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Abstract

Neural stem/progenitor cells (NSPCs) are the stem cell of the adult central nervous system (CNS). These cells are able to
differentiate into the major cell types found in the CNS (neurons, oligodendrocytes, astrocytes), thus NSPCs are the
mechanism by which the adult CNS could potentially regenerate after injury or disorder. Microenviromental factors are
critical for guiding NSPC differentiation and are thus important for neural tissue engineering. In this study, D-mannitol
crystals were mixed with photocrosslinkable methacrylamide chitosan (MAC) as a porogen to enhance pore size during
hydrogel formation. D-mannitol was admixed to MAC at 5, 10 and 20 wt% D-mannitol per total initial hydrogel weight. D-
mannitol crystals were observed to dissolve and leave the scaffold within 1 hr. Quantification of resulting average pore sizes
showed that D-mannitol addition resulted in larger average pore size (5 wt%, 40606160 mm2, 10 wt%, 633061160 mm2,
20 wt%, 760061550 mm2) compared with controls (0 wt%, 31506220 mm2). Oxygen diffusion studies demonstrated that
larger average pore area resulted in enhanced oxygen diffusion through scaffolds. Finally, the differentiation responses of
NSPCs to phenotypic differentiation conditions were studied for neurons, astrocytes and oligodendrocytes in hydrogels of
varied porosity over 14 d. Quantification of total cell numbers at day 7 and 14, showed that cell numbers decreased with
increased porosity and over the length of the culture. At day 14 immunohistochemistry quantification for primary cell types
demonstrated significant differentiation to the desired cells types, and that total percentages of each cell type was greatest
when scaffolds were more porous. These results suggest that larger pore sizes in MAC hydrogels effectively promote NSPC
3D differentiation.
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Introduction

Tissue engineering offers new medical therapies to regenerate

diseased or damaged tissues and aims to create three-dimensional

(3D) scaffolds to accommodate cells and guide their growth both

in vitro and in vivo [1,2,3]. Tissue engineered scaffolds should have

appropriate chemical and physical properties to promote adhe-

sion, proliferation, and differentiation that are specific for each cell

and tissue type. These scaffolds must be biocompatible for

implantation and including interconnecting pores of appropriate

scale has been shown to favor tissue integration and vasculariza-

tion [4,5]. In scaffold-based tissue engineering, a scaffold must be

permeable to supply adequate oxygen and nutrients to cells

throughout the construct, as well as to remove waste products [6].

Within a scaffold, mass transport of oxygen, nutrients and waste is

mainly achieved by diffusion, so it is critical to create three

dimensional porous scaffolds to facilitate this process [7,8,9]. Often

in larger tissue engineered constructs, diffusion limitations lead to

low cellularity in central regions of the scaffolds [8]. Pore structure

also significantly affects cell attachment and migration in vitro; and

scaffold mean pore size is known to influence cell morphology and

phenotypic expression [10,11,12,13,14]. Interconnected macro-

pores of at least 100 mm are important for in vivo integration,

especially for vascularization [15,16,17]. For cell penetration

in vitro, the optimal interconnection size is over 40 mm. Impor-

tantly, nutrient permeability in scaffolds increases [16] with

increasing pore size [18]. Porous three-dimensional scaffolds are

typically fabricated from synthetic and naturally biodegradable

polymers [19]. Techniques to create porous three-dimensional

scaffolds include gas foaming [20], particulate leaching [21], phase

separation [22] and electrospinning [23]. The most common

method for creating macroporous scaffolds are based on the

addition of templates called porogens or pore forming agents to

stiff polymeric scaffolds (e.g. polycaprolactone, polylactic acid,

polyglycolic acid, etc.). Generally the porogen is either an organic

material that can be combusted away by heating [24,25] or a

soluble additive that leaves pores by dissolution [26,27]. The

dissolution technique can be performed in vivo or in vitro in the

presence of cells if the porogen is biocompatible and does not

appreciably alter the cell microenvironment (e.g., local pH,

osmolarity, inflammatory particles) and is eliminated from the

scaffold in a timely fashion [28,29,30,31]. D-mannitol macro-

particles are especially interesting for their biocompatibility, quick

dissolution and are non-toxic [29,31,32], and have been used in

bone cement and bone scaffolds in vivo [28,30,31].

We are specifically interested in creating tissue engineered

scaffolds uniquely tailored for the central nervous system (CNS)

and porosity is equally important for CNS constructs. Currently
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available clinical treatments for diseased or damaged CNS tissue

are limited to prevention of further damage and minor pharma-

cological relief [33]. A serious need exists for treatments that can

restore function in the CNS. For example, spinal cord injury (SCI)

and the intrinsic inability of this tissue to regenerate highlight the

need for regenerative therapies for CNS tissues. A key component

of any tissue engineering strategy is cell source; fortunately,

populations of stem cells have been identified in the adult CNS

that possess the ability to self-renew, generate identical progeny

and differentiate into the primary cell types found in the CNS:

neurons, oligodendrocytes and astrocytes [34,35,36]. These neural

stem/progenitor cells (NSPCs) have been isolated from two

neurogenic regions of the adult brain, the hippocampus and

subventricular zone (SVZ), as well as the spinal cord. Adult SVZ-

derived NSPCs have also been isolated from living human patients

and demonstrated self-renewal and multipotentiality [37]. With

our current technologies this is a difficult and highly invasive

procedure, thus, autologous NSPCs are currently an unlikely tissue

engineering cell source, however, homologous NSPCs isolated

from organ donors are a viable alternative. Additionally, the study

of NSPC behavior is important for basic insight while providing

knowledge and methods to specify neuronal and glial commitment

of adult, embryonic and reprogramed stem cells. NSPCs offer an

attractive means of regenerating lost or damaged CNS tissue after

disease or injury and we and others have shown that hydrogels are

most appropriate as inductive scaffolds since NSPCs, neurons and

mature glia prefer very soft substrates (elastic modulus (E) ,1 kPa)

[38,39].

The main objectives of this study were to first determine if D-

mannitol could be used to enhance the porosity of soft chitosan

based photopolymerizable hydrogels, and secondly to determine if

NSPCs differentiation is affected by scaffold porosity. To

encourage optimal cell-scaffold interactions, a scaffold with a

proper microstructure is required. Pore size and porosity are

considered as critical factors for cell growth in tissue engineering.

Previous studies show that pore size affects many cell activities

including adhesion, proliferation, and migration [10,40,41]. In this

study, D-mannitol crystals were used as a cell compatible porogen

to create photopolymerizable 3D hydrogel scaffolds with improved

porosity for neural tissue engineering scaffolds. This approach is

different from how porosity of hydrogels is typically modulated

[20,21,22,23]. After characterizing D-mannitol’s effects on photo-

polymerizable chitosan hydrogel porosity and its effects on oxygen

diffusion, the system was used to encapsulate and guide the

differentiation of NSPCs into neurons, oligodendrocytes and

astrocytes using differentiation mediums specific to each pheno-

type. We hypothesize that D-mannitol can be used to create highly

porous chitosan based hydrogel scaffolds that will promote cell

differentiation under phenotype specific media conditions due to

enhanced nutrient diffusion.

Materials and Methods

Ethics Statement
The protocols for animal use for this experimentation are

currently approved by the Institutional Animal Care and Use

Committee (IACUC) at the University of Akron as of January 14,

2010 (IACUC approved protocol number 10-1B). Wistar rats

(species Rattus norvegicus) that were 6–8 weeks of age were

purchased from Charles River Labs (Wilmington, MA) and

sacrificed one week after arrival using carbon dioxide, which

constitutes a rapid and approved method of euthanasia. Veteri-

nary care was not required for these studies.

Porous Methacrylamide Chitosan (MAC) Scaffold
Preparation

Methacrylamide chitosan (MAC) was synthesized as described

previously [42]. Briefly, chitosan (Protosan UP B 80/20,

NovaMatrix, Drammen, Norway) was solubilized (3 wt% w/v in

acetic acid) overnight then mixed with methacrylic anhydride for

4 hr to synthesize MAC. The resulting solution was dialyzed

(MWCO: 12–14,000) against deionized (DI) water for 3 d at room

temperature (RT), DI water was changed three times per day.

Finally, the solution was freeze dried and stored in the freezer

(220uC) until use. For hydrogel formation, MAC was first

dissolved in DI water at 3 wt% and then sterilized by autoclave.

We and others have utilized autoclaved chitosan and MAC in

previous studies and without noticeable change in properties

[42,43,44]. Laminin protein (Life Technologies, Grand Island,

NY, USA) was covalently bound to MAC at 50 mg/mL by

reacting with 5 mM 1-ethyl-3-(3-dimethylaminopropyl) carbo-

diimide (EDC; Chem-Impex International, Wood Dale, IL, USA)

and 5 mM N-hydroxysulfosuccinimide (sulfo-NHS, Chem-Impex)

for 1 hr which covalently linked carboxylic acid containing amino

acid residues in laminin to the primary amines of MAC polymers.

Photoinitiator solution, 1-hydroxycyclohexyl phenyl ketone (Sig-

ma-Aldrich, St. Louis, MO, USA) 300 mg/mL, in 1-vinyl-2-

pyrrolidinone (Sigma-Aldrich,) was added in MAC solution at

3 mL/g (initiator/MAC solution). The photoinitiator was sterilized

by 0.2 mm filtration before use D-mannitol (Sigma-Aldrich) was

used to modify porosity, this required recrystallization by

dissolving in 50% ethanol, crystallizing and sieving to 80–

120 mm. MAC macroporous scaffolds (Fig. 1) were created by

mixing the MAC scaffolding solution with immobilized laminin

with a desired amount of cell suspension (see below), 10X PBS

(autoclaved), photoinitiator and varied amounts of D-mannitol

crystals (0, 5, 10, 20 wt% mass D-mannitol/total mass of solution)

to achieve 2 wt % MAC finally buffered in 1X PBS. This solution

was thoroughly mixed and degassed (1 min, 1500 RPM; Speed-

Mixer DAC 150 FVZ, Hauschild Engineering, Hamm, Ger-

many). 100 mL of the resulting mixture was transferred to a 96-

well plate, which provides a cylindrical mold for scaffold

formation. Polymerization was achieved by exposure to UV

(365 nm) light for 3 min. Appropriate media was added (see

section 2.4) and D-mannitol dissolved within 1 hr (Fig. 1B). The

scaffolds with D-mannitol changed from opaque to translucent as

D-mannitol dissolved. Pore sizes were quantified by cryosectioning

unfixed scaffolds at 20 mm on to glass slides (Microm HM 560,

Richard Allen Scientific, Kalamazoo, MI, USA), imaging with a

microscope (Olympus IX81, Tokyo, Japan) and analyzing

(MetaMorph, Sunnyvale, CA, USA). For each slide, 7 random

positions from 1 slide were selected to measure pore size for each

group (0, 5, 10, 20 wt% D-mannitol) and final values were

averaged.

Oxygen Diffusion Through Scaffolds
A sealed oxygen diffusion device was constructed out of glass to

measure oxygen diffusion through MAC scaffolds (Fig. 2). The top

chamber of the device was filled with DI water partially saturated

with pure oxygen (purged for 45 min), and the bottom chamber

was filled with air-equilibrated DI water. MAC scaffolds with or

without D-mannitol were formed in 6 well plates as described

above, and then placed in between these two regions of the

diffusion device. A Teflon mold was used to prevent radial

diffusion, so that water only contacted the top and bottom surfaces

of the scaffold, thus oxygen diffusion was limited to the axial

direction (Fig. 2). Oxygen concentration was measured by a

dissolved oxygen (DO) sensor (PreSens, Regensburg, Germany)
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every 30 min for 8 hrs in the top chamber to measure oxygen

concentration depletion as O2 diffused through the scaffold into

the bottom chamber. Three scaffolds were tested for each

treatment group.

MAC Hydrogel Stiffness and Swelling Experiments
The mechanical properties of each MAC hydrogel group (0, 5,

10, 20 wt% D-mannitol) were determined with a rheometer

(Rheometric Scientific RFS-III, Piscataway, NJ, USA), which

computed the complex modulus (G*). The elastic modulus (E) was

determined from G* by assuming a poison’s ratio (n) of 0.5 with

the expression E = 2G*(1+ n) to allow comparison to other

published work. In order to estimate the swelling ratio, 100 mL

MAC hydrogels (0, 5, 10, 20 wt% D-mannitol) were made and

lyophilized. Next their dry mass (MD) was measured, followed by

swelling of the dry hydrogel scaffolds in 1X PBS at 37uC. Every

two hours hydrogels were carefully centrifuged on 50 mm cell

strainers (1500 RPM) to remove any PBS clinging to the edges of

the scaffolds. The mass after swelling (Ms) was determined when

mass no longer changed and the swelling ratio (QM) was calculated

by following equation [45,46]:

QM~
MS

MD

:

NSPC Harvest and Cell Culture
NSPCs were harvested from the lateral ventricles of the

forebrain of adult rats (Female Wistar, 6–7 weeks old), and the

tissue was cut into small pieces and dissociated using a Papain

Dissociation System Kit (Worthington Biochemical Corporation,

Lakewood, NJ, USA) [38]. NSPCs were expanded as neurospheres

in growth medium consisting of neurobasal media (NBM), 2 mM

L-glutamine, 100 mg/mL penicillin-streptomycin, B27 (all Life

Technologies), 20 ng/mL epidermal growth factor (EGF-recom-

binant human, Life Technologies), 20 ng/mL basic fibroblast

growth factor (bFGF-recombinant human, Life Technologies) and

2 mg/mL heparin (Sigma-Aldrich) in a 37uC, 5% CO2 incubator

and passaged/expanded weekly. To differentiate NSPCs, the cells

can be dissociated, seeded into a suitable environment and

cultured in differentiation medium (NBM, L-glutamine, penicillin-

streptomycin and B27) containing a growth factor known to favor

specific differentiation into either neurons, oligodendrocytes or

astrocytes. For our 3D differentiation studies three growth factor

treatments were used: 150 ng/mL IFN-c (for neurons), 25 ng/mL

PDGF-AA (for oligodendrocytes) and 20 ng/mL BMP-2 (for

astrocytes). The concentrations of INF-c and PDGF-AA represent

saturation concentrations of the growth factors as have been

confirmed in previous studies by us and others studying NSPC

differentiation to both neurons and oligodendrocytes

[47,48,49,50]. In initial experimentation we discovered that

20 ng/mL of BMP-2 was appropriate after simple differentiation

experiments on laminin coated glass coverslips. NSPCs were

dissociated and cultured in differentiation medium containing

increasing concentrations of BMP-2 (0, 5 ng/mL, 10 ng/mL,

20 ng/mL, 40 ng/mL and 80 ng/mL) for 7 d. Samples were fixed

then stained for glial fibrillary acidic protein (GFAP), imaged and

quantified for the percentage of cells staining positive for GFAP

(details provided below in section 2.6). 100% of NSPCs stained

positive for GFAP at a BMP-2 concentration of 10 ng/mL to

80 ng/mL (Supplementary Table S1), thus we were confident that

Figure 1. (A) Methodology for creating 3D porous MAC scaffolds and procedure for NSPC culture and differentiation in 3D environments. (B) Images
of a 20% D-mannitol scaffold captured immediately after crosslinking and after PBS dissolution for 1 hr at 37uC.
doi:10.1371/journal.pone.0048824.g001

Figure 2. Oxygen diffusion in macroporous MAC scaffolds.
Oxygen diffusion device allowing us to measure depletion of oxygen in
the top chamber as diffusion occurs through the gel into the oxygen
free bottom chamber.
doi:10.1371/journal.pone.0048824.g002
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20 ng/mL would be in the saturation range for our 3D

experiments. For 3D differentiation experimentation, passage 5

or 6 neurospheres were dissociated and 26106 cells/g scaffold

mixture were added to MAC/D-mannitol scaffolds, then cross-

linked into hydrogels as described in section 2.1. Scaffolds were

first cultured in growth medium for 1 d (one full media change was

performed 1 hr after scaffolds were formed) and then cultured in

specific differentiation medium for 7 d (Fig. 1), a half medium

change was performed at day 3. At day 7, three scaffolds for each

group were fixed with methanol (220uC) for 10 min in the freezer

(220uC), then washed with PBS. Three scaffolds were also selected

for total DNA analysis. At day 14, three scaffolds per group were

methanol fixed for immunohistochemistry (IHC) and the remain-

ing scaffolds were used for total DNA analysis. Control groups

were included that were first cultured in growth medium (with

EGF/FGF) for 1 d and three scaffolds were selected (15 scaffolds

total) for total DNA analysis. After day 1, half of the remaining

scaffolds (6 scaffolds) were transferred to differentiation media

without growth factors (Diff/No GF) and the other scaffolds were

maintained in growth media for 14 days. At day 7 and day 14 total

DNA analysis was performed for all groups (three scaffolds per

group) and at day 14 IHC and quantification was performed for

scaffolds both in growth media and Diff/No GF.

Immunohistochemistry
For IHC, fixed scaffolds were cryosectioned at 20 mm and

mounted on slides. The following primary antibodies and dilutions

were used for IHC staining: monoclonal mouse anti-b-III tubulin

(1:1000, Covance, Princeton, NJ, USA) identified neurons;

monoclonal anti-RIP (Developmental Studies Hybridoma Bank,

Iowa City, IA, USA) identified oligodendrocytes; monoclonal

mouse anti-GFAP (Cell Signaling, Boston, MA, USA) identified

astrocytes; and monoclonal mouse anti-nestin (BD Biosciences,

San Jose, CA, USA) were used for staining NSPCs. For staining

first 0.1% Triton X-100 (Sigma-Aldrich) in PBS was used for

10 min to permeabilize cell membranes. Then samples were

washed 3 times with PBS and blocked with 10% FBS in PBS at

RT for 45 min. Samples were washed two times with PBS and

incubated with the appropriate primary antibody overnight. Next

samples were washed 3 times, each wash $ 10 min, and incubated

with secondary goat anti-mouse IgG Alexa-Fluor 546 (1:400, Life

Technologies) for 1 hr, then washed with PBS 3 more times (each

wash $ 15 min). Finally, cell nuclei were stained with10 mM

Hoechst 33342 for 7 min, then samples were washed and mounted

with Prolong Gold anti-fade reagent (both Life Technologies).

Controls where the primary antibody was omitted were performed

throughout to determine if any non-specific staining existed.

Samples were imaged using a fluorescent microscope (Olympus

IX81). For each scaffold (three per group), images of six different

non-sequential sections were obtained at 20X magnification. The

total cell number was determined by counting intact individual

Hoechst 33342 stained cell nuclei in comparison to the number of

cells staining positive for the markers of interest. Whole scaffolds

were also stained with a modified protocol (double incubation and

washing times) and imaged using a multiphoton excitation

microscope (Olympus FV1000MPE).

Quantification of Total Cell Number
To digest the scaffolds and release DNA from cells, a lysis

solution in 1X tris(hydroxymethyl)aminomethane-ethylenedi-

aminetetraacetic acid (Tris-EDTA) buffer (10 mM Tris-HCl,

1 mM EDTA, pH = 7.5, 0.2% Triton X-100) and lysozyme (all

Sigma-Aldrich) was added to each sample then incubated at 37uC
overnight. Cells were then lysed by freeze-thaw cycles for

PicoGreen assay preparation. Cell quantification was determined

with the Quant-iT PicoGreen dsDNA Kit according to the

manufacturer’s protocol (Life Technologies). A standard curve was

generated by serial diluting the supplied l-DNA standard in TE

buffer (1 mg/mL, 100 ng/mL, 10 ng/mL, 1 ng/mL and blank).

Sample and standard fluorescence values were determined using a

plate reader (Infinite M200, TECAN, Grödig, Austria; 480 nm

excitation and 520 nm emission). DNA concentration was

determined directly from the fluorescence values and converted

to total cell number using the experimentally determined

conversion of 2.2 pg DNA/cell.

Statistics
All statistical analyses were performed using SAS 9.1 (SAS

Institute, Cary NC, USA). ANOVA with Tukey’s post hoc analysis

was performed to detect significant differences between groups. An

a level of 0.05 was used to determine significance between groups.

Data are reported as mean 6 standard deviation (SD).

Results

Porous MAC Hydrogel Properties
D-mannitol crystals are easily added to MAC by mixing and

crosslinked to form hydrogels. The D-mannitol crystals initially did

not noticeably begin to dissolve and turned the gels opaque in

appearance (Fig. 1B). D-mannitol quickly dissolved after cross-

linked scaffolds were placed in media as observed by the loss of

scaffold opacity over time. Crystals fully dissolved one hr after

incubation at 37uC. Figure 3A shows microscopy images of pore

structures within the hydrogel scaffolds that results from the four

different D-mannitol admixing ratios (0, 5, 10, 20 wt%). It is

important to point out that cohesive hydrogel scaffolds were

difficult to form when mixing more than 20 wt% mannitol by total

weight. Hydrogel pore sizes increased with the addition of higher

percentages of D-mannitol (Fig. 3B). 0 wt% D-mannitol control

scaffolds exhibited an average pore size that was significantly

smaller (31506220 mm2) than the other three groups (p,0.001).

Average pore sizes significantly increased with D-mannitol

admixing percentage and were 40606160 mm2 (p,0.001) for

5 wt%, 633061160 mm2 (different from 0 and 5%, p,0.001) for

10 wt% and 760061550 mm2 for 20 wt% D-mannitol scaffolds

(different from 0 and 5%, p,0.001). Scaffold samples were freeze

dried for two days and SEM images were obtained for each group

(Fig. 3C) and confirmed that D-mannitol quickly creates larger

pores within MAC hydrogel scaffolds that penetrate into the

scaffolds as compared to controls with no D-mannitol added.

Oxygen Diffusion through Porous Scaffolds Results
Simple unidirectional oxygen diffusion measurements recorded

over 8 hrs revealed that scaffolds of increasing porosity (0, 5, 10,

20 wt% D-mannitol) all achieved the same equilibrium oxygen

partial pressures (Fig. 4) demonstrating, as expected, that the same

amount of oxygen diffused from the top to the bottom chamber

through each hydrogel group. What differed was the rate of

diffusion in each hydrogel group, with the more porous hydrogels

allowing oxygen diffusion to occur faster. Oxygen depletion in the

top chamber did not begin until 2.5 hrs in 0 wt% MAC hydrogels,

however, more porous 5, 10, and 20 wt% D-mannitol scaffolds

started to diffuse oxygen into the bottom chamber within

approximately half an hour. A trend was seen toward faster

diffusion in more porous scaffolds (more D-mannitol admixed,

Fig. 4), but we were limited by our set-up and choice to simulate

the static culture environment. Stirring of one or both chambers

would have provided a stronger driving force for oxygen diffusion

Neural Stem Cells in Novel Macroporous Hydrogels
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in all groups while potentially providing more separation in the

oxygen transport responses of each hydrogel type.

MAC Scaffold Stiffness and Swelling Results
Since our goal was to use these scaffolds to specify NSPC

differentiation, we had to be cognizant of the elastic stiffness of the

gels since this is known to significantly affect differentiation

[38,39]. We have shown previously that optimal differentiation

into neurons and mature glia is observed when substrate stiffness

(E) is on the order of native brain tissue or 0.5–1 kPa [38,51,52].

Results from rheology and swelling are presented in Table 1.

Elastic stiffness for each group were all in the optimal range for

NSPC differentiation, between 0.5 and 0.7 kPa, and were not

significantly different from one another by ANOVA (p.0.05).

Swelling ratio significantly increased with D-mannitol admixing

percentage (MAC compared to MAC with 10 or 20% D-mannitol;

p,0.05), indicating that scaffolds with higher percentages of D-

mannitol at crosslinking resulted is not only more porous scaffolds

but hydrogels with significantly less crosslinks [53].

Immunohistochemistry Results
NSPC differentiation was observed and assayed by IHC in 3D

MAC scaffolds (0, 5, 10, 20 wt% D-mannitol) with three different

growth factors (150 ng/mL IFN-c, 25 ng/mL PDGF-AA, 20 ng/

mL BMP-2) after 14 d (Figs. 5 and 6). Neuronal differentiation by

INF-c treatment (Fig. 5A) showed that the control group had the

lowest percentage of neurons (b-III tubulin positive) among the

four groups, and D-mannitol porous gels were all similar

(61.763.6%, 60.763.6%, 61.465.0% for 5, 10 and 15 wt% D-

mannitol respectively; p.0.05) but significantly higher than the

control (50.862.2%; p,0.001). Interestingly, control hydrogels

contained a significantly higher percentage of GFAP positive cells

(2764%) than the D-mannitol groups (p,0.001). There was no

significant difference between the four porosities for the percent-

age of RIP positive cells with IFN-c treatment (p.0.05).

Oligodendrocyte differentiation stimulation by PDGF-AA

(Fig. 5B) showed that 5, 10 and 20 wt% D-mannitol scaffolds

resulted in increasing percentages of RIP positive cells with

59.363.5%, 63.163.2% and 61.864.1% respectively; while the

Figure 3. Pore size analysis of MAC scaffolds. (A) Microscope images of acellular MAC scaffolds with varying mass percentages of D-mannitol.
(B) Pore sizes of MAC scaffolds with varied D-mannitol percentages. Letters denote significance by single factor ANOVA with Tukey’s post hoc analysis
(p,0.001). (C) SEM images of MAC scaffolds with varying mass percentages of D-mannitol. Freeze-dried scaffolds collapse during the process, so the
pore sizes are not directly comparable to those shown in A and B. Mean 6 SD with n = 3.
doi:10.1371/journal.pone.0048824.g003

Figure 4. Oxygen diffusion data through 0, 5, 10, 20 wt% MAC
scaffolds over 8 hrs. Mean 6 SD with n = 3.
doi:10.1371/journal.pone.0048824.g004

Neural Stem Cells in Novel Macroporous Hydrogels
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control group resulted in 51.865.3% RIP positive cells, which was

significantly smaller than all D-mannitol containing groups

(p,0.001). When treated with PDGF-AA the total percentage of

neurons showed no significant difference between the four groups

(p.0.05), while the percentage of GFAP positive cells was highest

in the control group (2864%) and decreased as porosity increased

(p,0.001). Astrocyte differentiation stimulation by BMP-2 results

(Fig. 5C) showed that control group had the lowest GFAP positive

cell percentage (51.861.8%) compared with the other three

groups (58.962.7%, 62.564.5%, 61.264.1% for 5, 10 and

15 wt% D-mannitol respectively; p,0.001) but had a significantly

larger RIP positive percentage than scaffolds with D-mannitol

(p,0.001). There were no b-III positive cells in any BMP-2

treated hydrogels. No nestin positive staining was observed for all

growth factor treatments and porosities, suggesting complete

differentiation of NSPCs by 14 d of culture. Representative

multiphoton confocal images (Fig. 6) taken at the center of

10 wt % D-mannitol scaffolds show that the majority of cells stain

positive for the desired phenotypic markers.

Total Cell Numbers
The results of total cell quantification following differentiation to

neurons, oligodendrocytes and astrocytes in increasingly porous

scaffolds are shown in Figure 7. Interestingly, total cell numbers

significantly decreased with increasing porosity (p,0.0001). Total

cell number also significantly decreased at day 14 compared to day

7 for all groups (p,0.0001).

Discussion

MAC hydrogel scaffolds are derived from chitosan, which is

distributed widely in insects, invertebrates, fungi and yeasts.

Chitosan is FDA approved for wound healing, biocompatible and

antibacterial [54]. We have shown previously that MAC scaffolds

can serve as a highly tunable growth matrix for NSPCs and can

offer an appropriate environment for cell migration, proliferation

and differentiation [2,38].

In this study we present a new technique to enhance the

porosity of photocrosslinkable MAC hydrogel scaffolds using a

biocompatible porogen D-mannitol during live cell encapsulation.

This approach could also be more widely used in photocrosslinked

hydrogel systems based on polyethylene glycol, polyethylene oxide

or polyacrylamide. Our pore enhancing technique allows us to mix

all constituents together (biomaterial, cells, porogen, etc.), mold

and crosslink into place with UV light (Fig. 1A). D-mannitol is

biocompatible, such that when it is admixed with cells it does not

affect normal cell responses. It is important to point out that

mannitol is mildly acidic in aqueous conditions and is used to

gently increase osmolarity clinically [55]. As we demonstrate, D-

mannitol should be fully dissolved and removed from tissue

engineered scaffolds before utilization in vivo to avoid these

potential interactions. One of the most widely accepted techniques

to create macropores in scaffolds is solvent casting or salt leaching

[21]. Despite its popularity, this technique typically requires

sodium chloride as the porogen, thus it cannot be used in the

presence of live cells. Dissolution of sodium chloride severely

disrupts the osmolality of the culture medium leading to cell

rupture and death. Additionally, the dissolution process typically

takes at least 24 hrs, thus increasing exposure and likelihood of cell

death. A common technique for improving porosity of chitosan

based scaffolds is to use snap freezing, however, this is not cell-

compatible and does not allow incorporation of cells during

construct formation [56,57]. The main goal of this study was to

investigate whether MAC scaffolds with larger average pore sizes

enhanced the microenvironment for NSPC support and differen-

tiation. Toward this goal, we selected D-mannitol as a biocom-

patible porogen and showed it could produce large pores (80–

120 mm) within hydrogel scaffolds, in a nontoxic process that

lasted less than 1 hr. The addition of higher weight percentages of

D-mannitol resulted in enhanced porosity (Fig. 3). We believe that

the pore enhancement mechanism results from D-mannitol both

interrupting the crosslinking process and inhabiting interior spaces

in MAC where finer pore structures would normally form (Fig. 3).

The cryosection and SEM images further confirm that when D-

mannitol dissolves away, it leaves larger and more interconnected

pores inside of the hydrogel. The results from our swelling

experiments (Table 1) confirm that the addition of high

percentages of D-mannitol results in hydrogels that can swell

more because of lower crosslinking densities [53], however,

mechanical properties did not decrease due to the inclusion of

D-mannitol. Differences could be masked by measurement errors.

Previous studies have reported that cell metabolic state

correlates with average pore size in scaffolds [18]. Porcine

chondrocytes cultured within chitosan scaffolds improved prolif-

eration and metabolic activity with increased interconnected pore

size [58,59,60]. Porous photocrosslinked PEG hydrogel scaffolds

have been created for the growth of primary embryonic mouse

brain neurons by the addition of fibrinogen/thrombin before

photocrosslinking, thus creating an interpenetrating network [61].

Pores with average diameters of 0.5–2 mm were achieved by

collagenase digestion that allowed some process extension. Due to

their small size, these micropores did not allow significant cell

migration over the base hydrogel material. The inclusion of fibrin/

thrombin followed by enzyme treatment for the creation of pores

may be suitable for in vitro studies; however, the in vivo utility is

unclear. For application to CNS tissue engineering, a macropor-

ous scaffold (pores .40 mm) is required and pore formation must

be able to proceed quickly and safely after cell inclusion and

scaffold formation, which can be achieved with our D-mannitol-

MAC approach.

In this study we demonstrate that increased porosity leads to

enhanced oxygen diffusion through our constructs. All scaffolds

Table 1. Rheology and swelling results

D-Mannitol wt% in MAC E (Pa) Elastic Modulus G* (Pa) Complex modulus Swelling Ratio (QM)

0% 567.99640.36 189640.36 9.3860.31 (B)

5% 628.27652.52 209652.52 12.3460.92 (AB)

10% 659.36667.98 219678.6 12.9861.30 (A)

20% 562.816108.44 187.66108.44 13.7960.54 (A)

Letters denote significance by single factor ANOVA with Tukey’s post hoc analysis (p,0.01).
doi:10.1371/journal.pone.0048824.t001
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made with D-mannitol began to noticeably diffuse oxygen 2 hrs

before MAC control scaffolds in a static environment (Fig. 4). This

demonstrates that D-mannitol admixing and dissolution creates

scaffolds that allow for faster and more efficient oxygen diffusion

generating a favorable environment for cell growth and differen-

tiation. The ability to provide enhanced diffusion should also be

important for supporting NSPC activity in vivo. Increased porosity

increases oxygen diffusion as well as waste and nutrient mass

transport. Thus, scaffolds integrating larger pores better maintain

an appropriate microenvironment for cells in scaffolds. Tissue

engineering requires the formation of large uniformly cell-seeded

scaffolds; however, current approaches have difficulty achieving

both. The most challenging aspect is supplying all cells with

sufficient levels of oxygen and nutrients to support their survival

and growth, this is especially true in the center of large scaffolds

[9,62]. As such, hypoxia has been considered as a key limiting

factor to scale up 3D in vitro scaffolds [63], and more interior

scaffold regions have been observed to support lower cell densities,

which directly correlates to lower oxygen tensions [8]. Other work

has revealed that factors such as nutrient transport and waste

removal are equally important for cell survival and differentiation

[64]; however, in this study we focused on studying potential

oxygen availability.

Results from NSPC differentiation experiments (Figs. 6–7)

clearly demonstrate the influence of enhanced porosity during

stem cell differentiation. Larger pores in MAC scaffolds promote

NSPCs differentiation into neurons, oligodendrocytes, and astro-

cytes compared to control scaffolds after 14 d (Fig. 6). However,

better differentiation in more porous scaffolds corresponded to

lower total cell numbers (Fig. 7). These results taken altogether

with the results from oxygen diffusion (Fig. 4), suggest to us that

the 3D culture environment combined with larger pore structures

effectively limits NSPCs proliferation while encouraging cells to

differentiate into neurons, astrocytes or oligodendrocytes, depend-

ing on the soluble growth factor environment. Most somatic

differentiated cells display very limited proliferation potential, and

the cell phenotypes we are interested in, such as neurons, loose the

capacity for cell division and differentiation once terminal

differentiation occurs [65,66]. Interestingly, increasing the per-

centage of admixed D-mannitol did not significantly enhance

NSPC differentiation, and similar percentages of desired lineages

were seen in scaffolds treated with differentiation factors. This is

similar to the results seen from our oxygen diffusion measurements

(Fig. 2) suggesting that small molecule nutrient/waste diffusion

might already be maximized in the range of 5–10 wt% D-

mannitol. Additional increases in D-mannitol, and thus pore sizes,

does not appreciably enhance diffusion. In our experiments we

observed significantly decreasing cellularity only when NSPCs

were given differentiation factors (Fig. 5). NSPCs cultured in

growth media (EGF and FGF) or control media (no growth factors)

maintained cellularity (Fig. 7) and expression of nestin (Fig. 6D).

Most likely the observed differences in total cell number when

exposed to different differentiation factors are directly related to

the activated signaling pathways. Interestingly, PDGF-AA and

IFN-cinduced differentiation have both been shown to involve

ERK1/2 activation [50,67]; however, BMP-2 activation involves

Figure 5. Fluorescence staining results for NSPC differentiation. Quantification of IHC at day 14 shows that more porous scaffolds (up to
20 wt% D-mannitol initially) in (A) neuron specific media (IFN-c) favor neurons. (B) Oligodendrocyte specific media (PDGF-AA) favor oligodendrocytes
and (C) in astrocyte specific media (BMP-2) favor astrocytes. (D) Control media with no growth factors (-GF) as well as with proliferation growth factors
(+EGF+FGF) maintain nestin expression (note: error bars are included but too small to see). Letters denote significance by single factor ANOVA
(p,0.001). Mean 6 SD with n = 3.
doi:10.1371/journal.pone.0048824.g005
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Figure 6. Multiphoton confocal images of fluorescence staining for neurons, oligodendrocytes and astrocytes in 10 wt% scaffolds
obtained at the center region of whole scaffolds. Corresponding zoomed regions (white rectangle) for each image are provided below. Nuclei
appear blue by Hoechst 33342, cell staining for each differentiation marker appear red by Alexa-Fluor 546.
doi:10.1371/journal.pone.0048824.g006

Figure 7. Total cell number at day 7 and 14 for porous scaffolds cultured in control (+EGF+FGF, -GF) and differentiation (INF-c,
PDGF-AA, BMP-2) media. NSPCs were initially seeded at 2006103 cells/scaffold. *** denotes significance by two-factor ANOVA (p,0.0001). Mean
6 SD with n = 3. All scaffolds were cultured for 1 d in expansion media (+EGF+FGF) then switched to conditions labeled in the caption.
doi:10.1371/journal.pone.0048824.g007
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Smad activation [68]. Previous work has shown that oxygen

tension can control proliferation of NSPCs, with high cell numbers

seen at lower oxygen tensions [69]. Increasing available oxygen

during differentiation enhances the final percentages of mature

lineages that are obtained in in vitro monolayer culture [70].

Laminin protein, a well-known ECM protein of the nervous

system [71] and NSPC niche, was covalently bound to MAC with

the addition of EDC and sulfo-NHS to encourage NSPC survival

and differentiation. Laminins can self-assemble, bind to other

molecules and laminin-cell interactions are mediated by integrins,

dystroglycan and other receptors [72]. Laminin protein has been

proven to enhanced NSPC migration, expansion and differenti-

ation [73]. To properly drive differentiation, it is vital to activate

integrins, and the crosstalk between integrins and growth factor

receptors is required for both stem cell proliferation and

differentiation [74]. We believe that our niche inspired approach

further allowed us to specifically target desired differentiation

responses while limiting proliferation.

It is important to note that none of the MAC formulations

deteriorated over the 14 d culture period. MAC is degraded

enzymatically by lysozyme through the hydrolysis of glycosidic

bonds. MAC hydrogels have been previously shown to degrade to

50% of their initial mass after one month in typical culture

conditions [42]. NSPCs effectively remained encapsulated within

the MAC portions of the hydrogel and the confocal images reveal

that they are just beginning to send out projections at day 14

(Fig. 5), which was difficult to observe due to the autofluorescence

of MAC. It is also important to note that the cell encapsulation

(Fig. 7) was not sufficient to entrap dsDNA from apoptotic cells

that occurred alongside NSPC differentiation, since total DNA

quantitation demonstrated reduced cellularity in differentiation

factor treated scaffolds. It is possible that network formation and

cell-cell interactions are not maximized in these MAC scaffolds. In

future studies it would be interesting to culture these scaffolds for

longer periods of time, 3–4 wks, to determine if as the MAC

matrix disappears the cells remodel the environment effectively

migrating and sending out significant process extensions. We could

potentially accelerate degradation by adding lysozyme to the

culture, or design a new crosslinking system that is degradable by

proteolytic enzymes the NSPCs and their progeny secrete.

Proteolytic enzymes are integral to the processes of tissue

remodeling and formation where migrating cells require active

control of the ECM and in the native NSC environment, Matrix

metalloproteinases (MMPs) facilitate migration and differentiation

[75]. The MMP-1, or collagenase, cleavable sequences have been

incorporated into the backbone of photopolymerizable polyethyl-

ene glycol allowing MMP-1 mediated cell migration through the

hydrogel scaffold [76,77]. Differentiating NSPCs would most likely

require gelatinase cleavable sequences, as MMP-2 and 9 have

been shown to be important in neural development and

differentiation [75]. MMP-2 has been shown to be particularly

important in postnatal development and in migration [78] and

axon outgrowth [79].

Conclusions
NSPCs and other adult stem cells reside in unique niches that

provide the cues necessary to direct proliferation and differenti-

ation. This work shows that D-mannitol can be used to enhance

the porosity of photopolymerizable MAC hydrogels to improve

oxygen diffusion while stimulating NSPC differentiation. In

phenotype-specific media these scaffolds efficiently promote

NSPCs differentiation into neurons, oligodendrocytes, and astro-

cytes. Our approach enables creation of porous 3D hydrogel

constructs for CNS regeneration and also promotes further

understanding of the environmental cues that influence stem cell

and differentiation. This work provides a novel, simple and

inexpensive approach to create macroporous cell encapsulated

scaffolds utilizing a quickly dissolving nontoxic porogen. This

affords the potential to supply space for interior cell growth as well

space for exogenous cells to penetrate into the scaffold, as is

important for future neural tissue engineering applications.

Supporting Information

Table S1 NSPC differentiation experiment on laminin
coated glass coverslips with soluble BMP-2. NSPCs were

dissociated and cultured for one day in growth medium then 7 d in

differentiation medium containing BMP-2 (0, 5 ng/mL, 10 ng/

mL, 20 ng/mL, 40 ng/mL or 80 ng/mL). Samples were fixed

then stained for glial fibrillary acidic protein (GFAP), imaged and

quantified for the percentage of cells staining positive for GFAP as

compared to Hoechst 33342 staining.

(DOCX)

Acknowledgments

The authors would like to thank Dr. Lu-Kwang Ju for assistance and use of

the dissolved oxygen sensor, Dr. Rebecca Willits for allowing us to perform

rheological measurements in her laboratory as well as assistance with

interpreting mechanical and swelling results, and Dr. William Landis for

allowing us to utilize his cryostat for sectioning scaffolds.

Author Contributions

Conceived and designed the experiments: HL AW NDL. Performed the

experiments: HL AW. Analyzed the data: HL AW NDL. Contributed

reagents/materials/analysis tools: NDL. Wrote the paper: HL AW NDL.

References

1. Bryant SJ, Cuy JL, Hauch KD, Ratner BD (2007) Photo-patterning of porous

hydrogels for tissue engineering. Biomaterials 28: 2978–2986.

2. Leipzig ND, Wylie RG, Kim H, Shoichet MS (2011) Differentiation of neural

stem cells in three-dimensional growth factor-immobilized chitosan hydrogel

scaffolds. Biomaterials 32: 57–64.

3. Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as

tissue-engineering scaffolds. Tissue Eng 11: 101–109.

4. Kim BS, Mooney DJ (1998) Development of biocompatible synthetic

extracellular matrices for tissue engineering. Trends Biotechnol 16: 224–230.

5. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work.

Review: the application of solid freeform fabrication technology to the

production of tissue engineering scaffolds. Eur Cell Mater 5: 29–39; discussion

39–40.

6. Ahn G, Park JH, Kang T, Lee JW, Kang HW, et al. (2010) Effect of pore

architecture on oxygen diffusion in 3D scaffolds for tissue engineering. J Biomech

Eng 132: 104506.

7. Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue

engineering scaffolds: design issues related to porosity, permeability, architec-

ture, and nutrient mixing. Ann Biomed Eng 32: 1728–1743.

8. Malda J, Rouwkema J, Martens DE, Le Comte EP, Kooy FK, et al. (2004)

Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs:

measurement and modeling. Biotechnol Bioeng 86: 9–18.

9. Malda J, Klein TJ, Upton Z (2007) The roles of hypoxia in the in vitro

engineering of tissues. Tissue Eng 13: 2153–2162.

10. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ (2005) The effect of pore size on

cell adhesion in collagen-GAG scaffolds. Biomaterials 26: 433–441.

11. Ji C, Khademhosseini A, Dehghani F (2011) Enhancing cell penetration and

proliferation in chitosan hydrogels for tissue engineering applications. Bioma-

terials 32: 9719–9729.

12. LiVecchi AB, Tombes RM, LaBerge M (1994) In vitro chondrocyte collagen

deposition within porous HDPE: substrate microstructure and wettability effects.

J Biomed Mater Res 28: 839–850.

Neural Stem Cells in Novel Macroporous Hydrogels

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e48824



13. Kuberka M, von Heimburg D, Schoof H, Heschel I, Rau G (2002)
Magnification of the pore size in biodegradable collagen sponges. Int J Artif

Organs 25: 67–73.

14. Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, et al. (1997) Matrix

collagen type and pore size influence behaviour of seeded canine chondrocytes.
Biomaterials 18: 769–776.

15. Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA (1999) Quantification of
bone ingrowth within bone-derived porous hydroxyapatite implants of varying

density. J Mater Sci Mater Med 10: 663–670.

16. Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, et al. (1999) Role of

interconnections in porous bioceramics on bone recolonization in vitro and
in vivo. J Mater Sci Mater Med 10: 111–120.

17. Hulbert SF MS, Klawitter JJ (1971) Compatibility of porous ceramics with soft
tissue: application to tracheal protheses. Journal of Biomechanical Materials

Research part A, 5.

18. O’Brien FJ, Harley BA, Waller MA, Yannas IV, Gibson LJ, et al. (2007) The

effect of pore size on permeability and cell attachment in collagen scaffolds for
tissue engineering. Technol Health Care 15: 3–17.

19. Chen GP, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering.
Macromolecular Bioscience 2: 67–77.

20. Nam YS, Yoon JJ, Park TG (2000) A novel fabrication method of macroporous
biodegradable polymer scaffolds using gas foaming salt as a porogen additive.

J Biomed Mater Res 53: 1–7.

21. Liao CJ, Chen CF, Chen JH, Chiang SF, Lin YJ, et al. (2002) Fabrication of

porous biodegradable polymer scaffolds using a solvent merging/particulate

leaching method. J Biomed Mater Res 59: 676–681.

22. Zhang R, Ma PX (1999) Poly(alpha-hydroxyl acids)/hydroxyapatite porous
composites for bone-tissue engineering. I. Preparation and morphology.

J Biomed Mater Res 44: 446–455.

23. Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL (2001)

Tailoring tissue engineering scaffolds using electrostatic processing techniques: A

study of poly(glycolic acid) electrospinning. Journal of Macromolecular Science-
Pure and Applied Chemistry 38: 1231–1243.

24. Fabbri M, Celotti GC, Ravaglioli A (1994) Granulates Based on Calcium-
Phosphate with Controlled Morphology and Porosity for Medical Applications -

Physicochemical Parameters and Production Technique. Biomaterials 15: 474–
477.

25. Zhang HL, Li JF, Zhang BP (2007) Microstructure and electrical properties of
porous PZT ceramics derived from different pore-forming agents. Acta

Materialia 55: 171–181.

26. Tadic D, Beckmann F, Schwarz K, Epple M (2004) A novel method to produce

hydroxyapatite objects with interconnecting porosity that avoids sintering.
Biomaterials 25: 3335–3340.

27. Kim J, Yaszemski MJ, Lu LC (2009) Three-Dimensional Porous Biodegradable
Polymeric Scaffolds Fabricated with Biodegradable Hydrogel Porogens. Tissue

Engineering Part C-Methods 15: 583–594.

28. Xu HH, Takagi S, Quinn JB, Chow LC (2004) Fast-setting calcium phosphate

scaffolds with tailored macropore formation rates for bone regeneration.
J Biomed Mater Res A 68: 725–734.

29. Takagi S, Chow LC (2001) Formation of macropores in calcium phosphate
cement implants. J Mater Sci Mater Med 12: 135–139.

30. Markovic M, Takagi S, Chow LC (2000) Formation of macropores in calcium
phosphate cements through the use of mannitol crystals. Bioceramics 192–1:

773–776.

31. Xu HH, Quinn JB, Takagi S, Chow LC, Eichmiller FC (2001) Strong and

macroporous calcium phosphate cement: Effects of porosity and fiber
reinforcement on mechanical properties. J Biomed Mater Res 57: 457–466.

32. Xu HH, Weir MD, Burguera EF, Fraser AM (2006) Injectable and macroporous
calcium phosphate cement scaffold. Biomaterials 27: 4279–4287.

33. Straley KS, Foo CW, Heilshorn SC (2010) Biomaterial design strategies for the
treatment of spinal cord injuries. J Neurotrauma 27: 1–19.

34. Temple S (2001) The development of neural stem cells. Nature 414: 112–117.

35. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated

cells of the adult mammalian central nervous system. Science 255: 1707–1710.

36. Gage FH (2000) Mammalian neural stem cells. Science 287: 1433–1438.

37. Ayuso-Sacido A, Roy NS, Schwartz TH, Greenfield JP, Boockvar JA (2008)

Long-term expansion of adult human brain subventricular zone precursors.

Neurosurgery 62: 223–229; discussion 229–231.

38. Leipzig ND, Shoichet MS (2009) The effect of substrate stiffness on adult neural

stem cell behavior. Biomaterials 30: 6867–6878.

39. Saha K, Keung AJ, Irwin EF, Li Y, Little L, et al. (2008) Substrate modulus
directs neural stem cell behavior. Biophys J 95: 4426–4438.

40. Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on
cell attachment, proliferation and migration in collagen-glycosaminoglycan

scaffolds for bone tissue engineering. Biomaterials 31: 461–466.

41. Murphy CM, O’Brien FJ (2010) Understanding the effect of mean pore size on

cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr 4: 377–381.

42. Yu LM, Kazazian K, Shoichet MS (2007) Peptide surface modification of

methacrylamide chitosan for neural tissue engineering applications. J Biomed
Mater Res A 82: 243–255.

43. Brown DM (2004) Drug delivery systems in cancer therapy. Totowa, N.J.:
Humana Press. x, 390 p. p.

44. Kilinc A, Onal S, Telefoncu A (2002) Stabilization of papain by modification
with chitosan. Turkish Journal of Chemistry 26: 311–316.

45. Scott RA, Elbert DL, Willits RK (2011) Modular poly(ethylene glycol) scaffolds

provide the ability to decouple the effects of stiffness and protein concentration

on PC12 cells. Acta Biomaterialia 7: 3841–3849.

46. Baier Leach J, Bivens KA, Patrick CW, Jr., Schmidt CE (2003) Photocrosslinked

hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds.

Biotechnol Bioeng 82: 578–589.

47. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the

mammalian central nervous system. Physiol Rev 81: 871–927.

48. Aizawa Y, Leipzig N, Zahir T, Shoichet M (2008) The effect of immobilized

platelet derived growth factor AA on neural stem/progenitor cell differentiation

on cell-adhesive hydrogels. Biomaterials 29: 4676–4683.

49. Leipzig ND, Xu C, Zahir T, Shoichet MS (2010) Functional immobilization of

interferon-gamma induces neuronal differentiation of neural stem cells. J Biomed

Mater Res A 93: 625–633.

50. Hu JG, Fu SL, Wang YX, Li Y, Jiang XY, et al. (2008) Platelet-derived growth

factor-AA mediates oligodendrocyte lineage differentiation through activation of

extracellular signal-regulated kinase signaling pathway. Neuroscience 151: 138–

147.

51. Gefen A, Margulies SS (2004) Are in vivo and in situ brain tissues mechanically

similar? J Biomech 37: 1339–1352.

52. Taylor Z, Miller K (2004) Reassessment of brain elasticity for analysis of

biomechanisms of hydrocephalus. Journal of Biomechanics 37: 1263–1269.

53. Lin HQ, Kai T, Freeman BD, Kalakkunnath S, Kalika DS (2005) The effect of

cross-linking on gas permeability in cross-linked poly(ethylene glycol diacrylate).

Macromolecules 38: 8381–8393.

54. Fujimoto T, Tsuchiya Y, Terao M, Nakamura K, Yamamoto M (2006)

Antibacterial effects of chitosan solution against Legionella pneumophila,

Escherichia coli, and Staphylococcus aureus. Int J Food Microbiol 112: 96–101.

55. Polderman KH, van de Kraats G, Dixon JM, Vandertop WP, Girbes AR (2003)

Increases in spinal fluid osmolarity induced by mannitol. Crit Care Med 31:

584–590.

56. Ma L, Gao C, Mao Z, Zhou J, Shen J, et al. (2003) Collagen/chitosan porous

scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:

4833–4841.

57. Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue

engineering. Biomaterials 20: 1133–1142.

58. Griffon DJ, Sedighi MR, Schaeffer DV, Eurell JA, Johnson AL (2006) Chitosan

scaffolds: interconnective pore size and cartilage engineering. Acta Biomater 2:

313–320.

59. Ranucci CS, Kumar A, Batra SP, Moghe PV (2000) Control of hepatocyte

function on collagen foams: sizing matrix pores toward selective induction of 2-D

and 3-D cellular morphogenesis. Biomaterials 21: 783–793.

60. Lien SM, Ko LY, Huang TJ (2009) Effect of pore size on ECM secretion and

cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta

Biomater 5: 670–679.

61. Namba RM, Cole AA, Bjugstad KB, Mahoney MJ (2009) Development of

porous PEG hydrogels that enable efficient, uniform cell-seeding and permit

early neural process extension. Acta Biomater 5: 1884–1897.

62. Volkmer E, Drosse I, Otto S, Stangelmayer A, Stengele M, et al. (2008) Hypoxia

in static and dynamic 3D culture systems for tissue engineering of bone. Tissue

Eng Part A 14: 1331–1340.

63. Arkudas A, Beier JP, Heidner K, Tjiawi J, Polykandriotis E, et al. (2007) Axial

prevascularization of porous matrices using an arteriovenous loop promotes

survival and differentiation of transplanted autologous osteoblasts. Tissue Eng

13: 1549–1560.

64. Den Buijs JO, Dragomir-Daescu D, Ritman EL (2009) Cyclic deformation-

induced solute transport in tissue scaffolds with computer designed, intercon-

nected, pore networks: experiments and simulations. Ann Biomed Eng 37:

1601–1612.

65. Cassimeris L, Lingappa VR, Plopper G, Lewin B (2011) Lewin’s cells. Sudbury,

Mass.: Jones and Bartlett Publishers. xxiv, 1053 p. p.

66. Currais A, Hortobagyi T, Soriano S (2009) The neuronal cell cycle as a

mechanism of pathogenesis in Alzheimer’s disease. Aging-Us 1: 363–371.

67. Song JH, Wang CX, Song DK, Wang P, Shuaib A, et al. (2005) Interferon

gamma induces neurite outgrowth by up-regulation of p35 neuron-specific

cyclin-dependent kinase 5 activator via activation of ERK1/2 pathway. J Biol

Chem 280: 12896–12901.

68. Nakashima K, Takizawa T, Ochiai W, Yanagisawa M, Hisatsune T, et al. (2001)

BMP2-mediated alteration in the developmental pathway of fetal mouse brain

cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci U S A 98: 5868–

5873.

69. Pistollato F, Chen HL, Schwartz PH, Basso G, Panchision DM (2007) Oxygen

tension controls the expansion of human CNS precursors and the generation of

astrocytes and oligodendrocytes. Molecular and Cellular Neuroscience 35: 424–

435.

70. Santilli G, Lamorte G, Carlessi L, Ferrari D, Rota Nodari L, et al. (2010) Mild

hypoxia enhances proliferation and multipotency of human neural stem cells.

PLoS One 5: e8575.

71. Lia SC (2005) b1 Intergrins and neural stem cells: making sense of extracellular

environment. Bioessays 27: 697–707.

72. Colognato H, Yurchenco PD (2000) Form and function: The laminin family of

heterotrimers. Developmental Dynamics 218: 213–234.

Neural Stem Cells in Novel Macroporous Hydrogels

PLOS ONE | www.plosone.org 10 November 2012 | Volume 7 | Issue 11 | e48824



73. Flanagan LA RL, Derzic S, Schwartz PH, Monuki ES (2006) Regulation of

human neural precusor cells by laminin and integrins. J Neurosci Res 83: 845–
856.

74. Streuli CH (2009) Integrins and cell-fate determination. J Cell Sci 122: 171–177.

75. Tonti GA MF, Cacci E, Biogioni S (2009) Neural stem cells at the crossroads:
MMPs may tell the Int J Dey Biol 53: 1–17.

76. Lee SH, Moon JJ, Miller JS, West JL (2007) Poly(ethylene glycol) hydrogels
conjugated with a collagenase-sensitive fluorogenic substrate to visualize

collagenase activity during three-dimensional cell migration. Biomaterials 28:

3163–3170.

77. West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for

proteases involved in cell migration. Macromolecules 32: 241–244.

78. Ogier C, Bernard A, Chollet AM, Le Diguardher T, Hanessian S, et al. (2006)

Matrix metalloproteinase-2 (MMP-2) regulates astrocyte motility in connection

with the actin cytoskeleton and integrins. Glia 54: 272–284.

79. Zuo J, Ferguson TA, Hernandez YJ, Stetler-Stevenson WG, Muir D (1998)

Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-

inhibiting chondroitin sulfate proteoglycan. Journal of Neuroscience 18: 5203–

5211.

Neural Stem Cells in Novel Macroporous Hydrogels

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e48824


