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Abstract 

Background:  Many patients with neurological movement disorders fear to fall while performing postural transitions 
without assistance, which prevents them from participating in daily life. To overcome this limitation, multi-directional 
Body Weight Support (BWS) systems have been developed allowing them to perform training in a safe environment. 
In addition to overground walking, these innovative/novel systems can assist patients to train many more gait-related 
tasks needed for daily life under very realistic conditions. The necessary assistance during the users’ movements 
can be provided via task-dependent support designs. One remaining challenge is the manual switching between 
task-dependent supports. It is error-prone, cumbersome, distracts therapists and patients, and interrupts the training 
workflow. Hence, we propose a real-time motion onset recognition model that performs automatic support switching 
between standing-up and sitting-down transitions and other gait-related tasks (8 classes in total).

Methods:  To predict the onsets of the gait-related tasks, three Inertial Measurement Units (IMUs) were attached to 
the sternum and middle of outer thighs of 19 controls without neurological movement disorders and two individuals 
with incomplete Spinal Cord Injury (iSCI). The data of IMUs obtained from different gait tasks was sent synchronously 
to a real-time data acquisition system through a custom-made Bluetooth-EtherCAT gateway. In the first step, data was 
applied offline for training five different classifiers. The best classifier was chosen based on F1-score results of a Leave-
One-Participant-Out Cross-Validation (LOPOCV), which is an unbiased way of testing. In a final step, the chosen classi-
fier was tested in real time with an additional control participant to demonstrate feasibility for real-time classification.

Results:  Testing five different classifiers, the best performance was obtained in a single-layer neural network with 25 
neurons. The F1-score of 86.83%± 6.2% and 92.01% are achieved on testing using LOPOCV and test data ( 30% , partici-
pants = 20), respectively. Furthermore, the results from the implemented real-time classifier were compared with the 
offline classifier and revealed nearly identical performance (difference = 0.08%).

Conclusions:  A neural network classifier was trained for identifying the onset of gait-related tasks in real time. Test 
data showed convincing performance for offline and real-time classification. This demonstrates the feasibility and 
potential for implementing real-time onset recognition in rehabilitation devices in future.

Keywords:  Real-time activity recognition, EtherCAT​, Sliding window, Wireless EtherCAT interface, Inertial 
measurement unit, Body weight support
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Background
Spinal Cord Injury (SCI) leads to devastating conse-
quences for the affected individuals. Due to the complete 
or incomplete disruption of the spinal cord, voluntary 
control and sensory function are diminished (incom-
plete SCI) or completely lost (complete SCI) below the 
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level of the lesion [1]. This impairs or hinders the per-
formance of daily activities like walking [2, 3]. Neverthe-
less, people with incomplete SCI can regain the ability to 
perform essential daily activities and enhance locomotor 
performance [4]. Through the recovery of mobility and 
improved performance of activities of daily living, qual-
ity of life also improves [5]. Mobility restoration can be 
strongly supported by intense rehabilitation training 
[6–8]. Hereby, patients should constantly face different 
challenging tasks like standing up/sitting down, over-
ground walking, and stair climbing. Apart from stair 
climbing, standing up and sitting down are among the 
most demanding daily activities, even though they are 
a prerequisite to start other functional training tasks in 
daily life [9]. Several rehabilitation devices were designed 
to assist patients particularly during standing-up and sit-
ting-down phases [10–13]. However, what is required is 
task-specific support and fall prevention in a way that the 
system prevents the patients from falling besides provid-
ing the needed amount of support while performing reha-
bilitation tasks [14]. If too much support is provided, the 
patients tend to become slack and do not actively train 
the rehabilitation tasks [15]. However, if too little sup-
port or even the wrong support is provided, the patients 
will not be able to complete or even initiate the desired 
task [15]. Being actively hindered or impeded during task 
execution can even demotivate patients to keep on try-
ing. For instance, Body Weight Support (BWS) systems 
have been developed which provide a safe and permissive 
environment [16–18]. Unfortunately, most BWS systems 
can only support patients with unspecific vertical weight 
unloading which can lead, for example, to unphysiologi-
cal standing up and sitting down transitions. A novel 
BWS system called “The FLOAT” (Reha-Stim Medtec 
AG, Germany) has been developed which can provide 
three-dimensional assistive forces and patient-specific 
body-weight support during walking [19]. The multi-
directional BWS system “The FLOAT” can assist the 
patients while performing rehabilitation tasks by design-
ing task-dependent support that works in harmony with 
the user’s movement. The designed controller can con-
sist of haptic guidance along virtual elastic walls (e.g. 
based on passive potential fields), which guide the user’s 
movement [20–22]. In parallel, a force field in movement 
direction can assist the user’s motion while perform-
ing specific rehabilitation tasks such as sitting down, 
standing up, or walking. Since every rehabilitation task 
requires different support strategies, which need to be 
adjusted to the task, an algorithm is required in order to 
detect movement onset at an early phase, safely, robustly, 
and independently of the user in order to transition 
from one training task to another. For ideal support dur-
ing specific rehabilitation tasks, task-dependent support 

should be selected and applied. Choosing the right sup-
port in an automated way for each task can be realized by 
detecting the onset and the type of the movements.

Onset recognition of standing-up and sitting-down 
motions for exoskeleton robots have been realized in 
various fashions. A simple and straightforward solution 
is that patients need to press a button that triggers sup-
port onset. This solution can be an unsafe and tiresome 
task for patients because pressing a button is an addi-
tional challenge for them [23]. Furthermore, one button 
usually is related to one task, consequently, triggering 
support for many specific tasks would require many but-
tons. Another solution for switching task-specific sup-
ports is using heuristic methods like threshold-based 
motion onset recognition that monitors, e.g. ankle and 
knee angles with potentiometers or other attached sen-
sors to the rehabilitation device. This method is prone 
to false recognition due to the different threshold values 
that should be defined based on each subjet’s anthro-
pometry [24, 25]. Unlike the solutions mentioned above, 
using wearable sensors like Inertial Measurement Units 
(IMU)s or Electromyography (EMG) sensors and apply-
ing machine-learning methods for activity recognition 
are gaining popularity among researchers in recent years 
[10, 24–31]. The approaches differ mainly in two points: 
(i) experimental setup, (ii) recognition methods. 

	(i)	 The experimental setup refers to the number of 
sensors and sensor placement, which varies based 
on the specific application and how fast the activity 
should be recognized [32]. For instance, although 
attaching sensors to the lower body shows good 
accuracy in recognizing sitting-down and stand-
ing-up onsets [25], it detects motion onset late 
because sitting down and standing up are initiated 
by a movement in the upper body [10].

	(ii)	 Developing a recognition method for detecting the 
onset of the movements also highly depends on the 
application: online or offline recognition. Machine 
learning as an offline recognition approach has 
shown robust performance on pre-segmented 
sequences of activities in control participants [33]. 
However, real-world applications require online 
activity recognition on streamed unprocessed data 
that comes without pre-segmentation [34]. Besides, 
when performing recognition online on streamed 
data, the developed recognition model needs to be 
executable in real time without substantial delay. 
Therefore, in addition to accuracy, also feasibility, 
and speed of the classification should be considered 
for real-time applications. Moreover, for including 
movement onset recognition in combination with 
robotic devices that provide support according to 
the results of the recognition, some prerequisites 



Page 3 of 14Haji Hassani et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:11 	

need to be met. Unlike traditional data acquisi-
tion systems that used the point-to-point connec-
tion structure between the PC and sensors [35], 
many rehabilitation tasks need the involvement of 
many types of sensors with different sampling rates 
and communication protocols. The requirement 
for using many data acquisition systems at once 
makes the data acquisition and processing highly 
challenging, and asynchronous data leads to drifts 
in the time scales of the different acquisition sys-
tems. Therefore, a new protocol for the synchro-
nized transmission of large data packages has been 
established: EtherCAT. EtherCAT is the modified 
version of Ethernet from EtherCAT.org to address 
the concern of synchronized data transmission at 
high speed and reliability [36]. In this paper, we 
propose real-time motion onset recognition with 
IMUs, which are attached to the human body. 
Figure  1 depicts the long-term goal for real-time 
motion onset recognition. The motion onset recog-
nition model provides the decision which control-
ler needs to be applied for providing ideal support 
for the task that is currently performed. The herein 
provided algorithm can be applied to various reha-
bilitation devices like BWS systems/exoskeletons. 
In this work, first, the design and implementation 
of an EtherCAT interface for wireless data acquisi-
tion is presented that transfers data from IMUs via 

Bluetooth protocol into the real-time data acqui-
sition system using the EtherCAT data transmis-
sion protocol (Fig. 1b). Second, eight distinct tasks 
are recognized in real time with machine learning 
techniques. The best model out of 5 recognition 
models implemented with different machine learn-
ing models is selected. The best recognition model 
can then be used in a real-time implementation 
to select the appropriate task-dependent control-
ler (Fig.  1c). For instance, the controller of “The 
FLOAT” will switch to “stand-to-sit” controller in 
case onset of sitting down is recognised (Fig. 1d).

Methods
Hardware and firmware development
A synchronized data acquisition (DAQ) system was used 
for reliable data transmission and acquisition. This DAQ 
consists of an embedded PC (CX2040, Beckhoff Automa-
tion Gmbh, Verl, Germany) running a real-time operat-
ing system (Fig. 2a). Communication and data exchange 
between the real-time operating system and the inputs 
and outputs (slaves) took place over EtherCAT protocol 
(real-time Ethernet) allowing all input tasks to be trig-
gered and output tasks to be updated via a common pulse 
to ensure proper synchronization.

Despite the advances in wireless data transmis-
sion, power management, and small wireless wearable 
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Fig. 1  Implementation of a real-time motion onset recognition framework for rehabilitation devices. a Rehabilitation devices: The FLOAT(Reha-Stim 
Medtec AG, Germany), Myosuit (MyoSwiss AG, Switzerland). b Wireless interface boards for acquiring data from wireless IMUs. c Synchronized data 
acquisition from rehabilitation devices, sensors, and real-time movement onset recognition. d Selection of task-dependent supports (Sit-to-Stand 
controller/Stand-to-Sit controller/device Controller) based on the recognized task (Sitting down/Standing up/other activities)
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sensors, there is no commercial EtherCAT slave avail-
able to acquire data into real-time embedded PCs from 
wireless sensors. For this reason, we developed an Eth-
erCAT gateway board enabling wireless data acquisition 
(Fig. 2b). Figure 2d shows the structure of the data trans-
mission protocol from wireless devices to the embedded 
PC. The board received data which was encoded with 
Modbus protocol via a Bluetooth 1© or radio frequency 
(RF) 2© receiver module. Received data was transferred to 
a 32-bit micro-controller (PIC32mx4704f512l, Microchip 
Technology Inc., USA) via Serial Peripheral Interface 
(SPI) or Universal Asynchronous Receiver-Transmitter 
(UART) protocol. The microcontroller was programmed 
using the EtherCAT Slave Stack Code tool (EtherCAT 
Technology Group, Nürnberg, Germany) to encode 
the EtherCAT protocol with the decoded data from the 
Modbus protocol. Data was then ready to be transferred 
via EtherCAT protocol to a synchronized real-time data 
acquisition system. Data transformation to the real-
time system (EtherCAT Master) was performed with 
the EtherCAT Piggyback Controller board 3© FB1111-
0142 (Beckhoff Automation GmbH Co. KG, Germany). 
The EtherCAT Piggyback controller board combined an 

ET1100 EtherCAT Slave Controller, two EtherCAT ports, 
and a PDI-connector on one printed circuit board that 
was mounted onto a custom-made wireless data acqui-
sition board. The EtherCAT Piggyback controller board 
was coupled with the embedded PC using a 2-port Ether-
CAT junction (EK1122, Beckhoff Automation GmbH Co. 
KG, Germany).

Measurement setup
The above developed setup for deterministic and syn-
chronized data acquisition formed the basis of receiv-
ing and sending wireless real-time data. Three wireless 
IMUs (LPMS-B2, LP-RESEARCH Inc., Tokyo, Japan) 
were attached to the sternum 1© and the middle of both 
outer thighs 2© 3© of each participant (details on the axes 
orientation are presented in Fig.  3b). The LPMS-B2 is 
an IMU with an integrated 3D accelerometer, 3D gyro-
scope, and 3D magnetometer. Data output format from 
the IMU could be the sensor’s raw data, Euler angles, 
and quaternions. Data was broadcasted via Bluetooth 
2.1 + EDR/Low Energy (LE) 4.1 and could be received 
in distances up to 20 m. In this work, raw data from the 
accelerometer and the gyroscope sensors were streamed 
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via Bluetooth and received with the custom-made board 
(see subsection ‘Hardware and firmware development’). 
This board was used as a gateway for acquiring data in 
the real-time setup. Data was continuously collected with 
a sampling rate of 100 Hz. Furthermore, the performed 
tasks were recorded via a video recording system (Basler 
piA640-210gc, Basler AG, Germany) at 50 fps sampling 
rate synchronously for labelling the different recorded 
movements.

Participants
To recognize the movement onset of different gait-
related activities, a study was conducted. The study was 
approved by the local ethics committee of the Canton of 
Zurich, Switzerland (BASEC-Nr. 2016-0193) and con-
ducted in accordance with the Declaration of Helsinki. 
The 19 control participants without neurological move-
ment disorder (9 females) and 2 individuals with iSCI 
(1 female), (lesion level T10 and C6, respectively, and 
both ASIA D) were recruited for data collection. The 
average height, weight, and age of the participants were 
173.14 ± 10.77  cm, 66.57± 12.07  kg, and 28.95± 4.5 
years, respectively.

Study protocol
A study protocol to acquire data from participants 
was designed as follows: 3 IMUs were attached to the 

sternum and the middle of both outer thighs of each par-
ticipant (see Fig. 3). The participants were asked to per-
form several repetitions of “Sit to Stand” and “Stand to 
Sit” activities and four other movements: sitting, stand-
ing, and walking with U-turns at their self-selected speed. 
The measurement protocol started from sitting without 
moving, followed by standing up and sitting down three 
times, walking, making a right- or left-directed U-turn, 
walking back to the chair position, making another 
right- or left-directed U-turn, standing without moving 
for a few seconds, and sitting down. This procedure was 
repeated twice.

The total number of repetitions for sitting and standing 
tasks for each participant was 6, while the total number 
of repetitions was 4 for walking and turning. The average 
time of measurement was 80 s and 100 s for control and 
iSCIs, respectively (see Fig. 3a).

Collected data from the IMUs was sent to the real-
time data acquisition system, through the self-developed 
Bluetooth interface boards and was logged on the Eth-
erCAT master. Logged data was used for generating an 
offline classification model to recognize the onset of the 
performed tasks. In order to provide extra information 
to the assistive device, some tasks like sitting down and 
standing were segmented into two phases [10]. There-
fore, in total eight classes of activities were recognized, 
namely:
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Fig. 3  Data acquisition and sensor placements: a Measurement protocol (starts from sitting position for a few seconds followed by standing up 
and sitting down three times (3×) then, walking and turning, standing without any motion for few seconds, and sitting). b Sensory set-up (one IMU 
on the sternum and two IMUS on the middle of outer thighs)
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•	 Sit to Stand (Movement starts from bending the 
upper body and ends by leaving the chair)

•	 M. Standing (Motion of Standing: movement starts 
from leaving the chair and ends when a stable, 
motionless standing posture is reached)

•	 Stand to Sit (Movement starts from the bending 
upper body and ends by touching the chair)

•	 M. Sitting (Motion of Sitting: movement starts when 
contacting the chair and ends when a stable, motion-
less sitting posture is reached.

•	 Walking (Walking straight with self-selected speed)
•	 Turning (Making a 180◦ turn with self-selected direc-

tions (left/right))
•	 Standing (Standing without motion)
•	 Sitting (Sitting without motion)

Offline model generation
For generating a movement onset recognition model, 
which was used later in real-time motion onset recogni-
tion, first, 5 different classification models were trained, 
tested, and compared for their offline performance. To 
evaluate the performance of each classifier Leave-One-
Participant-Out Cross-Validation (LOPOCV) [10] was 
conducted for each classification method (18 controls, 
2 individuals with iSCI). Such that each classification 
model trained and tested 20 times. Iteratively, data of 
19 participants were used as a train data set to train the 
model and data of 1 participant was used to test and eval-
uate the performance (data of each participant was used 
19 times in the train data set and once in the test data 
set). The average of the F1-scores is reported to compare 
the performance.

Subsequently, data from 18 out of 19 controls and 2 
individuals with iSCI was divided randomly into train-
ing (Training data set) and test (Test data set) data: 70% 
and 30%, respectively. The random division was selected 
in a way so that all activities were represented equally 
in train and test data sets (see Fig. 4). The training data 
was used to develop a final recognition model to recog-
nize the onset of the introduced activities in subsection 
‘Study protocol’. The last participant was later used in a 
real-time scenario to check the performance of the final 
recognition model.

The data preparation procedure was the same for the 
training and test data: starting from signal pre-pro-
cessing, followed by labelling, and feature extraction. 
Extracted features from the training data and the cor-
responding label for each feature set were used in the 
learning block for model generation. Consequently, the 
generated model was examined with extracted features 
from the test data set in the inference block. Finally, pre-
dicted labels were compared with actual labels to check 

the performance of the inference block (see Fig. 4). The 
following subsections describe each step in detail.

Signal pre‑processing and labelling
The first step after acquiring data was signal pre-process-
ing, in which the signal bias of angular velocity and accel-
eration were removed, and angular velocity signals were 
scaled between −1 and 1 to avoid a broad range of val-
ues in the features. Acceleration signals were used with-
out processing since scaling and filtering did not improve 
the classification results. Furthermore, the orientation 
of the IMUs were estimated by employing a quaternion-
based sensor fusion algorithm that used strap-down 
integration of the angular rates and geodetic accelerom-
eter-based drift compensation [37]. The magnetometer 
readings were not used in orientation estimation due 
to hard and soft iron disturbances on the magnetom-
eter data in indoor environments [38]. Consequently, 
manual labelling of the signals based on videos that were 
captured synchronously with the IMU sensors during 
measurements was conducted. Time-stamps for different 
activities based on the videos were extracted. Then, the 
corresponding parts of the signals from the acquired data 
were labelled.

Feature extraction
The classification of a dynamic activity requires a certain 
limited amount of data history to obtain a reasonable esti-
mation of the activity. The reason is that one single sam-
ple from one specific time instant cannot fully represent 
the performed activity. Thus, the entire set of streamed 
signals was divided into windows of equal size with con-
stant overlapping time. Hereby, finding an optimal win-
dow size was critical because if the chosen window was 
too small, it might not contain enough information to 
represent the particular activity. On the contrary, if a too 
wide window was chosen, this window might contain 

Train data set  Test data set  

Pre-processing

Labelling

Feature extraction InferenceLearning

Generated model

70% 30%

100% 
18 Control participants + 2 individuals with iSCI 

Fig. 4  Train and test data preparation and recognition model 
generation workflow
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information from two or more classes of activity as well 
as introduce delays in real-time recognition.

Therefore, to find an optimal window size for feature 
extraction, the time of executing different activities for 
each subject was calculated, and the shortest execution 
time was identified across all participants. Considering 
that the shortest activity time occurs in 200 ms for some 
of the participants, the chosen window size should be less 
than 200 ms to not miss any activity and not have a big 
overlap with other activities. Thus, the final window size 
was set to 100  ms with a 90% overlap for handling the 
transitions between different activities and to shorten the 
classification delay in real-time (Fig. 5).

For each window, 55 time-domain features such as sta-
tistical values, a derivative of a fitted line to angular rates, 
accelerations, and estimated orientations were extracted 
(see Additional file 1: Table S1). Then, the extracted fea-
tures were ranked and cross-validated by the recursive 
feature elimination method provided in [39]. A subset of 
features was selected based on recursive feature elimi-
nation using SVM estimators by removing 0–55 fea-
tures. Then, 27 features (the best subset of features) were 
selected based on the cross-validation score of the model. 
These were the 27 features that were used for all recog-
nition models. The selected features were scaled employ-
ing min–max scaling before training of the recognition 
model. In parallel, signals were manually labelled using 
the synchronously captured videos. Each moving win-
dow was labelled using a majority voting criterion, mean-
ing if one task was the dominant task in a time window, 
then the window was labeled with the label of the domi-
nant task. Each labelled window was combined with the 
generated feature vector to construct a training vector. 
Moreover, to have a balanced number of samples across 
tasks in the training data set, tasks with higher number of 
samples were down-sampled.

Learning and inference
Many supervised classification algorithms have 
been employed in human activity recognition. The 

algorithms differ from several points of view, such as 
the feature set, the number of classified activities, com-
putational cost, calculational speed, memory usage, 
and classification accuracy [39, 40]. Therefore, common 
classification methods in human activity recognition 
were employed for learning and inference to choose the 
best technique suitable for real-time applications.

The training vector was applied to train five classifica-
tion methods: decision trees [41], K-Nearest Neighbour 
(K-NN) [42, 43], Support Vector Machines (SVM) [43], 
Linear logistic regression [44], and Neural Networks 
[45]. The classification method was not only chosen 
based on a high F1-score in LOPOCV, but it should 
also be implementable and executable in a real-time 
setup. Accordingly, to assess the potential of the dif-
ferent classifiers for a real-time implementation, also 
the prediction speed in of each classifier was investi-
gated on an Intel(R) Core(TM) i 7− 8565 U CPU @ 1.80 
GHz computer (see Table  1). Additionally, LOPOCV 
allows detailed insight into the variability of the clas-
sification accuracy for individual participants, which 
provides deeper insight into the robustness of the clas-
sifier for new data due to unbiased testing. To obtain 
a final model and also to compare unbiased vs. biased 
testing data sets, 70% of data obtained from the 20 par-
ticipants was taken. The final model was then tested 
with the remaining 30% of the 20 participants. For both 
testing and training scenarios using the 20 participants 
(i) LOPOCV and (ii) 70% training and 30% testing data, 
classification results are represented in form of confu-
sion matrices and the F1-score. The confusion matrix 
reports the number of false-positive (incorrectly iden-
tified), false-negative (incorrectly rejected), true-posi-
tive (correctly identified), and true-negatives (correctly 
rejected) observations. These factors allow us to per-
form a more detailed analysis of the results like preci-
sion, sensitivity, specificity, and F1-score for each class 
rather than basing our decision only on overall accu-
racy and error rate. The definition of each expression is 
presented in the following.

Time

Window 1

Window 2

Window 3

Window 4

100 (ms) 10 (ms) 

Streamed data

Fig. 5  Moving window with 100 ms length and 90% overlap

Table 1  Comparison between classification methods for eight 
classes of activities

a Observation

Classifier Prediction 
speed (obsa/s)

F1-score (%) (LOPOCV)

Decision tree 4,006,000 78.87± 11.6

KNN (neighbors = 3) 10,060 78.34± 8.4

Linear SVM 5,120,000 85.40± 5.07

Linear logistic regression 4,067,000 83.9± 6.4

Neural Network 2,268,000 86.83± 6.2
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Precision indicates the proportion of true-positives 
over the number of true-positives plus false-positives.

Sensitivity indicates the proportion of true-positives 
over the number of true-positives plus the number of 
false-negatives.

Specificity indicates the proportion of true-negatives 
over the number of true-negatives plus false-positives.

F1-score indicates the harmonic mean of precision and 
sensitivity.

Real‑time onset recognition
In order to provide robotic support during different 
activities with rehabilitation devices like BWS systems/
exoskeletons, the onset of activities should be recognized 
in real time to provide an input signal for the device that 
will trigger the switch between task-dependent supports. 
Similar to offline classification, the workflow for real-
time classification started with data acquisition from 
the sensors, followed by pre-processing (scaling and off-
set removal). However, the difference to the previously 
explained offline process was that the data processing 
was performed on the fly on the incoming data set. The 
best offline classification model according to our criteria 
(see subsection ‘Offline model generation’), was imple-
mented in Simulink 2017b. Then C++ code was gener-
ated to obtain a program that can be further compiled to 
machine code and executed in real time on the embed-
ded PC. Figure 8 depicts a real-time recognition timing 
diagram in the embedded PC. Data acquisition and pre-
processing were executed in one real-time cycle, which 
was 2  ms. To extract features from streaming signals in 
real time, circular buffers were implemented to enable 
100  ms of overlap of the streamed signals every 10  ms. 
This means that every 10  ms features were extracted 
from each segmented window as soon as the desired 
buffer was filled. Then, the features were fed to the neu-
ral network model for activity recognition. Furthermore, 
each milestone of the workflow was logged for validation 
of real-time classification later on.

Results
Offline classification
Using the recursive feature elimination method, 27 
dominant features were selected from 55 extracted fea-
tures. The selected features that were used for training 
the prediction models are presented in Additional file 1: 
Table S1. In Table 1, results from the evaluation of differ-
ent classification methods are presented.

Statistical evaluation of the model choice based 
on the accuracy expressed in F1-score using One-
way ANOVA revealed a statistically significant effect 
F4,95 = 6.07, p < 0.0005 (significance level p = 0.05 ). 
Pair-wise comparison using the Tukey-Kramer test, 

revealed the following results, which will be pre-
sented in the following way: advantage model 1 over 
model 2, p-value: e.g. m1 > m2, p = 0.023 . The fol-
lowing model abbreviations are used: Decision Tree 
(DT), K-Nearest Neighbours (KNN), Support Vec-
tor Machine (SVM), Linear Logistic Regression 
(LLR), Neural Network (NN): KNN > DT, p = 1.0 ; 
SVM > DT, p = 0.0324 ; LLR > DT, p = 0.0264 ; NN > DT, 
p = 0.0041 ; SVM > KNN, p = 0.0434 ; LLR > KNN, 
p = 0.0356 ; NN > KNN, p = 0.0058 ; LLR > SVM, 
p = 1.0 ; NN > SVM, p = 0.9589 ; NN > LLR, p = 0.9728 . 
Accordingly, the SVM, LLR, and NN perform signifi-
cantly better than the DT and the KNN, but there is no 
statistical difference between the SVM, LLR, and NN. A 
qualitative comparison of results showed that the mean 
F1-score for the LOPOCV is highest for the Neural 
Network model while the standard deviation is compa-
rably low and prediction speed is relatively high. There-
fore, the Neural Network model was chosen for further 
consideration.

Within the Neural Network, a Competitive Soft Trans-
fer Function and a Sigmoid Symmetric Transfer Func-
tion were implemented in Matlab and used as activation 
functions for hidden layer and output layer, respectively. 
The “Scaled Conjugate Gradient” (trainscg) is used as the 
training function. The number of neurons in the hidden 
layer was searched and selected in the range of 15–27 
neurons using grid search for different window sizes and 
overlaps. 25 neurons in the hidden layer were found to be 
the best trade-off between the window size of 100 ms and 
an overlap of 90% for model responsiveness (see Addi-
tional file 1: Table S2).

Confusion matrices from LOPOCV for one control 
participant and the two individuals with iSCI are pre-
sented in Fig.  6. To exemplify the performance of the 
classifier in controls and individuals with iSCI, a compre-
hensive overview of results from LOPOCV can be found 
in the supplementary material (see Additional file  1: 
Fig. S1).

Furthermore, classification results for eight classes of 
activity on the test data set are shown by the confusion 
matrix in Fig. 7. Each row of the confusion matrix shows 
the actual (i.e., true) class, and each column presents 
the predicted class. Blue cells indicate the percentage 
of accurately classified observations (i.e. true positives), 
and yellow cells show the percentage of false recogni-
tions. The overall accuracy for recognizing eight classes 
of activity in the test data set was 92.01%.

The evaluation report in Table 2 depicts that the clas-
sification using the test data set achieved an accuracy and 
specificity for each class of activity higher than 97% while 
the precision and sensitivity of some classes of activity 
are lower (Fig. 8).
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Real‑time classification
In order to assess the implemented real-time onset rec-
ognition algorithm, data from a control subject was 
acquired, and the activities were classified in real time. 
For validation, labels from the real-time classification 
were compared with the offline classification results by 
using data that had been logged in parallel to the real-
time classification from the sensors during real-time 
measurement. Figure  9a and b present the confusion 
matrices for offline and real-time classification, respec-
tively. The generated offline classification method was 
examined on one participant that was not in test and 
training data from before. The F1-score of 88.68% and 
88.60% were obtained for the offline and real-time clas-
sification, respectively. Figure  10 illustrates the recogni-
tion of streamed data for the same subject. The x-axis 
shows the time of the measurement, and the y-axis shows 

the gait-related tasks. Predicted class and true class have 
been shown with red and black, respectively.

Discussion
This paper presents real-time motion onset recognition 
for different gait-related tasks using machine learning 
techniques. While classification of different gait-related 
tasks is of high interest for automated gait analysis, we 
go one step further and show feasibility of gait-related 
task classification in real-time. In particular, we are inter-
ested in real-time motion onset recognition for switching 
between task-dependent supports during the respective 
tasks with rehabilitation robots. Exemplarily, by rec-
ognizing the initiation of sitting down and standing up, 
task-dependent supports can be switched automatically.
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(F1-score: 85.13% ), c Individual with iSCI #2 (F1-score: 66.41%)
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The onset recognition and switching between supports 
needs to be performed in a deterministic way that will 
allow synchronized real-time control of the rehabilitation 
device as well as real-time data acquisition from sensors 

(IMUs). In order to enable synchronized real-time data 
acquisition of several Bluetooth-based commercial 
IMUs, a wireless interface board was designed that trans-
fers data to the real-time system (Embedded PC). Three 
IMUs have been used: one was attached to the sternum 
and two were attached to each thigh. Data was captured 
overall on 19 control participants and 2 individuals with 
iSCI. For choosing a robust recognition model, five dif-
ferent classifiers have been trained, and validated via 
LOPOCV. Finally, a neural network model with 25 neu-
rons has been chosen as the recognition model and was 
trained with 70% of data from the 20 participants (18 
controls, 2 individuals with iSCI). Overall accuracy for 
offline classification with 8 classes of activity on the test 
data set ( 30% , n = 20) with the neural network model was 
92.01%. It was challenging to compare recognition results 
to other studies due to different experimental setup 
(number of sensors, sensor placements, and recognition 
rate) and recognition method (offline/real-time). How-
ever, results for classifying “Sit to Stand” and “Stand to 
Sit” can be compared with a similar study on real-time 
human motion recognition, where an accuracy of 73.48% 
and 78.84% in recognizing “Sit to Stand” and “Stand to 
Sit” in real-time could be achieved, respectively [46]. In 
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Table 2  Evaluation report for offline classification of eight activities (using Neural network model) on the test data set

Activity class Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

Sit to stand 98.49 92.43 89.58 99.32 90.98

M.standing 98.03 92.88 90.92 99.02 91.89

Stand to sit 97.73 91.48 89.39 98.86 90.42

M.sitting 97.80 92.80 90.89 98.89 91.83

Walking 98.19 94.70 94.58 98.92 94.64

Turning 97.92 93.00 89.51 99.07 91.22

Standing 96.87 86.25 92.23 97.62 89.14

Sitting 97.97 92.69 95.77 98.43 94.21
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our recognition model, these values reached 90.98% and 
90.42%.

Moreover, for activity recognition, various values for 
the window size, which defines the recognition rate 
and has an influence on accuracy, have been used in lit-
erature. The window size ranges from 3.88  s with 50% 
overlap [47] to 2 s with 1 s overlap [42]. Some smaller 
windows with a size of 1  s without overlap and 1.3  s 
with 50% overlap have also been used in recent years 
[32, 48]. To achieve a fast movement onset recognition, 
a sliding window with a fixed size of 100 ms with 90% 
overlap has been chosen in this work. The number of 

sensors and where to place them can be defined based 
on the activities which needed to be recognized. For 
instance, an important part of gait-related tasks is 
standing up and sitting down and, since the initiation of 
these transitions starts primarily through motion of the 
upper-body, an IMU was fixed on the sternum. Moreo-
ver, two other IMUs were placed on the middle of outer 
thighs of each participant to discriminate other tasks 
that have phasic or aphasic movements of the thighs.

Providing input for the assistive devices requires real-
time data acquisition and analysis. We developed the 
neural network recognition model based on offline data 
analysis for later use in real-time scenarios in combi-
nation with gait rehabilitation devices. The developed 
model has been implemented in the embedded PC and 
tested on a participant. As Fig.  9 presents, the confu-
sion matrices for offline and real-time classification on 
the validation data set, both had practically the same 
performance.

Not only robust performance in real time is necessary 
for providing input to the assistive device, but also the 
accuracy and safety are critical issues that needed to be 
considered. Figure 7 indicates where false recognitions 
occurred on streamed data for a subject when perform-
ing different activities. Data indicated that false recog-
nitions usually occur in the transition phase between 
classes of activities like “Sitting” and “Sit to Stand” or 
“Standing” and “M. Standing”. These kinds of wrong 
recognitions could be due to imprecise labelling when 
defining the “true activity” in transition between two 
activities or between similar activities like “Sitting” and 
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“M. Sitting”, which are hard to differentiate in continu-
ous streaming and recognition.

Since LOPOCV ensures that different subjects are used 
for training and testing, results achieved indicate what can 
be expected for new users. Figure  6 showed the perfor-
mance of the neural network model on 3 participants (a 
control and two individuals with iSCI) using LOPOCV. The 
classifier has still low performance on patient data (patient 
#2). In particular, the recognition model performed poorly 
in recognizing M.standing, Stand to Sit, and M.sitting. 
The first reason is that severely affected iSCI participants 
perform tasks slowly and 100 ms window size is small for 
detecting slow value changes. Second, the iSCI participant 
#2 was not able to perform tasks without walking aids such 
as standing upright. Therefore, the participant performed 
additional movements like grabbing/putting the crutches 
from/on the floor every time he/she was performing stand-
ing up/sitting down. Since these kinds of movements were 
not included in the model, which was trained mainly with 
control participants, recognising performances correctly 
that have not be seen before were difficult. Looking deeper 
into the differences in the feature vector between control 
and iSCI participants showed differences in the mean of the 
gyroscope signal of the sensor placed on the sternum and 
mean of left/right orientation of chest and thighs due to 
the mentioned additional movements. However, our goal 
is to obtain a robust algorithm on the long term that can 
capture movement performance ranging from impaired to 
healthy and allows also taking compensatory movements 
into account. Therefore, given the described limitations, 
the obtained results indicate the strong potential for the 
approach to work also in iSCI patients, when the algorithm 
can be trained with more additional patient data. Consid-
ering the slow pace of individuals with iSCI compared to 
controls while performing different tasks, the time window 
could be adjusted to a bigger time window in future. Fur-
thermore, to take precautions, before selecting and apply-
ing a task-dependent support, a certain amount of time 
should be considered to recognize the same class several 
times in a row to avoid wrong recognition due to transi-
tions and similarity between motions. The time can be esti-
mated based on the needed time for the recognition model 
to reach a certain level of confidence.

Conclusion and future work
In this work, a recognition model was designed for iden-
tifying the onset of most common activities in gait reha-
bilitation in real-time. The model was designed offline, 
based on data from three commercial inertial measure-
ment units acquired from 18 control participants and 2 
individuals with spinal cord injury. Inertial measurement 
units were attached to the sternum, and middle of outer 
thighs of the participants. Subsequently, the participants 

were asked to perform certain activities like sitting down, 
standing up, walking, and turning continuously with 
their preferred pace. Data from the inertial measurement 
units were streamed out via Bluetooth protocol into the 
designed wireless interface boards and then transferred 
to an embedded PC, which performed pre-processing 
and activity recognition in real time. Logged data was 
used to compare the performance of five different classifi-
cation methods. The neural network model with 25 neu-
rons was selected as a recognition model due to robust 
performance during Leave-One-Participant-Out Cross-
Validation. Subsequently, the selected model has been 
trained with 70% of the complete data set (n = 20) and 
tested, which yielded on all over performance of 92.01% 
in F1-score. Thereafter, the final model was used for 
real-time activity recognition. Lastly, the performance of 
real-time classification was compared with offline classi-
fication on the data of one additional control participant. 
There was hardly any difference in performance between 
real-time classification ( 88.6% ) and offline classification 
( 88.68% ) in F1-score. In this paper, our real-time classi-
fication and movement onset recognition was success-
fully tested and feasibility for a real-time implementation 
was shown. Accordingly, in future, we will implement our 
algorithm directly on a robot and test how the direct hap-
tic interaction between robot and human will influence 
the human’s behaviour in a closed-loop setting.
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