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Membrane contact sites (MCS) between organelles of eukaryotic cells provide

structural integrity and promote organelle homeostasis by facilitating

intracellular signaling, exchange of ions, metabolites and lipids and

membrane dynamics. Cataloguing MCS revolutionized our understanding of

the structural organization of a eukaryotic cell, but the functional role of MSCs

and their role in complex diseases, such as cancer, are only gradually emerging.

In particular, the endoplasmic reticulum (ER)-mitochondria contacts (EMCS) are

key effectors of non-vesicular lipid trafficking, thereby regulating the lipid

composition of cellular membranes and organelles, their physiological

functions and lipid-mediated signaling pathways both in physiological and

diseased conditions. In this short review, we discuss key aspects of the

functional complexity of EMCS in mammalian cells, with particular emphasis

on their role as central hubs for lipid transport between these organelles and

how perturbations of these pathways may favor key traits of cancer cells.
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Introduction

Membrane contact sites (MCS) operate as molecular bridges empowering the flow of

communication within membrane-bound organelles with specialized cellular functions.

Perturbations of MCS are emerging traits of a broad spectrum of diseases, including

lysosomal storage diseases, neurodegeneration and cancer (Gómez-Suaga et al., 2018;

Peretti et al., 2019; Ballabio and Bonifacino, 2020; Gil-Hernández et al., 2020; Vrijsen

et al., 2022). Despite this recognition, the full biological relevance of MCS is only

beginning to emerge in its complexity. Possibly all organelles can form heterotypic

membrane contact sites in eukaryotic cells. Since the ER is the largest membrane-bound

organelle of the eukaryotic cells, it operates as key communication center by making

contact with all vital organelles, such as mitochondria, Golgi, endosomes, lysosomes,

peroxisomes and the plasma membrane (Wu et al., 2018; Vance, 2020). However, MCS

that do not involve the ER, such as lipid droplets (LDs)-peroxisomes, mitochondria-

peroxisomes and mitochondria-LDs contacts have also been described recently (Scorrano

et al., 2019). Because of their essential role in many aspects of cellular homeostasis,
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including, but not limited to-energy production, proteostasis and

Ca2+ signaling- ER-mitochondria contacts (ERMES in yeast or

EMCS in mammalian cells) have been characterized to a greater

extent compared to other inter-organelle appositions.

EMCS are highly dynamic contact regions (usually in the

range of 10–80 nm) between the smooth ER and the

mitochondrial outer membrane, which are tethered by

proteins, without complete fusion of the membranes of both

organelles (Scorrano et al., 2019). EMCS regulate numerous

biological functions including lipid transfer, Ca2+ homeostasis,

ROS signaling, autophagy, and mitochondrial dynamics (for a

comprehensive discussion about EMCS, we refer to these recent

reviews; (Giamogante et al., 2020; Prinz et al., 2020; Wilson and

Metzakopian, 2021). The recognition that critical functions of

EMCS are dysregulated in pathological conditions such as

metabolic diseases, neurodegeneration and cancer, has sparked

an increasing interest in these subdomains, which have become a

hot topic in biomedical research (Sassano et al., 2017; Rieusset,

2018; Xu et al., 2020; Wilson and Metzakopian, 2021). In cancer

cells, perturbations of the signaling functions (i.e., dysfunction)

of EMCS by oncogenes reprogram both cancer cell-autonomous

(e.g., glucose metabolism, Ca2+ fluxes, mitochondria dynamics,

redox signaling, cell death) and non-autonomous (inflammation,

innate immunity) processes favoring tumor progression (Sassano

et al., 2017; Morciano et al., 2018). However, how cancer cell-

associated changes of EMCS affect lipid trafficking and

reprogramming of lipid metabolism, which is an emerging

trait of aggressive cancer, remains poorly understood.

Here we briefly discuss the role of EMCS in Ca2+ signaling

and lipid transport and highlight how key signaling pathways

regulating EMCS functions are harnessed by cancer cells to

support the plasticity of their metabolic traits.

EMCS: The specialized warehouse for Ca2+

signaling

EMCS play a crucial role in shaping cellular Ca2+ fluxes by

establishing an intimate interaction between the ER and the

mitochondria (Figure 1). The ER is the main Ca2+ storage of the

cell from which mitochondria take up Ca2+, reaching

concentration values above those of the bulk cytosol, which in

resting conditions are in the range of 100 nM (Rizzuto et al.,

1993). The fact that Ca2+ enters the mitochondrial matrix via the

Ca2+ low-affinity mitochondrial Ca2+ uniporter (MCU), raised

the question of how mitochondria could display such high Ca2+

concentration ([Ca2+]mit) after ER Ca2+ release (Rizzuto et al.,

1992; Hajnóczky et al., 1995). The discrepancy was solved once in

1998 EMCS were discovered as microdomains of high [Ca2+],

which is 10-fold higher than the cytosolic ranges (Rizzuto et al.,

1998; Csordás et al., 2010). Two main ER-resident proteins are

responsible for regulating ER Ca2+ homeostasis. The sarco/

endoplasmic reticulum Ca2+ ATPase (SERCA) pump, which

actively pumps Ca2+ from the cytosol into the ER lumen to

maintain steady-state [Ca2+]ER within the 400–1,000 μM range,

and the inositol 1,4,5-trisphosphate receptors (IP3R) (Camello

et al., 2002). Both transmembrane proteins have been found

enriched at the EMCS. In particular, the SERCA2b and the

IP3R3 isoforms are preferentially involved in the regulation of

Ca2+ fluxes at EMCS (Mendes et al., 2005; Lynes et al., 2012). The

IP3R channels are responsible for transferring Ca2+ from the ER

lumen into the mitochondria, by interacting with the

mitochondrial voltage-dependent anion channel 1 (VDAC1),

located in the mitochondrial outer membrane (OMM), and

the ER chaperone glucose-related regulated protein 75

(Grp75) bridging their interaction (Szabadkai et al., 2006).

This molecular machinery shapes Ca2+ fluxes between the ER

and mitochondria thereby sustaining cellular bioenergetics and

mitochondria metabolism (reviewed in (Silva-Pavez et al., 2021),

in physiological conditions. Indeed, the transfer of Ca2+ from the

ER to the mitochondria sustains the activity of Ca2+-sensitive

mitochondrial dehydrogenases, including pyruvate

dehydrogenase (PDH), isocitrate dehydrogenase (IDH) and α-
ketoglutarate dehydrogenase (αKGDH) (Hajnóczky et al., 1995).

Additionally ER-mitochondria Ca2+ transfer regulates vital

cellular processes such as autophagy, ER stress and apoptosis

(Rowland and Voeltz, 2012; Fan and Simmen, 2019). Given the

importance of this Ca2+ transferring axis in cellular physiology,

EMCS Ca2+ dynamics are finely tuned by functional or structural

proteins which directly or indirectly modulate Ca2+ fluxes (Lee

and Min, 2018). Several proteins can affect either the stability,

activity or the subcellular localization of the main players of the

EMCS Ca2+ regulatory system. For example, a notable function of

the EMCS-associated ER-chaperone Sigma-1Receptor (S1R), is

to attenuate IP3R3 degradation (Hayashi and Su, 2007). More

recent studies have underscored that other proteins with

enzymatic activities involved in other signaling pathways

regulate Ca2+ fluxes by localizing at the EMCS.

Transglutaminase Type 2 (TG2), by interacting with Grp75,

functions as a scaffold for IP3R-Grp75-VDAC1-mediated

mitochondrial Ca2+transfer (D’Eletto et al., 2018). The ER

stress sensor inositol-requiring enzyme 1 (IRE1α), which is

one of the main mediators of the unfolded protein response

(UPR) (Hetz, 2012) scaffolds the IP3R3 at the EMCS and

promotes its ER-mitochondrial Ca2+ transfer thereby

sustaining mitochondria metabolism under resting conditions

(Carreras-Sureda et al., 2019).

As other functions exerted through the EMCS, ER-

mitochondria Ca2+ homeostasis is also regulated by the

distance between these organelles. Disruption of the ER-

mitochondria architecture perturbs mitochondrial Ca2+ uptake,

upon ER Ca2+ depletion (Rizzuto et al., 1998; Csordás et al.,

2006). In mammalian cells, the ER-mitochondria proximity is

modulated by many structural proteins, which guarantee, or

disrupt when lost, EMCS integrity and consequently proper

Ca2+ signaling (we refer to these recent reviews for a broader
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overview on tethering proteins (Csordás et al., 2018; Lee andMin,

2018; Scorrano et al., 2019; Prinz et al., 2020). The dynamin-like

GTPase MFN2, which resides both at the ER and the OMM and

is able to form homo-oligomers, is a key regulator of EMCS

proximity and Ca2+ fluxes between the ER and mitochondria (de

Brito and Scorrano, 2008; Filadi et al., 2015; Naon et al., 2016). A

well-established tethering complex is formed by the

mitochondrial outer membrane protein tyrosine phosphatase

interacting protein 51 (PTPIP51) and the integral ER vesicle-

associated membrane protein-associated protein B (VAPB) (De

Vos et al., 2012). Under conditions causing release of Ca2+ from

the ER, loss of either VAPB or PTPIP51 is sufficient to blunt the

uptake of Ca2+ by mitochondria (De Vos et al., 2012). More

recently, the PDZ domain-containing protein 8 (PDZD8), a

Synaptotagmin-like Mitochondrial lipid-binding Proteins

(SMP) domain-containing ER transmembrane protein, was

identified as ER-mitochondria tethering protein required to

regulate Ca2+ dynamics in neurons (Hirabayashi et al., 2017).

Interestingly, PDZD8 can also bring the ER and mitochondria in

contact with the late endosomes, by interacting with the late-

endosomal GTPase Rab7 and the ER transmembrane protein

Protrudin (Elbaz-Alon et al., 2020).

While these and other studies (Prinz et al., 2020) support the

emerging view that molecular entities of distinct membrane

contact sites can be dynamically shared and favor the

formation of tripartite organelle contacts, in the following

section e focus on discussing how cancer cells reprogram Ca2+

signaling at EMCS. The cellular implications of Ca2+ in

physiological functions have been broadly explained in these

studies (Marchi et al., 2017, 2018; Vecellio Reane et al., 2020).

Dysfunctional Ca2+ pathways at EMCS
support oncogenesis

Remodeling of the functions, molecular compositions and

dynamics of inter-organellar communication, allow cancer cell to

rapidly respond to the fluctuating intrinsic metabolic cues and

the tumor microenvironmental stress. Over the past years an

increasing number of studies indicated that dynamic re-

organization of EMCS supports several hallmarks of cancer

cells, including, but not limited to, metabolic rewiring,

resistance to cell death, migration and invasiveness and

responses to inflammatory signals. The full complexity of the

role played by MCS in cancer has been discussed in recent

reviews (Doghman-Bouguerra and Lalli, 2019; Simoes et al.,

2020; Silva-Pavez et al., 2021). Here we briefly discuss some

emerging paradigms from the recent literature highlighting the

relevance of Ca2+ transfer between the ER and mitochondria

contacts as critical determinant of cancer cell fate decisions

(Figure 1).

Different key tumor suppressors such as p53, the

phosphatase tensin homolog (PTEN), promyelocytic leukemia

(PML) protein, proto-oncogenes such as the serine/threonine

kinase Akt kinase, breast/ovarian cancer susceptibility gene 1

(BRCA1), and various members of the B-cell lymphoma 2 (Bcl-2)

family including B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-

extra large (Bcl-XL) and BCL-2 ovarian killer (BOK), have been

found to localize to ECMS (Thomenius and Distelhorst, 2003;

Monaco et al., 2015; Lalier et al., 2021). A major function of their

crowded presence at the ER-mitochondria interface is the

spatiotemporal modulation of EMCS-resident molecular and

signaling complexes, most importantly those formed by the

Ca2+ releasing IP3R channels and the SERCA pump.

Congruently, several studies have revealed that cancer cells

are highly dependent on ER-mitochondrial Ca2+ transfer for the

maintenance of energy balance, the ability to switch between

oxidative phosphorylation (OXPHOS), aerobic glycolysis or

other metabolic pathways, and for the supply of metabolic

intermediates for the biosynthesis of lipid, proteins and

nucleic acid required to proliferate and adapt to the

metabolically stressed environment (reviewed in (Dejos et al.,

2020; Silva-Pavez et al., 2021).

However, the interplay between mitochondrial Ca2+ and

cellular metabolic pathways is complex and likely shaped by

the cancer cell’s specific metabolic requirements and adaptations

to nutrients availability. While several cancer subtypes rely

primarily on aerobic glycolysis (e.g. Warburg effect), they do

not completely shut down mitochondria oxidative

phosphorylation. Interestingly, in cells with impaired

OXPHOS, mitochondria Ca2+ flux through EMCS supports

reductive carboxylation and cell survival, by sustaining the

activity of the Ca2+ sensitive enzyme αKGDH and NADH

(Cardenas et al., 2020). On the other hand, the overexpression

of mitochondrial calcium uptake 1 (MICU1), a key component of

the mitochondrial Ca2+ transport system and a negative regulator

of MCU, in ovarian cancers drives aerobic glycolysis and is

associated to poor survival (Chakraborty et al., 2017).

Silencing MICU1 increases mitochondrial Ca2+transfer, oxygen

consumption by the stimulation of pyruvate dehydrogenase

(PDH), which by converting pyruvate to acetyl CoA catalyzes

the rate-limiting step of the metabolic fate between glycolysis

versus OXPHOS, and results in the inhibition of ovarian cancer

growth in vivo (Chakraborty et al., 2017). These studies exemplify

the complex interplay between mitochondrial Ca2+ and

metabolic rewiring in cancer through the regulation of Ca2+

sensitive matrix dehydrogenases and their metabolites.

Recent studies have revealed a cancer cell dependency on

IP3R-Bcl-2 interaction for their survival. EMCS-localized Bcl-2

suppresses ER-mitochondria Ca2+ fluxes and mitochondrial

apoptosis, by interacting through different domains with

VDAC1 or the IP3R3 (the main EMCS-enriched IP3R isoform)

via specific aa within their BH4 domain (Monaco et al., 2012;

Lalier et al., 2021; Rosa et al., 2021). Disrupting the interaction of

Bcl-2 and IP3R3 through a BH4-domain targeting peptide,

BIRD2, induces Bax/Bak dependent apoptosis in diffuse large
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B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia

(CLL) cells, through mitochondria Ca2+overload driving

mitochondrial transition pore opening (mPTP) (Kerkhofs

et al., 2021).

The mechanistic target of Rapamycin complex 2 (mTORC2)-

Akt axis controls the phosphorylation-mediated inhibition of

IP3R, which by preventing the transfer of Ca
2+ from the ER to the

mitochondria attenuates mitochondrial apoptosis, while it favors

cancer cell’s aerobic glycolysis (Warburg effect) by

phosphorylating hexokinase 2 (HK2), recently found as an

essential component of EMCS in cancer cells (Betz et al.,

2013; Ciscato et al., 2020). This oncogenic mechanism is

counterbalanced by a transcriptional independent function of

p53. A fraction of p53 localizes at the ER-mitochondria contact

sites and establishes a functional interaction with PML (Missiroli

et al., 2016). Notably, EMCS-localized PML recruits protein

phosphatase 2 A (PP2A) to the complex with the IP3R3 and

Akt. PP2A-mediated dephosphorylation of Akt rescues Ca2+ flux

from ER to mitochondria and Ca2+-dependent apoptosis (Giorgi

et al., 2010). Interestingly, disruption of the p53-PML interaction

at the ER-mitochondria appositions, by hampering the

constitutive ER-Ca2+−release, compromises mitochondrial

respiration and ATP production, resulting in the stimulation

of autophagy through the activation of AMPK (Missiroli et al.,

2016). Hence the loss of p53 and consequent removal of PML

from these ER membrane subdomains provides a mean to

promote tumor growth, by increasing resistance to apoptotic

stimuli and increasing adaptation to metabolic stress and

anticancer therapy-mediated cellular damage, by stimulating

autophagy (Missiroli et al., 2016). Furthermore, EMCS-

associated p53 binds to and prevents ROS-inactivation of

SERCA. This mechanism maintains ER-Ca2+ levels and favors

pro-apoptotic Ca2+ transfer, which primes cancer cells for

mitochondrial apoptosis following oxidative stress or

chemotherapy (Giorgi et al., 2015). In contrast, the binding of

the thioredoxin-related transmembrane protein (TMX1) to the

SERCA2b pump (the housekeeping SERCA isoform at EMCS),

results in a lower ER-Ca2+ load and low-level constitutive IP3-

mediated Ca2+ release, which rewires metabolism toward aerobic

glycolysis and favors tumorigenesis (Lynes et al., 2012).

Beyond phosphorylation and redox-dependent mechanisms,

the stability of IP3R at the EMCS is controlled by its

ubiquitylation status. Recently, the tumor suppressor and

deubiquitylase BRCA1-associated protein 1 (BAP1), has been

shown to have extranuclear functions in the cytoplasm by

localizing at the ER. BAP1 operates as an IP3R3

deubiquitylating enzyme and supports pro-apoptotic Ca2+

signaling under conditions of cellular stress, a mechanism that

contributes to the powerful ability of BAP1 in thwarting

oncogenesis (Bononi et al., 2017). In particular,

BAP1 prevents IP3R3 ubiquitylation and its subsequent

proteasomal degradation (Bononi et al., 2017) by the -box

protein L2 (FBXL2), a subunit of the SCF (SKP1-cullin-F-box)

ubiquitin-protein ligase complex, which outcompetes PTEN for

IP3R3 binding (Kuchay et al., 2017). IP3R3 stabilization in breast

cancer cells is further regulated by an ER-localized constitutively

active form of the oncogenic transcription factor signal

transducer and activator of transcription 3 (STAT3). EMCS-

associated STAT3 interacts with IP3R3 and decreases Ca2+

transfer to mitochondria by inducing its degradation (Avalle

et al., 2019), thereby protecting cancer cells from cell death

induced by oxidative damaging agents.

Interestingly, a selective peptide capable to delocalize the

mitochondrial outer membrane bound glycolytic enzyme

HK2 from EMCS, results in IP3R3-mediated mitochondrial

Ca2+overload, killing of patient derived chronic lymphocytic

leukemia B cells and reduced cancer growth in mice, without

affecting healthy tissues (Ciscato et al., 2020). Together these

studies support the notion that targeting molecular mechanisms

and mediators of the aberrant ER-mitochondria Ca2+ transfer in

cancer cells, may represent an effective actionable anti-cancer

strategy.

EMCS form a molecular platform for the recruitment of the

autophagy machinery (Hamasaki et al., 2013), a fundamental

pro-survival process that is often heightened in cancer cells for

recent reviews see (Li et al., 2020; Miller and Thorburn, 2021).

Hence, altering the expression of EMCS-associated tethers,

tumor suppressors or oncogenes, may contribute to control

the amplitude of autophagy in cancer cells.

For example, PML was shown to repress pro-tumorigenic

autophagy as part of its tumor suppressor activities (Missiroli

et al., 2016). In line with this, in response to the loss of PML

tumor development is supported by cancer cell-intrinsic

autophagy, as a mechanism promoting cell survival during

stress conditions (Missiroli et al., 2016). Blockade of the

constitutive ER-to-mitochondrial Ca2+ transfer lowers

OXPHOS, ATP production and results in AMPK activation,

which induces autophagy in both normal and cancer cells.

However, whereas autophagy promotes the survival of

untransformed cells, it may be insufficient to maintain cancer

cell viability (Cárdenas et al., 2016). Hence, the functional link

between autophagy and dynamics of ER-mitochondria contacts/

mitochondrial Ca2+ transfer remains complex and it is likely

subjected to differential regulation by the network of oncogenes

and tumor suppressors formed at the EMCS, the type of cancer

cells and their dependency on autophagy for survival and growth.

Growing evidence linking ER-mitochondria appositions and

cancer are constantly emerging as more EMCS-resident or

associated proteins with growth promoting activity are found

to be dysregulated in different cancer types. However, not all

these studies have provided conclusive experimental evidence

that these proteins favor tumor growth by their specific role as

tethers at the ER-mitochondria contact sites.

In conclusion, while future investigations are needed to

untangle the role of the growing list of EMCS-associated

proteins in cancer cells, the available data suggests that
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targeting the ER-mitochondria interface may provide novel

therapeutic strategies to halt tumor growth and improve

therapeutic outcomes.

Lipid import-export through EMCS

The existence of an internal system to shuttle lipids between

organelles was at first considered after the observation that the

unique organelle lipid composition differed from that of the main

site of bulk lipid production, the ER (Balla et al., 2019). Lipid

homeostasis was known to be maintained by vesicular trafficking

between organelles but the simple fact that mitochondria were

not integrated into these classical routes, fostered the studies of

an alternative pathway (Holthuis and Menon, 2014). In

1990 EMCS were isolated and first identified as the site of

phospholipid synthesis and non-vesicular transfer between the

ER and mitochondria (Vance, 1990). The “crude mitochondria

contaminated by ER-derived membranes” fraction was found

enriched in lipid synthesis enzymes (Vance, 1990), thus

supporting the thought that EMCS served to regulate

membranes lipid production and composition in response to

cellular demands (Petrungaro and Kornmann, 2019).

A notable function of EMCS is to harbor the synthesis of

phosphatidylserine (PS), catalyzed by EMCS-associated

phosphatidylserine (PS) synthase 1 and 2 (PSS1; PSS2) (Stone

and Vance, 2000). PSS1 converts phosphatidylcholine (PC) into

PS while PSS2 synthetizes PS from phosphatidylethanolamine

(PE). EMCS synthesis of PS from PSS1 and PSS2 is crucial for

mitochondrial PE enrichment. Mitochondria do not directly

import PE synthetized in the ER (Vance and Tasseva, 2013;

2013b), but they rather rely on the PS transfer occurring at

EMCS, which is then rapidly converted in the mitochondria into

PE by PS decarboxylase enzyme (PSD) (Petrungaro and

Kornmann, 2019). The active role of the ER-mitochondria

platform in determining the abundance of PE in the

mitochondria was further confirmed by the massive buildup

of PE at EMCS upon inhibition of PSD (Ardail et al., 1991).

Controlling the conversion of PS to mitochondrial PE is

essential not only to ensure a local gradient that favors PS

transport but also to maintain mitochondrial fitness (Horvath

and Daum, 2013). Altering mitochondrial PE levels strongly

impairs mitochondrial dynamics, morphology and respiration

(Verkleij et al., 1984; Steenbergen et al., 2005; Tasseva et al., 2013;

Mårtensson et al., 2017; Zhao andWang, 2020). Furthermore, PE

is a key modulator of autophagy and it is conjugated to LC3

(Atg8 in yeast) through a ubiquitin-like system (Ichimura et al.,

2000), suggesting that mitochondrial PE formed through the

agency of EMCS may play a role in autophagy-mediated

membrane dynamics (Thomas et al., 2018). Mitochondria-

derived PE can be transferred back to the ER/EMCS

membranes where it is converted into PC by PE-N-

methyltransferase (Cui et al., 1993). Curiously, although PC is

the most abundant mitochondrial PL (around 40–50%),

mitochondria are not able to synthesize it, thus depending

entirely on PC import from ER membranes, the site of PC

bulk production (Horvath and Daum, 2013). Altering the

efficiency of PC transport into the mitochondria impairs

cristae formation and destabilizes mitochondrial respiration

(Horibata and Sugimoto, 2010; Horibata et al., 2017).

EMCS regulates the homeostasis of another crucial

mitochondrial lipid, the anionic phospholipid cardiolipin

(CL), which in healthy cells is found in the matrix-facing

inner leaflet of the inner mitochondria membrane. Although

mitochondria own enzymes to synthesize the precursor of CL,

phosphatidic acid (PA), most of the PA converted into CL comes

from the ER via EMCS (Osman et al., 2011; Potting et al., 2013).

CL is involved in the regulation of several physiological processes

that occur in the mitochondria. In particular, CL is together with

PE a master regulator of mitochondrial respiration (Belikova

et al., 2006; Raemy and Martinou, 2014; Hsu et al., 2015). PE and

CL bind to and modulate the stability and activity of ETC

complexes and respiratory supercomplexes (RSCs) (Acín-Pérez

et al., 2008; Böttinger et al., 2012; Horvath and Daum, 2013;

Acoba et al., 2020). Specifically, PE and CL bind respectively to

complexes I-IV and complexes I-V (Lange et al., 2001; Sun et al.,

2005; Sharpley et al., 2006; Schwall et al., 2012; Tasseva et al.,

2013; Calzada et al., 2019), regulating mitochondrial

bioenergetics and membrane potential (Basu Ball et al., 2018).

Consistent with these observations, CL or PE deficient

mitochondria exhibit reduced energetic coupling and because

of their role in reducing the activity of cytochrome c oxidase

(complex IV), diminished mitochondrial membrane potential

(Jiang et al., 2000; Böttinger et al., 2012; He et al., 2013; Tasseva

et al., 2013; Vance, 2020). The individual components of the

mitochondrial respiratory chain assemble into RSCs to stabilize

the single components of the ETC and minimize the production

of reactive oxygen species. Importantly, while CL by providing a

flexible rather than rigid interface between subunits is crucial for

the assembly of the RSCs (Fyfe et al., 2001), PE destabilizes it,

thus playing an opposite role in their functionalities (Böttinger

et al., 2012). In contrast to depletion of CL, disturbance of PE

level in mitochondria does not destabilize RSCs but rather favors

the assembly of “megacomplexes”, larger RSCs. On the other

hand, another study reports that PE does not affect the stability of

RSCs, suggesting that PE is required for the activities of ETC

complexes while CL regulates both the activity and formation of

RSCs (Baker et al., 2016). However, disturbances of

mitochondrial levels of PE or CL result in aberrant cristae

shape and length (Tasseva et al., 2013; Rampelt et al., 2018;

Kondadi et al., 2020).

Beyond maintaining mitochondria respiration, CL plays a

pivotal role in initiating apoptosis and the clearance of

mitochondria through the process of mitophagy. Under

conditions of mitochondrial stress, externalization of CL to

the outer membrane serves as an “eat me” signal to target
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unhealthy mitochondria to the autophagosome, through a direct

interaction between CL and LEC3 (Atg8) (Chu et al., 2013).

Moreover, in response to cell death stimuli, outer membrane

bound CL can serve as a platform for caspase 8 recruitment to the

mitochondria. This leads to the caspase-8 mediated cleavage of

the BH3 interacting domain death agonist (BID) into its

truncated pro-death fragment tBID (Gonzalvez et al., 2008).

tBID, together with CL-mediated BAX/BAK oligomerization,

fosters mitochondrial cristae remodeling, permeabilization of

the OMM and cytochrome c (CYTC) release into the cytosol,

triggering apoptosis (Raemy and Martinou, 2014). Moreover,

upon ROS production, the CL oxygenase activity of CL-bound

CYTC (Kagan et al., 2005) drives the peroxidation of the CL

polyunsaturated fatty acid (PUFA) chains, which causes the

permeabilization of the OMM and the release of pro-death

factors from the mitochondria (Kagan et al., 2005). A close

link between EMCS integrity, CL oxidation and apoptosis was

suggested in previous studies. In a paradigm of ROS-mediated

cell death, weakening the ER-mitochondria contacts by the

removal of the Ser/Thr kinase RNA-dependent protein kinase

(PKR)-like ER kinase (PERK), another key member of UPR with

unconventional tethering function at the EMCS (van Vliet et al.,

2018), impaired early CL oxidation and pro-apoptotic cytosolic

CYTC release (Verfaillie et al., 2012; van Vliet et al., 2018).

Hence, EMCS integrity could serve as an early checkpoint in cell

death by promoting CL peroxidation.

EMCS also act as a hotspot for other lipid biosynthetic

pathways, which are involved in key cellular processes. The

enrichment of cholesteryl esters (CE) and triacylglycerols

(TG) synthesizing enzymes, such as acyl-CoA cholesterol

acyltransferase-1 (ACAT1) and diacylglycerol acyltransferase 2

(DGAT2) respectively, to EMCS suggest their functional

implication in LDs biogenesis (Rusiñol et al., 1994; Stone and

Vance, 2000; Stone et al., 2009). Lipid droplets, which bud from

FIGURE 1
Ca2+ fluxes at EMCS: Schematic representation of the main modulators of Ca2+ homeostasis at ER-mitochondria contact sites (EMCS) in
physiological conditions (on the right) and in cancer (on the left), as discussed in the main text. On the right side of the image, are represented the
main Ca2+ regulatory systems at EMCS: the inositol 1,4,5-trisphosphate receptors 3 (IP3R3)- glucose-related regulated protein 75 (Grp75)-voltage-
dependent anion channel 1 (VDAC1) signaling complex, delivering Ca2+ to themitochondria, the Ca2+ uniporter (MCU), allowing Ca2+entry into
the mitochondrial matrix, and the sarco/endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b), which pumps Ca2+ from the cytosol to the ER.
Maintenance of mitochondrial Ca2+ homeostasis through the integrity of the EMCS, promotes mitochondrial bioenergetics. Sigma-1Receptor (S1R)
binds to IP3R3 and decreases its degradation; the ER stress sensor Inositol-requiring enzyme 1 (IRE1α) interacts and brings IP3R3 at EMCS.
Transglutaminase type 2 (TG2) binds to Grp75 and promotes mitochondrial Ca2+ uptake. The complex formed by the protein tyrosine phosphatase
interacting protein 51 (PTPIP51) and the vesicle-associated membrane protein-associated protein B (VAPB), PDZ domain-containing protein 8
(PDZD8) and Mitofusin 2 (MFN2) homodimers favor Ca2+ fluxes by regulating the EMCS proximity. On the left side of the image we describe Ca2+

dysregulation in cancer. The tumor suppressor p53 at EMCS binds to SERCA pump preventing its ROS-mediated inactivation. P53 interacts with
promyelocytic leukemia (PML) protein, promoting the dephosphorylation and inactivation of the proto-oncogene serine/threonine kinase Akt,
which together with the Rapamycin complex 2 (mTORC2) phosphorylate and inhibit IP3R3. The proto-oncogene B-cell lymphoma 2 (Bcl-2)
interacts and inhibits VDAC1 and IP3R3 suppressing Ca2+ fluxes. IP3R3 stability is regulated by the oncogenic signal transducer and activator of
transcription 3 (STAT3) which promotes its degradation and the tumor suppressor deubiquitylase BRCA1-associated protein 1 (BAP1), which prevents
its ubiquitylation. The mechanisms described here contribute to a reduction of mitochondrial Ca2+ import, and consequently to a lower oxidative
phosphorylation (OXPHOS) and reduced apoptosis sensitivity.
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the ER membranes, serve as storage sites for neutral lipids and as

a supply of fatty acids to mitochondria, to maintain fatty acid

oxidation and the tricarboxylic acid (TCA) cycle (Renne and

Hariri, 2021). Recently, the existence of a close proximity

between LDs, ER and mitochondria, led to the suggestion that

EMCS-associated proteins may coordinate the formation of LDs

(Benador et al., 2018; Thiam and Ikonen, 2021). In support of this

hypothesis, the OMM protein Mitoguardin 2 (MIGA2), which

tethers the EMCS by forming a complex with VAPA/B, has been

shown to promote the synthesis of TG from non-lipid precursors

by linking mitochondria to the ER and LDs (Freyre et al., 2019)

and facilitating efficient lipid storage in LDs.

Non-vesicular trafficking of PLs at EMCS (Balla et al., 2019)

requires lipid transfer proteins (LTPs), which serve as

hydrophilic shuttles to transport PLs between membranes

through their hydrophobic cavities (Wong et al., 2019; Prinz

et al., 2020). A characteristic feature of LTPs recruited at MCS is

the FFAT domain, a short motif made of two phenylalanines in

an acidic tract that binds the ER-resident VAP proteins (Murphy

and Levine, 2016). Although it is important to distinguish

proteins that are structurally in charge of EMCS maintenance

from proteins that promote PL transfer functions, it is becoming

evident that tethers and LTPs are functionally linked. Several

LTPs bind to both the interacting membranes, therefore

stabilizing as well the contact. On the other hand, tethers that

directly anchor two membranes often display a second motif or

domain, which binds lipids and/or lipid binding proteins thus

directly or indirectly contributing to the lipid dynamics at EMCS

(Scorrano et al., 2019; Wong et al., 2019). The VAPB-PTPIP51

complex has been recently shown to regulate PL transfer at

EMCS, in particular the transport of PA (Yeo et al., 2021).

Other FFAT-motif proteins are the ER-anchored oxysterol-

binding protein-related protein (ORP) 5 and 8, which transfer

PS at the ER-PM contact sites (Chung et al., 2015). It has been

FIGURE 2
Effectors of lipid transfer at EMCS: Schematic representation of the lipid homeostasis at ER-mitochondria contact sites (EMCS) and lipid droplets
(LD), in physiological conditions (on the right) and in cancer (on the left). On the right side of the image, are represented the main lipid transfer
proteins (LTP) discussed in the review (see the main text for further explanations); Mitofusin 2 (MFN2) homodimers, bind and transfer
phosphatidylserine (PS), the oxysterol-binding protein-related protein (ORP) 5 and 8-protein- tyrosine phosphatase interacting protein 51
(PTPIP51) complex, the vesicle-associated membrane protein-associated protein B (VAPB)- PTPIP51 complex, responsible of the transfer of
phosphatidic acid (PA). The Ser/Thr kinase RNA-dependent protein kinase (PKR)-like ER kinase (PERK) is shown to interact with an unknown
mitochondrial protein, possibly facilitating phospholipid (PL) transport. In the inner mitochondrial membrane (IMM) PS is converted into PE and PA
and transferred into the mitochondrial intermembrane space (IMS) by TP53-regulated inhibitor of apoptosis gene 1 TRIAP1-PRELI complex. PA is
converted into cardiolipin (CL), an anionic PL which promotes mitochondrial oxidative phosphorylation (OXPHOS). In response to cell death stimuli,
CL interacts with truncated BH3 interacting-domain death agonist (tBID) promoting BAX/BAK oligomerization, release of cytochrome c (CYTC),
triggering caspase activation and apoptosis. Mitoguardin 2 (MIGA2)-VAPA/B complex tethers the EMCS to LD and facilitates the production of
triglycerides (TG). TG is synthesized into the ER from PA via the diacylglycerol acyltransferase 2 (DGAT2) enriched at EMCS. The enzyme acyl-CoA
cholesterol acyltransferase-1 (ACAT1) localized at EMCS synthetizes cholesteryl esters (CE). TG and CE are stored in LD. TG hydrolysis provides free
fatty acids (FFA) as fuel for β-oxidation occurring in the mitochondria. On the left panel, some molecular mechanisms involving lipid signaling at
EMCS, which are altered in cancer cells, are illustrated: ACAT1 expression is increased, consequently leading to the accumulation of elevated levels of
CE into LD; the complex TRIPA1-PRELI is upregulated, PA is converted into CL, impairing the release of CYTC and the sensitivity to apoptosis;
cholesterol is highly accumulated into the IMM, affecting the mitochondrial potential (Δψ) and favoring resistance to apoptosis. Deficiency of
MFN2 compromises the transferring of PS at EMCS causing ER stress, inflammation, fibrosis and cancer.
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recently found that ORP5/8 requires the interaction of

PTPIP51 and their lipid binding domain [SBP-related lipid-

binding (ORD)] to localize at EMCS, suggesting a possible

role of this complex in PS transfer at EMCS. Notably, the co-

expression of PTPIP51 and ORP5 or 8 reinforces the ER-

mitochondria association, therefore functioning as a stabilizing

tether (Galmes et al., 2016).

MIGA2 harbors a non-conventional FFAT motif which is

required for its interaction with VAPA/B and for the transport of

lipid at the EMCS (Freyre et al., 2019). Mitofusin 2 (MFN2) is a

master regulator of the contact site proximity (de Brito and

Scorrano, 2008; Filadi et al., 2015). Recent evidence shows that

MFN2 directly binds and transfers PS across the ER-

mitochondria interface (Hernández-Alvarez et al., 2019).

Interestingly, PERK is an interactor partner of MFN2 (Muñoz

et al., 2013). While the PERK-MFN2 regulatory role under stress

conditions has been described, whether both proteins interact to

maintain the homeostatic functions of the EMCS remains

unclear. Interestingly, PERK is endowed with a lipid kinase

activity responsible for diacylglycerol (DAG) phosphorylation

and PA production (Bobrovnikova-Marjon et al., 2012).

Moreover, PERK interacts with VAPB, although the biological

function of their interaction at the EMCS has not been explored

yet (Sassano et al., 2021). Together these findings raise the

intriguing possibility that PERK might contribute to the

regulation of lipid transport at EMCS, a hypothesis that needs

experimental confirmation.

Collectively, these observations indicate that a complex

regulatory network composed of lipid carrying shuttles, LTPs

andmultiple tethering complexes, dynamically interact to govern

lipid homeostasis, mitochondrial metabolism and cell fate

decisions (Figure 2).

Alterations of the EMCS lipid factory in
cancer

Given the crucial role of lipids in mitochondrial metabolism

and signaling, it comes as no surprise that cancer cells often

present abnormalities in the lipid content by altering their

synthesis, storage or transport. In general cancer cells, due to

their greater energy demands for survival and growth, increase

the de novo fatty acid synthesis, necessary for the formation of

new structural membranes and as a source of energy (Medes

et al., 1953; Simoes et al., 2020).

Since EMCS as discussed above, represent the domains for

lipid synthesis and play a pivotal role in cell fate decisions (Balla

et al., 2019), they are an ideal platform for cancer lipid

remodeling (Figure 2). Cancer cells often present alterations

in the levels of inner membrane CL and cholesterol, which

may favor resistance to apoptosis or metabolic

reprogramming (Kiebish et al., 2008, Kiebish et al., 2009;

Monteiro et al., 2013). For example, the tumor suppressor

p53 regulates the transport of PA into the mitochondria via

EMCS (Potting et al., 2013). p53-mediated expression of TP53-

regulated inhibitor of apoptosis gene 1 (TRIAP1) and the PRELI

complex, was found to promote PA transfer into the

mitochondrial intermembrane space (IMS). Disruption of the

TRIAP1-PRELI complex reduces levels of PA transfer from the

ER into the mitochondrial inner membrane and CL production,

which facilitates the release of CYTC and apoptosis (Potting

et al., 2013), a mechanism that possibly explains why TRIAP1 is

upregulated in multiple myeloma (Park and Nakamura, 2005;

Felix et al., 2009).

Additionally, although mitochondria present a low content

of cholesterol compared to other organelles, the transfer of

cholesterol relies on the ER-mitochondria interconnection to

reach the inner mitochondrial membrane (IMM). High

cholesterol content affects the IMM permeability in cancer

cells, therefore compromising their sensitivity to apoptosis

(Sassano et al., 2017; Peretti et al., 2019). In basal state,

membrane-bound free cholesterol is converted by the EMCS-

localized ACAT1 enzyme into CE and stored in LDs (Puglielli

et al., 2001). Breast cancer cells show high levels of ACAT1 and

show elevated levels of CE in LDs (Koizume and Miyagi, 2016).

Additionally, ACAT1-mediated accumulation of CE in cancer is

often associated with proliferation, metastasis and bad prognosis

(Koizume and Miyagi, 2016; Li et al., 2016; Stopsack et al., 2017),

suggesting that LDs formation is associated with cancer

proliferation and progression. Moreover, besides regulating

LDs synthesis, in acute myeloid leukemia (AML), cancer cells

control autophagy-mediated degradation of LDs through the

regulation of the EMCS integrity. In line with this, EMCS have

been recently proposed to serve as an autophagic platform

supplying free fatty acids (FFAs) from LDs to fuel OXPHOS

pathway, necessary for AML cell survival and proliferation

(Singh et al., 2009; Bosc et al., 2020).

Cancer cells also alter the expression of various LTPs or

EMCS-associated proteins with a role in facilitating lipid transfer

between the ER and mitochondria. As mentioned above, PS can

be transferred at the EMCS by the ORP5/8 complex. Some

studies have correlated the increased expression levels of

ORPs to cancer development (Du et al., 2018). In particular,

ORP5 expression has been associated with increased cancer cell

invasion and metastasis, possibly because of its PS transferring

function at EMCS (Koga et al., 2008; Nagano et al., 2015).

However, further studies are needed to validate the role of

ORP5 in tumor progression. Additionally, other LTPs have

been linked to cancer development, such as VAPB and

PTPIP51, whose high expression levels are associated with

tumor growth in breast cancer (Peretti et al., 2019).

Intriguingly, a recent study disclosed MFN2 as a key factor in

the development of non-alcoholic fatty liver disease (NAFLD)

and liver cancer, due to its role in transferring PS at the EMCS.

Hepatic MFN2 deficiency reduces the transfer of PS at EMCS

which leads to a decrease in PS synthesis and ER stress,
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consequently causing inflammation, fibrosis and liver cancer

(Hernández-Alvarez et al., 2019).

Together, these studies illustrate the intricate interplay

between mitochondrial phospholipid dynamics, relying on the

ER-mitochondria communication and mitochondrial

homeostasis as a vital node of cancer metabolic adaptation.

Nevertheless, further mechanistic analysis is needed to

understand how dysfunctional EMCS enable aberrant lipid

signaling that supports cancer growth and whether

normalizing the EMCS-lipid crosstalk may offer a strategy to

halt cancer progression.

Concluding remarks

Although in the last decade the complex architecture of

contact sites has become more and more clear and new family

components have been characterized, several outstanding

questions still remain to be solved. In general, given the

increasing number of newly-identified structural elements part

of EMCS, it became important to better understand their mutual

regulation and selectivity. Why would organelles display a wide

variety of protein complexes regulating the same biological

function at EMCS? Are certain protein complexes prioritized

and taking over others depending on the cellular stimulus? Do

different types of contact sites display different specialized

domains? Recent evidence seems to indicate that the majority

of proteins targeted to membrane contact sites display a broad

range of functions, selectively executed on the bases of their

localization, dynamic protein-protein interactions and cellular

necessities.

In particular, while studies on Ca2+ signaling at EMCS have

been quite conclusive and the molecular identities of the main

ER-mitochondria Ca2+ players have been extensively

characterized, molecular components regulating the lipid

landscape of the EMCS are largely elusive. How are certain

lipids preferentially more prone to vesicular pathways rather

than the endomembrane system? Is the assigned route PL-

dependent or based on the metabolic state of the cell and

cellular stress? Is the close proximity between membranes

sufficient for an efficient lipid remodeling at EMCS or are

LTPs the “conditio sine qua non”? Answering these biological

questions urge a deeper understanding of the lipid dynamics at

MCS, requiring complex techniques not fully available nowadays

but certainly in rapid progress.

Most importantly, although persuasive evidence indicates

that oncogenes or tumor suppressors utilize the EMCS platform

to interact with the major protein regulators of Ca2+ signaling to

promote their survival, the molecular pathways that allow cancer

cells to accurately regulate lipid reshuffling at EMCS and their

implication in the cancer context are still unclear. Is the

remodeling of EMCS proximity also a way for cancer cells to

affect lipid cancer metabolism?

Ultimately, a better characterization of Ca2+ and lipid

signaling and identification of new players at EMCS will

facilitate the identification of new targets/signaling pathways

hijacked by cancer cells at EMCS, which may help design new

therapeutic approaches against cancer.
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