, no global DNA demethylation could be observed, indicating an additional inde-

pendent mechanism responsible for the effects observed.
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