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ABSTRACT
Background. Juvenile dermatomyositis (JDM) is an immune-mediated disease charac-
terized by chronic organ inflammation. The pathogenicmechanisms remain ill-defined.
Methods. Raw microarray data of JDM were obtained from the gene expression
omnibus (GEO) database. Based on the GSE3307 dataset with 39 samples, weighted
correlation network analysis (WGCNA) was performed to identify key modules
associated with pathological state. Functional enrichment analyses were conducted to
identify potential mechanisms. Based on the criteria of high connectivity and module
membership, candidate hub genes were selected. A protein-protein interaction network
was constructed to identify hub genes. Another dataset (GSE11971) was used for the
validation of real hub genes. Finally, the real hub genes were used to screen out small-
molecule compounds via the Connectivity map database.
Results. Three modules were considered as key modules for the pathological state
of JDM. Functional enrichment analysis indicated that responses to interferon and
metabolism were dysregulated. A total of 45 candidate hub genes were selected
according to the pre-established criteria, and 20 genes could differentiate JDM from
normal controls by validation of another external dataset (GSE11971). These real hub
genes suggested the pivotal role of mitochondrial dysfunction and interferon signature
in JDM. Furthermore, drug repositioning highlighted the importance of acacetin,
helveticoside, lanatoside C, deferoxamine, LY-294002, tanespimycin and L01AD from
downregulated genes with the potential to perturb the development of JDM, while
betonicine, felodipine, valproic acid, trichostatin A and sirolimus from upregulated
genes provided potentially therapeutic goals for JDM.
Conclusions. There are 20 real hub genes associated with the pathological state of JDM,
suggesting the pivotal role of mitochondrial dysfunction and interferon signature in
JDM. This analysis predicted several kinds of small-molecule compounds to treat JDM.
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INTRODUCTION
Juvenile dermatomyositis (JDM) is a rare chronic childhood-onset autoimmune disease
characterized by inflammatory infiltration in small vessels and tissues within skin and
muscle. The incidence of JDM is 2–4 per million per year in the United States (Feldman
et al., 2008), with female:male ratios ranging from 1.5:1 to 5:1 (Lindsley et al., 1995). The
major manifestations of JDM patients consist of symmetrical proximal muscle weakness,
skin rashes, and internal organs involvement (Crowe et al., 1982). Up to 30% of JDM
may present with calcifications, one of the prognostic factors of long-term disability
(Arabshahi et al., 2012; Li & Zhou, 2019; Ravelli et al., 2010). Adults with JDM in childhood
are susceptible to premature cardiovascular damage (Gitiaux et al., 2016).

Pathological state and treatment have been reported to affect growth and puberty in the
active phase of JDM (Nordal et al., 2019). Ongoing disease activity, irreversible damage, and
aggressive immunosuppressive therapy remain major challenges for long-term outcomes
and quality of life in JDM patients (Hoeltzel et al., 2014). The etiology of JDM remains
ill-defined although genetic and environmental factors are suspected to be involved in its
pathogenesis. It has been reported that JDM patients had higher incidence of Epstein-Barr
virus infection (Zheng et al., 2019), and the prominent type 1 interferon (IFN) signature
was shown to affect the vasculature JDM (De Paepe, 2017; Greenberg, 2010). Adaptive
and innate immune mechanisms involving IFN-associated molecules appear to mediate
endothelial tubule-reticular formations and peri-fascicular atrophy.

Weighted gene co-expression network analysis (WGCNA) algorithm is a powerful
bioinformatic method that mines practical information from gene expression profiles by
constructing of gene modules, thereby interpreting the biological significance of a gene
(Langfelder & Horvath, 2008). WGCNA has been widely used in various diseases (Zhao
et al., 2010), including malignancies, cardiovascular diseases and autoimmune diseases,
where it has provided useful information for understanding pathological process and for
discovery of diagnostic and prognostic biomarkers. Nevertheless, WGCNA has never been
applied to JDM.

Therefore, we used WGCNA for the first time to analyze pathological state and gene
expression data in JDM muscular samples to explore and validate hub genes associated
with JDM, as well as to predict small-molecule compounds to treat JDM with promising
perspectives.

MATERIALS & METHODS
Data collection and differentially expressed genes screening
The flowchart of the study is shown in Fig. S1. Microarray profiles of JDM were retrieved
from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) of the
National Center for Biotechnology Information using the search terms of ‘‘juvenile
dermatomyositis’’ restricted in the title. The datasets enrolled in this study must contain
musclular specimens with three biological replicates at least. The ‘‘affy’’ package in R
environment (version 3.6.1) was used to quantile normalize the expression within
each dataset (Sasik, Calvo & Corbeil, 2002). The corresponding platforms were applied

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8611 2/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.8611#supp-4
http://www.ncbi.nlm.nih.gov/geo/
http://dx.doi.org/10.7717/peerj.8611


to annotate each probe according to Entrez ID, and the average expression value was
calculated if several probes corresponded to the same Entrez ID (Table S1). The ‘‘limma’’ R
package was performed for identifying differentially expressed genes (DEGs) between JDM
samples and normal samples under cut-off criteria of false discovery rate (FDR) <0.05 and
|log2fold change| ≥ 1.

Co-expression network construction
The variance of each gene expression value was calculated and the genes with variance
ranked in the top 25% were selected for the construction of WGCNA (Langfelder &
Horvath, 2008). The ‘‘WGNCA’’ package was used to construct the co-expression network.
In detail, the function goodSamplesgenes was used to include the qualified genes and
samples, followed by choosing an appropriate soft-thresholding power to construct the
weighted adjacency matrix by the function pickSoftThreshold. The adjacency matrix
was transformed into the topological matrix (TOM), and TOM-based dissimilarity (1-
TOM) measure was used to cluster the genes using the flashClust function. Genes in
the same module were highly interconnected. Then, phenotype (clinic traits) was imput
into the co-expression network, and the following parameters were calculated: module
eigengene (ME), gene significance (GS), and module membership (MM). ME represents
the significant component in the principal component analysis for each gene module,
and MM refers to the connectivity between genes and modules. GS was representative of
correlation strength between gene expression and clinical traits, which was calculated by
log10 transformation of the P-value (GS= lg P) in the linear regression. Key modules were
considered based on the criteria that the correlation coefficient ≥ 0.80 and P-value <0.05.

Functional enrichment analysis
All genes in key modules were uploaded to the g:Profiler online (Reimand et al., 2007)
database to perform Gene Ontology (GO) functional annotation (Ashburner et al., 2000)
and the Kyoto encyclopedia of genes and genomes (KEGG) enrichment pathway analysis
(Kanehisa & Goto, 2000). GO functional analysis consists of biological process (BP), cellular
component (CC), and molecular function (MF). Analysis results were extracted under the
condition of adjusted P- value <0.05. The top five terms were visualized if there were more
than five terms.

Selection and validation of hub genes
Genes with high correlation in candidate modules were defined as candidate hub genes.
High connectivity was considered when the connectivity ranked in the top 2%. Candidate
hub gene met the absolute values of MM >0.80 and GS >0.20. After identifying hub genes
highly associated with clinical traits, the search tool for the retrieval of interacting genes
(STRING) database was used to construct a protein-protein interaction (PPI) network
for the candidate hub genes, and molecular complex detection (MCODE, a plugin in
Cytoscape) was used to further select the real hub (Shannon et al., 2003; Szklarczyk et al.,
2015). Genes with MCODE score ≥ 0 in the PPI network were selected as the final hub
genes. A separate dataset (GSE11971) was used to validate the differential expression of the
final hub genes.
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Related small-molecule compounds screening
Connectivity map (CMap) database (https://portals.broadinstitute.org/cmap) was used
to screen out small molecule compounds based on the real hub genes associated with
JDM, because most compounds in this database are the United States Food and Drug
Administration-approved drugs (Lamb et al., 2006). First, real hub genes were divided
into upregulated and downregulated groups. Next, these probe sets were used to query
the CMap database based on the platform of the Affymetrix Human Genome U133 Plus
2.0 Array (http://www.affymetrix.com/analysis/netaffx/index.affx). Finally, enrichment
scores representing similarity were calculated, ranging from −1 to 1. Small molecules
generated from up-regulated genes suggested therapeutic goals, while down-regulated
genes predicted inhibitors of therapy for the disease. Potential compounds were selected
based on connectivity score, P-value and correlation.

Statistical analysis
Two-tailed Student’s t -test was applied to the significance of differences between groups,
and P-value less than 0.05 was considered as statistically significant. Statistical analyses
were performed using Graphpad Prism 8.0.

RESULTS
Data collection and differentially expressed genes
We employed two datasets on JDM muscular expression profiles. Dataset GSE3307 was
used as the training set (Bakay et al., 2006). The original study enrolled 39 muscular biopsy
samples, including 21 JDM patients and 18 healthy controls (HC). Dataset GSE11971,
including nineteen JDM patients and four normal controls, was used as the validating
set (Chen et al., 2008). The gene expression profiles of all tissue samples were analyzed
based on the platform of the Affymetrix Human Genome U133 Plus 2.0 Array. A total of
2,834 differentially expressed genes between JDM and HC were identified, including 1,888
down-regulated genes and 946 up-regulated genes. The DEGs are listed in Table S2.

Construction of a weighted co-expression network and identification
of key modules
5103 genes whose variance ranked in the top 25% with 21 JDM samples and 18 control
samples in GSE3307 were used for WGCNA construction. The ‘‘WGCNA’’ R package was
used for expression matrix of GSE3307, and soft-thresholding power β value equal to 10
was selected to ensure a scale-free network with scale-free R2 equal to 0.90 (Figs. S2A–S2B)
(Langfelder & Horvath, 2008). A total of 13 modules were returned by WGCNA analysis
(Figs. 1A–1B).

The interaction relationship of 12 modules was analyzed using network heatmap
plots (Fig. 1C). The division of all modules was highly independent from our analysis. The
module eigengene dendrogram showed that 12modules were divided into two clusters, and
the adjacency heatmap of eigengene showed a similar result (Fig. 2A). Based on the criteria
that correlation coefficient ≥ 0.80, P value <0.05, blue, lightgreen and midnightblue
modules were identified as key modules for further analysis (Fig. 2B). Therefore, we
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Figure 1 Construction ofWGCNAmodules. (A) Dendrogram of module eigengenes based on dissim-
ilarity measure (1-TOM); (B) Cluster dendrogram of the genes with variance ranked in the top 25% in
the GSE3307 dataset. Each color represents one module; (C) Network heatmap plots of genes selected for
WGCNA construction. The depth of yellow in the middle of the figure indicated the degree of correlation
between pair-wise genes.

Full-size DOI: 10.7717/peerj.8611/fig-1

selected the blue, lightgreen and midnightblue modules for subsequent analysis, to identify
the relevance between key modules and the pathological state of JDM with substantial
biological significance (Figs. 2C–2E).

Functional and pathway enrichment analysis
GO andKEGG pathway enrichment was performed for all genes in the keymodules tomine
the biological functions associated with JDM. Biological process of GO analysis showed
genes in the bluemodule were associated with generation of SRP-dependent cotranslational
protein targeting to membrane, cotranslational protein targeting to membrane, protein
targeting to ER, nuclear-transcribed mRNA catabolic process and establishment of protein
localization to endoplasmic reticulum; and that in the lightgreen module was relevant to
response to type I interferon, type I interferon signaling pathway, cellular response to type
I interferon, defense response to virus and response to virus.The top five pathways related
to the midnightblue module were cellular response to chemical stimulus, extracellular
structure organization, extracellular matrix organization, response to organic substance
and cell motility (Fig. 3A). Pathway enrichment results of MF and CC in three key modules
are presented in Figs. 3B–3C. The results of the KEGG pathway enrichment analysis in
three modules are shown in Fig. 3D.
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Figure 2 Relationship betweenmodules and clinical traits. (A) Module eigengene dendrogram and (B)
Adjacency heatmap. (C) Heatmap of the module-trait relationships. (D–F) Scatter plots of module eigen-
genes in blue (C), lightgreen (D) and midnight blue (E) modules.

Full-size DOI: 10.7717/peerj.8611/fig-2

Identification of hub genes
Based on the criteria that MM >0.80 and GS >0.20, a total of 45 DEGs with the high
connectivity in key modules were screened as candidate hub genes. Then, a PPI network
was constructed for candidate hub genes using Cytoscape, consisting of 42 nodes and 80
edges according to STRING database (Fig. 4). We conducted molecular complex detection
(MCODE) (a plugin in Cytoscape) analysis for 45 candidate hub genes, and 28 genes (blue
= 15, lightgreen = 11, midnightblue = 1) were considered hub genes according to the
criteria of MCODE score ≥ 0. Table 1 shows 28 hub genes in the three modules.

All hub genes were validated using JDM data from another GEO database (GSE11971).
Because of the differences in microarray probes used in two data sets, boxplots were
used to show the validation results for the final 22 hub genes (Fig. S3). We found that
seven genes, SP110, SAMHD1, IFIT5, PLSCR1, IFI16, MX2 and CLIC1, were significantly
upregulated in JDM compared to HC, while thirteen genes, COX5B, COX6A2, COX7C,
NDUFA4, NDUFB4, MDH2, ATP5O, ATP5B, RPL21, TPI1, SLC25A3, VDAC1 and EIF4B,
were significantly downregulated in JDM in comparison of HC. Figure 5 summarizes the
cross-talk pathways involved in the pathogenesis of JDMby hub genes and literature (Miller
et al., 2018; Thompson, Piguet & Choy, 2017).

Related small-molecule compounds screening
The CMap database was used for small molecule drugs screening based on 20 real hub genes
associated with JDM. Based on the criterion that the number of instances exceeds five and
P-value less than 0.05, twelve small-molecule compounds were identified (Table 2). Among
these compounds, acacetin, helveticoside, lanatoside C, deferoxamine, famprofazone,
tanespimycin and LY-294002 may perturb the development of JDM, while betonicine,
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Figure 3 Top five terms of GO and KEGG pathway enrichment analysis in blue, light green andmid-
night blue modules. The horizontal axis represents the gene ratio, and the vertical axis indicates the term
of GO/KEGG signaling pathway, and the change of color from blue to red indicates the change of signif-
icance from low to high. (A) Biological function; (B) cellular component; (C) molecular function; (D)
KEGG enrichment pathway.

Full-size DOI: 10.7717/peerj.8611/fig-3

felodipine, valproic acid, and sirolimus might provide potentially therapeutic goals for
JDM.

DISCUSSION
In this study, we used WGCNA to construct a co-expression network, detect key gene
modules and identify hub genes in JDM for the first time. Our research provides some
potential biomarkers or molecular targets for JDM through the Cmap database. We found
that three modules highly correlated with JDM. The expression of 28 genes in these
three modules showed significant changes in patients with JDM compared to control
individuals in the training period, and 20 genes were validated as the real hub genes in the
GSE11971 dataset, including the downregulation of NADH dehydrogenase, ATP synthase
and cytochrome c oxidase and upregulation of IFN-stimulated genes. However, few of
them were identified as biomarkers or crucial genes in JDM yet.

Functional enrichment analysis indicated that type I interferon signaling and various
virus infection pathways were strengthened in JDM compared to HC, which is consistent
with findings of previous studies (Moneta, Marafon & Marasco, 2019; Piper et al., 2018).
IFIT5, IFI16 and MX2, interferon-stimulated genes, both nuclear transcriptional factors,
were found to be upregulated in other autoimmune diseases but not in JDM (Wang et
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Figure 4 Protein–protein interaction network of 45 hub genes.Different shapes represent various clus-
ters constructed by molecular complex detection (MCODE). i.e., ellipses represent cluster 1 and triangles
represent cluster 2. The color changes from dark brown to light brown indicate the MCODE score changes
from high to low.

Full-size DOI: 10.7717/peerj.8611/fig-4

al., 2019b; Zhang & Xu, 2019). In the present study, we found that interferon-stimulated
genes were significantly upregulated in JDM patients, as well as the so-called ‘‘interferon
signature’’, demonstrating a possible mechanism that viral mimics or other stimuli may
play a crucial role in the pathogenesis of JDM. Viral mimics are thought to participate
in the pathogenesis of JDM (Musumeci & Castrogiovanni, 2018) and other autoimmune
diseases (Christen et al., 2004; Sellami et al., 2019), consistent with the notion that JDM
patients have higher rates of viral infections (Tansley, McHugh & Wedderburn, 2013; Zheng
et al., 2019). This may suggest that the prevention of certain viral infections would decrease
the incidence of autoimmunity by inhibiting self-antigenic mimics. NADH dehydrogenase
(NDUFA4 and NDUFB4), ATP synthase (ATP5O and ATP5B) and cytochrome c oxidase
(COX) family (COX5B, COX6A2 and COX7C) are crucial molecules involved in the
oxidative phosphorylation in mitochondrial metabolism, and the decreased levels of these
molecules suggested a crucial role of impaired mitochondrial phosphorylation and lower
oxidative capacity in the pathogenesis of JDM, accounting for the extremity weakness in
JDM patients.

Hypoxia caused by suppressed oxidative phosphorylation induces changes in reactive
oxygen species (ROS) generation, whereby severe hypoxia in skeletal muscle results in
elevated H2O2 generation. ROS accumulation produced by mitochondrial dysfunctions,
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Table 1 Hub genes identified by co-expression andMCODEmethods.

Gene GS.JDM MM MCODE_Score Regulation Module

ATP5O −0.860 0.905 7.0 down blue
ATP5B −0.903 0.892 7.0 down blue
NDUFV2 −0.792 0.912 7.0 no sig blue
NDUFB10 −0.844 0.946 7.0 NA blue
COX7C −0.784 0.919 7.0 down blue
COX5B −0.830 0.937 7.0 down blue
NDUFB4 −0.805 0.922 6.0 down blue
COX6A2 −0.841 0.922 7.0 down blue
NDUFA4 −0.833 0.833 7.0 down blue
VDAC1 −0.880 0.896 4.8 down blue
SLC25A3 −0.859 0.903 6.0 down blue
MDH2 −0.851 0.921 5.0 down blue
TPI1 −0.899 −0.899 2.7 down blue
RPL21 −0.827 0.915 0.5 down blue
MRPS7 −0.842 0.916 2.0 no sig blue
PARP9 0.844 0.950 1.2 NA lightgreen
DTX3L 0.844 0.961 2.0 NA lightgreen
MX2 0.930 0.913 3.0 up lightgreen
SAMHD1 0.846 0.954 2.0 up lightgreen
RNF213 0.841 0.961 2.0 NA lightgreen
EIF4B −0.885 −0.919 0.0 down lightgreen
IFIT5 0.934 0.921 3.0 up lightgreen
SP110 0.864 0.963 0.7 up lightgreen
IFI16 0.881 0.913 3.0 up lightgreen
PLSCR1 0.879 0.922 3.0 up lightgreen
EPSTI1 0.797 0.925 2.0 NA lightgreen
DDX60L 0.846592 0.923402 0.0 NA lightgreen
CLIC1 0.768 0.933 2.0 up midnightgreen

in turn, drives type I interferon responses and muscle inflammation, and may thereby
self-sustain the disease process (Wang et al., 2019a). Similar to other autoimmune diseases,
high-dose glucocorticoids, used alone or in combination with immunosuppressive agents
are routine treatment for JDM patients wheras some refractory patients may develop
functional limitations. It has been suggested that refractory JDM patients, have lower
maximal oxygen uptake (Drinkard et al., 2003; Hicks et al., 2002) than do healthy children
and with children with juvenile dermatomyositis in remission (Takken et al., 2008),
suggesting that mitochrondrial dysfuction may contribute to the severity of JDM. Current
concepts on the therapy of muscle weakness in JDM focus on induction of partial recovery
and exposure to serious adverse events (including muscular toxicity). Our data suggest a
novel therapeutic perspective for JDM by protecting mitochondria from dysfunction.

Bioinformatics combined human and material resources to develop more efficient tools
with lower error rates (Irizarry et al., 2003). WGCNA is an efficient approach to construct
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Figure 5 Cross-talk pathways involved in JDM interfered by hub genes and reference. Enviromental
factors (such as the invasion of virus) stimulate receptors to pathogen-associated molecular patterns
(PAMPs) or cytokines on skeletal muscle cells and vascular endothelial cells, followed by the activation
of DNA-cGAS-STING axis or RNA-MDA5/RIG-I-MAVS axis, thereby inducing the transcription
of interferon-stimulated genes and other genes by phosphorylating IRF3/7, ultimately leading to
inflammatory infiltration in blood vessels as well as skeletal muscle weakness. The dysfunction of
metabolic signallings through cytokine receptors (for example, the type I interferon receptor (IFNAR)
and/or IL-1 receptor (IL-1R)) activated oxidative phosphorylation in mitochondria, leading to the
accumulation of reactive oxygen species (ROS), potentially resulting in energy-generating deficits in
skeletal muscles. The hub genes involved in the pathogenesis of JDM are as follows: IFN-stimulated genes:
IFIT5, IFI16 and MX2; Cytochrome c oxidase: COX5B, COX6A2 and COX7C; NADH dehydrogenase:
NDUFA4 and NDUFB4 ; ATP synthase: ATP5B and ATP5O.

Full-size DOI: 10.7717/peerj.8611/fig-5

co-expressed modules and hub genes in several diseases. Previous studies using microarray
expression profiles from adult-onset DM patients showed that IFN-stimulated genes were
upregulated (i.e., MX2, STAT1 and OAS3), suggesting that the IFN signature overlapped
the pathogenesis both in adult and juvenile DM. Nevertheless, mechanisms linked to
hypoxia are less prevalent in adult-onset DM, suggesting mitochondrial dysfunctions
contribute more to juvenile-onset DM rather than adult-onset DM.

We used the CMap database to predict several kinds of small-molecule compounds with
promising capacity as therapeutic goals or inhibitors on treatment for JDM. No evidence
has demonstrated the direct association between these compounds and JDM, while
they hinted indirect link to JDM, according to the literatue. Among these compounds,
acacetin, helveticoside, lanatoside C, deferoxamine, famprofazone, tanespimycin and
LY-294002 showed negative enrichment scores and thus may have the potential to
perturb the development of JDM, while betonicine, felodipine, valproic acid, and
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Table 2 Small molecule drugs screening based on CMap database.

Cmap name and
cell line

Mean
score

Number Enrichment P-value Specificity Percent
non-null

0175029-0000 −0.696 6 −0.982 0 0 100
acacetin −0.465 6 −0.785 0.00018 0 100
helveticoside −0.494 6 −0.754 0.00044 0.013 83
lanatoside C −0.424 6 −0.7 0.00167 0.0638 66
betonicine 0.239 6 0.676 0.00312 0.0065 66
deferoxamine −0.345 8 −0.556 0.00726 0.0184 62
famprofazone −0.203 6 −0.557 0.02862 0.1035 50
felodipine 0.213 7 0.511 0.03088 0.1089 71
trichostatin A - HL60 0.283 34 0.623 0 0.0798 52
trichostatin A - MCF7 0.172 92 0.399 0 0.673 56
LY-294002 - PC3 −0.243 12 −0.494 0.00325 0.2249 58
valproic acid - HL60 0.254 14 0.417 0.01034 0.1812 50
sirolimus - HL60 0.305 10 0.534 0.00359 0.0347 70
vorinostat - MCF7 0.22 7 0.5 0.0378 0.7655 71

sirolimus showed positive enrichment scores and might provide potentially therapeutic
goals for JDM. Acacetin, an inhibitor of lipopolysaccharide-induced inflammation, can
promote the expansion of Treg cells and supress the differentiation of Th17 cells in a
dose-dependent manner in collagen-induced arthritis (Liu et al., 2018). Helveticoside can
regulate metabolism and signaling processes as a biologically active component, but little is
known in inflammatory reactions (Kim, Lee & Kim, 2015). The iron chelator deferoxamine
was shown to reduce mitochondrial oxidative stress in a transient cerebral ischemia model
as well as the release of pro-inflammatory molecules including matrix metalloproteinase-9
and hypoxia inducible factor-1 (Im et al., 2012). LY294002, a kind of PI3K inhibitor, has
potential against experimental autoimmune myocarditis (Liu et al., 2016). The heat-shock
protein 90 inhibitor tanespimycin has been shown to inhibit cutaneous inflammation in
experimental epidermolysis bullosa acquisita (Tukaj et al., 2017) and other experimental
autoimmune models (Dello Russo et al., 2006). Felodipine, commonly used to treat
hypertension and angin, has been evidenced to inhibit oxidative stress and inflammation
in endothelial cells, which is consistent with our results (Qi et al., 2017). Valproic acid is a
histone deacetylase inhibitor (HDACI), can suppress the inflammatory responses mediated
by cytokines, oxidative stress molecules (ROS, NO), activating receptors (NK, T γ δ, and
cytotoxic lymphocytes), perforin, granzyme, costimulatory molecules, and autoantibodies
(Soria-Castro et al., 2019). Sirolimus can restore immune balance in rheumatoid arthritis
patients by expanding the pool of circulating Treg cells (Niu et al., 2019). Our results based
on the CMap database might provide hints as to future therapy for JDM; nevertheless,
studies in vitro and in vivo are necessary.

This study has some limitations. First, this is retrospective, with all data in this study
being retrieved from a public database. A multicenter, prospective study is needed to
evaluate the significance of these hub genes in terms of long-term outcomes and possible
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applications of molecular drugs for therapy. Second, experiments in vivo and in vitro
are necessary to interpret potential mechanisms of real hub genes and small-molecule
compounds for future clinical translation. Third, clinical traits cannot correlate with gene
modules when performing WGCNA because of lack of clinical trait data in these GEO
datasets.

CONCLUSIONS
Based on weighted gene co-expression analysis, three key modules and 20 real key genes
associated with the pathological state of JDM were identified, suggesting pivotal roles of
mitochondrial dysfunction and the interferon signature in JDM. This analysis provides
several candidate small-molecule compounds for use as targeted therapy of JDM.

ACKNOWLEDGEMENTS
We would like to acknowledge the GEO, g:Profiler, STRING and CMap databases for free
use.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Chinese National Key Technology R&D Program of Ministry
of Science and Technology (2017YFC0907604), National Science and Technology Major
Project of the Ministry of Science and Technology of China (2019ZX09734001-002-004),
Medical and health science and technology innovation project of Chinese Academy of
Medical Sciences (2019-I2M-2-008), National Natural Science Foundation of China
(81601430, 81471615). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Chinese National Key Technology R&D Program of Ministry of Science and Technology:
2017YFC0907604.
National Science and Technology Major Project of the Ministry of Science and Technology
of China: 2019ZX09734001-002-004.
Chinese Academy of Medical Sciences: 2019-I2M-2-008.
National Natural Science Foundation of China: 81601430, 81471615.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Danli Zhong conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8611 12/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.8611


• Chanyuan Wu performed the experiments, authored or reviewed drafts of the paper,
and approved the final draft.
• Jingjing Bai analyzed the data, prepared figures and/or tables, and approved the final
draft.
• Dong Xu and Xiaofeng Zeng analyzed the data, authored or reviewed drafts of the paper,
and approved the final draft.
• Qian Wang conceived and designed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

Patent Disclosures
The following patent dependencies were disclosed by the authors:

Data is available at GEO: GSE3307 and GSE11971.

Data Availability
The following information was supplied regarding data availability:

The data is available at NCBI GEO: GSE3307 and GSE11971.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8611#supplemental-information.

REFERENCES
Arabshahi B, Silverman RA, Jones OY, Rider LG. 2012. Abatacept and sodium thiosul-

fate for treatment of recalcitrant juvenile dermatomyositis complicated by ulceration
and calcinosis. Jornal de Pediatria 160:520–522 DOI 10.1016/j.jpeds.2011.11.057.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski
K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis
S, Matese JC, Richardson JE, RingwaldM, Rubin GM, Sherlock G. 2000. Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium.
Nature Genetics 25:25–29 DOI 10.1038/75556.

BakayM,Wang Z, Melcon G, Schiltz L, Xuan J, Zhao P, Sartorelli V, Seo J, Pegoraro
E, Angelini C, Shneiderman B, Escolar D, Chen YW,Winokur ST, Pachman LM,
Fan C, Mandler R, Nevo Y, Gordon E, Zhu Y, Dong Y,Wang Y, Hoffman EP.
2006. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting
disruption of Rb-MyoD pathways in muscle regeneration. Brain 129:996–1013
DOI 10.1093/brain/awl023.

Chen YW, Shi R, Geraci N, Shrestha S, Gordish-Dressman H, Pachman LM.
2008. Duration of chronic inflammation alters gene expression in muscle
from untreated girls with juvenile dermatomyositis. BMC Immunology 9:43
DOI 10.1186/1471-2172-9-43.

Christen U, Edelmann KH,McGavern DB,Wolfe T, Coon B, TeagueMK,Miller SD,
OldstoneMB, Von HerrathMG. 2004. A viral epitope that mimics a self antigen
can accelerate but not initiate autoimmune diabetes. Journal of Clinical Investigation
114:1290–1298 DOI 10.1172/jci22557.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8611 13/17

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3307
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11971
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3307
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11971
http://dx.doi.org/10.7717/peerj.8611#supplemental-information
http://dx.doi.org/10.7717/peerj.8611#supplemental-information
http://dx.doi.org/10.1016/j.jpeds.2011.11.057
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1093/brain/awl023
http://dx.doi.org/10.1186/1471-2172-9-43
http://dx.doi.org/10.1172/jci22557
http://dx.doi.org/10.7717/peerj.8611


CroweWE, Bove KE, Levinson JE, Hilton PK. 1982. Clinical and pathogenetic implica-
tions of histopathology in childhood polydermatomyositis. Arthtitis and Rheumatism
25:126–139 DOI 10.1002/art.1780250203.

De Paepe B. 2017. Vascular changes and perifascicular muscle fiber damage in dermato-
myositis: another question of the chicken or the egg that is on our mind. Annals of
Translational Medicine 5:Article 22 DOI 10.21037/atm.2016.12.68.

Dello Russo C, Polak PE, Mercado PR, Spagnolo A, Sharp A, Murphy P, Kamal A,
Burrows FJ, Fritz LC, Feinstein DL. 2006. The heat-shock protein 90 inhibitor 17-
allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and
ameliorates experimental autoimmune encephalomyelitis. Journal of Neurochemistry
99:1351–1362 DOI 10.1111/j.1471-4159.2006.04221.x.

Drinkard BE, Hicks J, Danoff J, Rider LG. 2003. Fitness as a determinant of the oxygen
uptake/work rate slope in healthy children and children with inflammatory myopa-
thy. Canadian Journal of Applied Physiology 28:888–897 DOI 10.1139/h03-063.

Feldman BM, Rider LG, Reed AM, Pachman LM. 2008. Juvenile dermatomyositis and
other idiopathic inflammatory myopathies of childhood. Lancet 371:2201–2212
DOI 10.1016/s0140-6736(08)60955-1.

Gitiaux C, De AntonioM, Aouizerate J, Gherardi RK, Guilbert T, Barnerias C,
Bodemer C, Brochard-Payet K, Quartier P, Musset L, Chazaud B, Desguerre I,
Bader-Meunier B. 2016. Vasculopathy-related clinical and pathological features
are associated with severe juvenile dermatomyositis. Rheumatology 55:470–479
DOI 10.1093/rheumatology/kev359.

Greenberg SA. 2010. Dermatomyositis and type 1 interferons. Current Rheumatology
Reports 12:198–203 DOI 10.1007/s11926-010-0101-6.

Hicks JE, Drinkard B, Summers RM, Rider LG. 2002. Decreased aerobic capacity in
children with juvenile dermatomyositis. Arthtitis and Rheumatism 47:118–123
DOI 10.1002/art.10237.

Hoeltzel MF, Oberle EJ, Robinson AB, Agarwal A, Rider LG. 2014. The presentation,
assessment, pathogenesis, and treatment of calcinosis in juvenile dermatomyositis.
Current Rheumatology Reports 16:Article 467 DOI 10.1007/s11926-014-0467-y.

ImDS, Jeon JW, Lee JS, Won SJ, Cho SI, Lee YB, Gwag BJ. 2012. Role of the
NMDA receptor and iron on free radical production and brain damage follow-
ing transient middle cerebral artery occlusion. Brain Research 1455:114–123
DOI 10.1016/j.brainres.2012.03.025.

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP.
2003. Exploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics 4:249–264 DOI 10.1093/biostatistics/4.2.249.

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Research 28:27–30 DOI 10.1093/nar/28.1.27.

Kim BY, Lee J, KimNS. 2015.Helveticoside is a biologically active component of the seed
extract of Descurainia sophia and induces reciprocal gene regulation in A549 human
lung cancer cells. BMC Genomics 16:713 DOI 10.1186/s12864-015-1918-1.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8611 14/17

https://peerj.com
http://dx.doi.org/10.1002/art.1780250203
http://dx.doi.org/10.21037/atm.2016.12.68
http://dx.doi.org/10.1111/j.1471-4159.2006.04221.x
http://dx.doi.org/10.1139/h03-063
http://dx.doi.org/10.1016/s0140-6736(08)60955-1
http://dx.doi.org/10.1093/rheumatology/kev359
http://dx.doi.org/10.1007/s11926-010-0101-6
http://dx.doi.org/10.1002/art.10237
http://dx.doi.org/10.1007/s11926-014-0467-y
http://dx.doi.org/10.1016/j.brainres.2012.03.025
http://dx.doi.org/10.1093/biostatistics/4.2.249
http://dx.doi.org/10.1093/nar/28.1.27
http://dx.doi.org/10.1186/s12864-015-1918-1
http://dx.doi.org/10.7717/peerj.8611


Lamb J, Crawford ED, Peck D, Modell JW, Blat IC,Wrobel MJ, Lerner J, Brunet
JP, Subramanian A, Ross KN, ReichM, Hieronymus H,Wei G, Armstrong SA,
Haggarty SJ, Clemons PA,Wei R, Carr SA, Lander ES, Golub TR. 2006. The
connectivity map: using gene-expression signatures to connect small molecules,
genes, and disease. Science 313:1929–1935 DOI 10.1126/science.1132939.

Langfelder P, Horvath S. 2008.WGCNA: an R package for weighted correlation network
analysis. BMC Bioinformatics 9:559 DOI 10.1186/1471-2105-9-559.

Li J, Zhou Z. 2019. Calcinosis in juvenile dermatomyositis. New England Journal of
Medicine 381:e31 DOI 10.1056/NEJMicm1809669.

Lindsley C, Laxer RM, Cassidy JT, Petty R. 1995. Textbook of pediatric rheumatology [M].
Philadelphia: Elsevier Saunders, 539–546 DOI 10.1016/C2009-0-42830-7.

Liu L, Yang J, Zu B,Wang J, Sheng K, Zhao L, XuW. 2018. Acacetin regulated the
reciprocal differentiation of Th17 cells and Treg cells and mitigated the symptoms of
collagen-induced arthritis in mice. Scandinavian Journal of Immunology 88:e12712
DOI 10.1111/sji.12712.

Liu HS, Zhang J, Guo JL, Lin CY,Wang ZW. 2016. Phosphoinositide 3-kinase inhibitor
LY294002 ameliorates the severity of myosin-induced myocarditis in mice. Current
Research in Translational Medicine 64:21–27 DOI 10.1016/j.retram.2016.01.012.

Miller FW, Lamb JA, Schmidt J, Nagaraju K. 2018. Risk factors and disease mechanisms
in myositis. Nature Reviews Rheumatology 14:255–268 DOI 10.1038/nrrheum.2018.48.

Moneta GM, Pires Marafon D, Marasco E. 2019.Muscle expression of type I and type
II interferons is increased in juvenile dermatomyositis and related to clinical and
histologic features. 71:1011–1021 DOI 10.1002/art.40800.

Musumeci G, Castrogiovanni P. 2018. Expression of the OAS gene family is highly
modulated in subjects affected by juvenile dermatomyositis, resembling an immune
response to a dsRNA virus infection. International Journal of Molecular Sciences
19(9):Article 2786 DOI 10.3390/ijms19092786.

Niu HQ, Li ZH, ZhaoWP, Zhao XC, Zhang C, Luo J, Lu XC, Gao C,Wang CH, Li XF.
2019. Sirolimus selectively increases circulating Treg cell numbers and restores the
Th17/Treg balance in rheumatoid arthritis patients with low disease activity or in
DAS28 remission who previously received conventional disease-modifying anti-
rheumatic drugs. Clinical and Experimental Rheumatology Epub ahead of print Apr
29 2019.

Nordal E, Pistorio A, RyggM, Giancane G, Maghnie M, Di Iorgi N, Flemming K, Hofer
M, Melo-Gomes JA, Bica B, Brunner J, Dannecker G, Gerloni V, HarjacekM,
Huppertz HI, Pratsidou-Gertsi P, Nielsen S, Stanevicha V, Ten Cate R, Vougiouka
O, Pastore S, Simonini G, Ravelli A, Martini A, Ruperto N. 2019. Growth and
puberty in juvenile dermatomyositis: a longitudinal cohort study. Arthritis Care and
Research 72(2):265–273 DOI 10.1002/acr.24065.

Piper CJM,WilkinsonMGL, Deakin CT, Otto GW, Dowle S, Duurland CL, Adams
S, Marasco E, Rosser EC, Radziszewska A, Carsetti R, Ioannou Y, Beales
PL, Kelberman D, Isenberg DA, Mauri C, Nistala K,Wedderburn LR. 2018.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8611 15/17

https://peerj.com
http://dx.doi.org/10.1126/science.1132939
http://dx.doi.org/10.1186/1471-2105-9-559
http://dx.doi.org/10.1056/NEJMicm1809669
http://dx.doi.org/10.1016/C2009-0-42830-7
http://dx.doi.org/10.1111/sji.12712
http://dx.doi.org/10.1016/j.retram.2016.01.012
http://dx.doi.org/10.1038/nrrheum.2018.48
http://dx.doi.org/10.1002/art.40800
http://dx.doi.org/10.3390/ijms19092786
http://dx.doi.org/10.1002/acr.24065
http://dx.doi.org/10.7717/peerj.8611


CD19(+)CD24(hi)CD38(hi) B cells are expanded in juvenile dermatomyosi-
tis and exhibit a pro-inflammatory phenotype after activation through toll-
like receptor 7 and interferon-alpha. Frontiers in Immunology 9:Article 1372
DOI 10.3389/fimmu.2018.01372.

Qi J, Zheng JB, AiWT, Yao XW, Liang L, Cheng G, Shou XL, Sun CF. 2017. Felodipine
inhibits ox-LDL-induced reactive oxygen species production and inflammation in
human umbilical vein endothelial cells.Molecular Medicine Reports 16:4871–4878
DOI 10.3892/mmr.2017.7181.

Ravelli A, Trail L, Ferrari C, Ruperto N, Pistorio A, Pilkington C, Maillard S, Oliveira
SK, Sztajnbok F, Cuttica R, Beltramelli M, Corona F, Katsicas MM, Russo R,
Ferriani V, Burgos-Vargas R, Magni-Manzoni S, Solis-Valleoj E, Bandeira M,
Zulian F, Baca V, Cortis E, Falcini F, Alessio M, Alpigiani MG, Gerloni V, Saad-
Magalhaes C, Podda R, Silva CA, Lepore L, Felici E, Rossi F, Sala E, Martini A.
2010. Long-term outcome and prognostic factors of juvenile dermatomyositis:
a multinational, multicenter study of 490 patients. Arthritis Care and Research
62:63–72 DOI 10.1002/acr.20015.

Reimand J, Kull M, Peterson H, Hansen J, Vilo J. 2007. g: profiler—a web-based toolset
for functional profiling of gene lists from large-scale experiments. Nucleic Acids
Research 35:W193–W200 DOI 10.1093/nar/gkm226.

Sasik R, Calvo E, Corbeil J. 2002. Statistical analysis of high-density oligonu-
cleotide arrays: a multiplicative noise model. Bioinformatics 18:1633–1640
DOI 10.1093/bioinformatics/18.12.1633.

Sellami M, Saidane O, Mahmoud I, Tekaya AB, Tekaya R, Abdelmoula L. 2019. Etio-
logical features of liver involvement in rheumatoid arthritis. Current Rheumatology
Reviews DOI 10.2174/1573397115666191007121605.

Shannon P, Markiel A, Ozier O, Baliga NS,Wang JT, Ramage D, Amin N, Schwikowski
B, Ideker T. 2003. Cytoscape: a software environment for integrated mod-
els of biomolecular interaction networks. Genome Research 13:2498–2504
DOI 10.1101/gr.1239303.

Soria-Castro R, Schcolnik-Cabrera A, Rodriguez-Lopez G, Campillo-NavarroM,
Puebla-Osorio N, Estrada-Parra S, Estrada-Garcia I, Chacon-Salinas R, Chavez-
Blanco AD. 2019. Exploring the drug repurposing versatility of valproic acid
as a multifunctional regulator of innate and adaptive immune cells. Journal of
Immunology Research 2019:Article 9678098 DOI 10.1155/2019/9678098.

Szklarczyk D, Franceschini A,Wyder S, Forslund K, Heller D, Huerta-Cepas J, Si-
monovic M, Roth A, Santos A, Tsafou KP, KuhnM, Bork P, Jensen LJ, VonMering
C. 2015. STRING v10: protein-protein interaction networks, integrated over the tree
of life. Nucleic Acids Research 43:D447–D452 DOI 10.1093/nar/gku1003.

Takken T, Van der Net J, Engelbert RH, Pater S, Helders PJ. 2008. Responsiveness of ex-
ercise parameters in children with inflammatory myositis. Arthtitis and Rheumatism
59:59–64 DOI 10.1002/art.23250.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8611 16/17

https://peerj.com
http://dx.doi.org/10.3389/fimmu.2018.01372
http://dx.doi.org/10.3892/mmr.2017.7181
http://dx.doi.org/10.1002/acr.20015
http://dx.doi.org/10.1093/nar/gkm226
http://dx.doi.org/10.1093/bioinformatics/18.12.1633
http://dx.doi.org/10.2174/1573397115666191007121605
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1155/2019/9678098
http://dx.doi.org/10.1093/nar/gku1003
http://dx.doi.org/10.1002/art.23250
http://dx.doi.org/10.7717/peerj.8611


Tansley SL, McHugh NJ, Wedderburn LR. 2013. Adult and juvenile dermatomyositis:
are the distinct clinical features explained by our current understanding of serologi-
cal subgroups and pathogenic mechanisms? Arthritis Research & Therapy 15:Article
211 DOI 10.1186/ar4198.

Thompson C, Piguet V, Choy E. 2017. The pathogenesis of dermatomyositis. British
Journal of Dermatology 179(6):1256–1262 DOI 10.1111/bjd.15607.

Tukaj S, Bieber K, Kleszczynski K,Witte M, Cames R, Kalies K, Zillikens D, Ludwig
RJ, Fischer TW, Kasperkiewicz M. 2017. Topically applied Hsp90 blocker 17AAG
inhibits autoantibody-mediated blister-inducing cutaneous inflammation. Journal of
Investigative Dermatology 137:341–349 DOI 10.1016/j.jid.2016.08.032.

Wang HW, Zhang Y, Tan PP, Jia LS, Chen Y, Zhou BH. 2019a.Mitochondrial
respiratory chain dysfunction mediated by ROS is a primary point of fluoride-
induced damage in Hepa1-6 cells. Environmental Pollution 255:Article 113359
DOI 10.1016/j.envpol.2019.113359.

Wang X, Zhang Z, ZhaoW, Li Z, Yang G, Liu P, Jia J, Shi H, LiuM, Liu T, Gu J, Wan
L, Teng J, Liu H, Cheng X, Ye J, Su Y, Sun Y, GongW, Yang C, Hu Q. 2019b.
Cytomegalovirus infection may trigger adult-onset still’s disease onset or relapses.
Journal of Cellular Biochemistry 10:Article 898 DOI 10.3389/fimmu.2019.00898.

Zhang L, Xu P. 2019. Identification of differentially expressed genes in primary Sjogren’s
syndrome. 120:17368–17377 DOI 10.1002/jcb.29001.

ZhaoW, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. 2010.Weighted gene coex-
pression network analysis: state of the art. Journal of Biopharmaceutical Statistics
20:281–300 DOI 10.1080/10543400903572753.

Zheng Q, Zhu K, Gao CN, Xu YP, LuMP. 2019. Prevalence of Epstein-Barr virus
infection and characteristics of lymphocyte subsets in newly onset juvenile der-
matomyositis.World Journal of Pediatrics. Epub ahead of print Sep 23 2019
DOI 10.1007/s12519-019-00314-7.

Zhong et al. (2020), PeerJ, DOI 10.7717/peerj.8611 17/17

https://peerj.com
http://dx.doi.org/10.1186/ar4198
http://dx.doi.org/10.1111/bjd.15607
http://dx.doi.org/10.1016/j.jid.2016.08.032
http://dx.doi.org/10.1016/j.envpol.2019.113359
http://dx.doi.org/10.3389/fimmu.2019.00898
http://dx.doi.org/10.1002/jcb.29001
http://dx.doi.org/10.1080/10543400903572753
http://dx.doi.org/10.1007/s12519-019-00314-7
http://dx.doi.org/10.7717/peerj.8611

