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Human monocytic ehrlichiosis (HME) is a potentially life-threatening tick-borne rickettsial

disease (TBRD) caused by the obligate intracellular Gram-negative bacteria, Ehrlichia.

Fatal HME presents with acute ailments of sepsis and toxic shock-like symptoms that

can evolve to multi-organ failure and death. Early clinical and laboratory diagnosis of

HME are problematic due to non-specific flu-like symptoms and limitations in the current

diagnostic testing. Several studies in murine models showed that cell-mediated immunity

acts as a “double-edged sword” in fatal ehrlichiosis. Protective components are mainly

formed by CD4 Th1 and NKT cells, in contrast to deleterious effects originated from

neutrophils and TNF-α-producing CD8 T cells. Recent research has highlighted the

central role of the inflammasome and autophagy as part of innate immune responses

also leading to protective or pathogenic scenarios. Recognition of pathogen-associated

molecular patterns (PAMPS) or damage-associated molecular patterns (DAMPS) triggers

the assembly of the inflammasome complex that leads tomultiple outcomes. Recognition

of PAMPs or DAMPs by such complexes can result in activation of caspase-1 and

-11, secretion of the pro-inflammatory cytokines IL-1β and IL-18 culminating into

dysregulated inflammation, and inflammatory cell death known as pyroptosis. The

precise functions of inflammasomes and autophagy remain unexplored in infections with

obligate intracellular rickettsial pathogens, such as Ehrlichia. In this review, we discuss

the intracellular innate immune surveillance in ehrlichiosis involving the regulation of

inflammasome and autophagy, and how this response influences the innate and adaptive

immune responses against Ehrlichia. Understanding such mechanisms would pave the

way in research for novel diagnostic, preventative and therapeutic approaches against

Ehrlichia and other rickettsial diseases.
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THE AGENTS OF EHRLICHIOSIS

Ehrlichiosis is caused by Ehrlichia; an obligate intracellular Gram-negative bacteria that belongs to
Anaplasmataceae family of the order Rickettsiales. Other genera within the family Anaplasmataceae
are: Anaplasma, Neorickettsia, and Wolbachia (1). Ehrlichiae are maintained in natural cycles
throughout persistently infected vertebrate hosts and tick vectors (2–4).
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CLINICAL PRESENTATIONS

Human Monocytic Ehrlichiosis (HME)
Ehrlichia infection is recognized as an important public health
threat in tick-endemic areas including the south and south-
central regions of the US, although a global threat also
exists due to the prevalence of HME worldwide. Ehrlichia
chaffeensis is the foremost etiologic agent of HME, however, other
Ehrlichia species, including Ehrlichia canis, Ehrlichia muris and
Ehrlichia muris-like agent (EMLA) are also isolated from patients
with HME (5). The vector for E. chaffeensis is Amblyomma
americanum, which is also vector for Rickettsia species such as
R. amblyommii and R. parkeri (4).

Human monocytic ehrlichiosis presents as an acute febrile
illness associated with fever, malaise, myalgia, and headache.
Clinical manifestations of skin and gastrointestinal tract
involvement such as rash, nausea, vomiting, diarrhea, and
regional lymphadenopathy occurs in 20–40% of patients
(4). Meningoencephalitis and pneumonia occur in 20% of
patients who present with stiff neck, confusion, cough, and
dyspnea. Life-threatening complications such as renal failure,
adult respiratory distress syndrome, meningoencephalitis, multi-
system organ failure, and toxic shock occur in a substantial
portion of the patients who are hospitalized. HME is often
undiagnosed or misdiagnosed as a result of non-specific clinical
manifestations and lack of specific and sensitive diagnostic
tests. Characteristic laboratory findings in HME patients are
thrombocytopenia, leukopenia, neutropenia, and increased levels
of hepatic transaminases (4, 6, 7). Diagnostic tests such as
peripheral blood smear, in-vitro culture, PCR and serological
testing are currently used to identify HME. However, each of
these tests has potential limitations with suboptimal sensitivity
or specificity at early stages of infection. Antibiotic treatment
with doxycycline (drug of choice) is effective only if given
early in infection. Failure to treat immunocompetent patients
with doxycycline at the early stages of infection or in infected-
immunocompromised individuals often results in serious and
progressive disease that mimics septic or toxic shock-like
syndrome and multi-organ failure with a case fatality rate of
3%. The clinical, diagnostic and therapeutic challenges in the
management of patients with ehrlichiosis account for a high
rate of hospitalization (40–63%) (4, 6). Thus, there is a critical
need in creating new options for effective countermeasures (e.g.,
diagnostics, preventive and therapeutic measures) to control
these pathogens. Understanding the immunopathogenesis of
HME will enable us to develop new avenues for sensitive
and specific diagnostic testing during early infection and
immunotherapies for later disease management.

Canine Ehrlichiosis
Ehrlichia canis is the major cause of canine ehrlichiosis, although
other human Ehrlichia species such as E. chaffeensis and E.
ewingii can also infect dogs. E. ewingii is transmitted by the
lone star tick, A. americanum, while E. canis is transmitted
by the brown dog tick, Rhipicephalus sanguineus. The bacteria
are maintained through the tick life stages by transstadial,
but not by transovarial, transmission (8, 9). Similar to E.

chaffeensis, the natural host for E. canis is the white-tailed
deer, although chronically infected dogs are also considered as
reservoirs (10).

E. canis and E. chaffeensis primarily infect monocytes, thus
causing canine monocytic ehrlichiosis, while E. ewingii infect
granulocytes causing canine granulocytic ehrlichiosis. Dogs
with acute canine ehrlichiosis may present with multi-system
disease including lymphadenopathy, splenomegaly, ocular
signs such as uveitis, retinitis, retinal hemorrhage or retinal
detachment (11). Similar to HME, meningoencephalitis or
cerebral hemorrhage may occur in 20% of infected dogs and
present with stupor, ataxia, central or peripheral vestibular
dysfunction, cerebellar dysfunction, convulsion, and tremors.
Hematologic and immunologic abnormalities are commonly
marked by the presence of petechiae, dermal ecchymosis, and
autoimmunity including generation of anti-platelet antibodies
that may account for thrombocytopenia, leukopenia, anemia,
and hemolysis (10). Laboratory findings in dogs with either
subacute or chronic monocytic or granulocytic ehrlichiosis
include high serum levels of alkaline phosphatase and/or liver
transaminases, hypocalcemia, hypokalemia, hyperglobulinemia,
and seroconversion after 7–14 days post-infection (10, 11).
Unlike HME, Ehrlichia infection in dogs can be self-limited even
without antibiotic treatment but can cause persistent/chronic
infection. Chronic infection is these animals may lead to the
development of pancytopenia and potentially fatal hypoplastic
bone marrow failure.

EHRLICHIA: GENOME CHARACTERISTICS
AND INTRACELLULAR LIFE CYCLE

Ehrlichia species primarily infect macrophages and non-myeloid
cells such as hepatocytes and endothelial cells. Ehrlichia exist
in two forms within macrophages: (i) a small infectious
nonreplicating dense core (0.4–0.6 µm), and (ii) a large,
noninfectious reticulate form (0.4–0.6 µm × 0.7–1.9 µm)
that undergoes binary fission within a cytoplasmic vacuole.
The cytoplasmic vacuole contains Ehrlichia morulae (Latin for
mulberry) which are visualized by Giemsa or Diff-Quick staining
methods within infected monocytes or neutrophils from the
peripheral blood smear.

Unlike other Gram-negative bacteria, Ehrlichia cell envelope
lacks lipopolysaccharide (LPS) and peptidoglycan: two major
PAMPS that are recognized by Toll-like receptors (TLRs)
expressed by innate-immune and non-immune cells (12, 13).
However, Ehrlichia cell outermembrane is enriched with proteins
that express tandem repeat units (TRPs) (14–19). These TRPs are
secreted into the target-cell cytosol via type I secretion system and
are known to: (i) regulate host cell transcription factors involved
in cell survival (20, 21); (ii) modulate cytoskeleton organization
(21, 22); (iii) induce innate and adaptive immune responses; (23–
27) and (iv) favor bacterial survival (28). Ehrlichia also express
a 200 kDa protein resembling the host cell cytoskeletal protein,
ankyrin, which is translocated to the host cell nucleus and binds
to host cell chromatin (29, 30). Other outer membrane proteins
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include several members of the P28 family that mediate bacterial
adhesion and invasion into macrophages (31, 32).

Internalization of Ehrlichia chaffeensis into macrophages
is mediated by binding of the C terminus of an outer
membrane entry-triggering protein (EtPE-C) to the mammalian
glycosylphosphatidylinositol-anchored protein, DNase X, located
on the host cell surface (33, 34). This binding triggers intracellular
signaling via the transmembrane molecule, CD147, which
recruits hnRNP-K to induce N-WASP activation (33, 35).
Activation of N-WASP mediates actin polymerization and thus
promotes bacterial internalization (36). Upon entry, E. chaffeensis
is enclosed in endosome-like or phagosome-like compartments
composed by lipid raft domains found in the host cell membrane
that do not bind with lysosomes.

Mechanisms by which Ehrlichia spread from cell-to-cell
at the early stages of infection, before host necrosis and/or
pyroptosis are developed, are not completely understood.
Studies have shown that Ehrlichia are transported through
host cell filopodia during initial stages of infection but are
released extracellularly during host cell necrosis at late stages of
infection (37). Filopodia are cell membrane extensions that are
organized by actin polymerization and continuous restructuring
of filamentous actin (38). Inhibition of actin polymerization
with cytochalasin D hindered the formation of filopodia and
decreased bacterial burden (37). This indicated the requirement
of actin polymerization for the spread and infection of new
host cells during early infection (first 24 h). Transmission
electron microscopy shows Ehrlichia cells migrating to new
host cells within the confines of filopodia extensions without
contact with the extracellular matrix (ECM) (3, 37). Thus,
utilization of filopodia by Ehrlichia for cell-to-cell transmission
may enable them to avoid exposure to the ECM, which
is known to hinder bacterial nutrient acquisition, decrease
bacterial replication, cause bacterial degradation and death via
catabolic enzymes.

MOUSE MODELS FOR EHRLICHIOSIS

Initial models of HME were developed by infection of
immunocompetent mice with E. chaffeensis (39) or infection
of natural hosts such as dogs with E. canis (40). These
studies defined several key parameters of the pathophysiology
of the disease. However, E. chaffeensis is considered avirulent
in immunocompetent mice as it causes an abortive infection
that resolves approximately 10 days post-infection (39, 41).
In addition, infection by E. chaffeensis in mice does not
induce a measurable immune response or pathology that
mimics ehrlichiosis in humans. In contrast, infection of
immunocompromised mice with E. chaffeensis resulted in
extensive tissue damage and persistent infection in different
organs (liver, peritoneal cavity, brain, lung, and bone marrow)
and mice became moribund within 24 days (42). Although
utilization of immunocompromised mice has provided some
information about the mechanisms of protective immunity
and host resistance to ehrlichiosis, it did not address the
mechanisms of host susceptibility to severe and potentially fatal

ehrlichiosis. Therefore, other murine models of mild and fatal
ehrlichiosis were developed by infection of immunocompetent
C57BL/6 mice with mildly virulent Ehrlichia muris (E. muris)
and highly virulent Ehrlichia species, Ixodes ovatus ticks (IOE),
respectively (43–48). These murine models recapitulate the
clinical outcome, the pathological aspects, and the laboratory
findings in patients with HME.

E. muris-infected mice develop mild and self-limited disease
with all animals surviving to infection. Mild disease in E. muris-
infected mice is characterized by hepatosplenomegaly, elevated
serum levels of liver enzymes, and minimal hepatic apoptosis
(44). Although intraperitoneal infection with E. muris results in
disseminated infection, ehrlichiae are cleared by day 10 post-
infection (49). In contrast, the outcome of infection with IOE
is dose- and route-dependent. Intraperitoneal (i.p.) infection
of wild type (WT) C57BL/6 mice with high doses of IOE
(103–105 organisms per mouse) causes severe and fatal disease
characterized by primary liver dysfunction, marked by elevated
liver enzymes and development of focal areas of hepatic apoptosis
and necrosis, followed by excessive cytokine and chemokine
production, referred to as “cytokine storm,” cell death and
immunosuppression. Finally, these mice succumb to infection
due to toxic shock-like syndrome with multi-organ failure
on days 8–10 post-infection. On the other hand, intradermal
infection of C57BL/6 mice with high doses of IOE (103–105

organisms per mouse) causes a mild disease similar to that
induced by i.p. infection with E. muris.

Primary infection with E. muris also induces strong cell-
mediated immune responses characterized by the development
of protective CD4 Th1 cells and type I CD8 T cells. Additionally,
infection promotes humoral immunity characterized by the
generation of cross-reactive Ehrlichia-specific IgG antibodies
that can recognize other Ehrlichia species (45, 50). Primary
infection of WT C57BL/6 mice with E. muris in mice induces
both cell-mediated and humoral memory immune responses that
renders heterologous protection ofWTmice against re-challenge
with a lethal dose of IOE (44, 50, 51). On the other hand, primary
infection of WT C57BL/6 mice with a sublethal dose of IOE,
that causes mild disease, fails to provide homologous protection
against re-challenge with a lethal dose of IOE (50).

CELL-MEDIATED IMMUNITY IN
EHRLICHIOSIS

Given that Ehrlichia is an obligate intracellular pathogen, cell-
mediated immunity is thought to be key in protecting the host
against infection. Despite this traditional line of thinking, it
was seen that in ehrlichiosis many of the cell-mediated-immune
mechanisms are more inclined toward deleterious effects. The
outcome of infection is determined by the host’s ability to
balance between protective and pathogenic immune responses.
For example, while CD4 Th1 andNKT cells seem to be protective,
mechanisms mediated by CD8 T cells or NK cells can contribute
to a pathogenic outcome. We found that liver injury and
excessive cytokine and chemokine production/release followed
by lethal Ehrlichia infection are mediated by several innate and
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FIGURE 1 | Cell-mediated pathogenic and protective responses in a model of fatal ehrlichiosis. Wild type C57BL/6 mice inoculated with virulent Ixodes Ovatus

Ehrlichia (IOE) develop multi-organ failure and die between 8 and 10 days post-infection. Here we summarize protective and pathogenic mechanisms considering the

cell-mediated immunity to Ehrlichia infection. Neutrophils migrate to infection site and induce strong pro-inflammatory response with hyperproduction of IL-1β, IL-6,

IL-10, and chemokines. The role of neutrophils was also associated with induction of TNF-α-producing CD8 T cells that can either mediate organ damage or assist

protective mechanisms. Another two important arms that mediate pathogenesis are the role of NK cells in eliminating infected cells in the target organs and the role of

regulatory T cells (T regs), that end up shutting down protective mechanisms via IL-10. Protective mechanisms during infection by IOE include the induction of CD4

Th1 cells, that via IFN-γ activate on-site microbicidal functions of macrophages. NKT cells also play a role in stimulating such mechanism via IFN-γ .

adaptive immune cells, which are detailed below and summarized
in Figure 1.

Neutrophils
Neutrophils serve as the frontline defenders against a variety
of extracellular and intracellular pathogens including bacteria,
fungi, and protozoa. Neutrophils are professional phagocytic cells
that eliminate pathogens via phagocytosis and production of
several antimicrobial peptides and molecules such as reactive
oxygen species (ROS) (52). While neutrophils play a protective
role during infections with other bacterial pathogens, our studies
indicate that these cells are involved with a pathogenic outcome
in ehrlichiosis. Depletion of neutrophils in IOE-infected mice
enhanced protective immunity and resistance to fatal IOE
infection (53). This was evidenced by attenuation of hepatic
apoptosis and necrosis, two pivotal processes in the development
of liver injury during infection with virulent IOE (53, 54). IOE-
infected mice depleted of neutrophils showed reduced expansion
of pathogenic CD8 T cells and their production of tumor
necrosis factor-α (TNF-α). In this model, neutrophils were also
associated with production of cytokines (IL-1β , IL-6, and IL-10)
and several chemokines that are known to mediate migration
of inflammatory and immune cells to sites of infection. The
exact mechanism by which neutrophils promote the expansion
of T cells is still unknown. However, as suggested by other
studies, these cells could function as antigen presenting cells

(APCs) to induce activation and clone expansion of T-cell
subpopulations (55).

CD8 T Cells
Cytotoxic CD8 T cells are considered a major cell subset that
confers protection against intracellular pathogens. These cells
are capable of recognizing and eliminating infected cells via
perforin/granzyme B activities, as well as via death receptors
such as FAS and TNF-α receptor I/II (56, 57). In addition,
production of TNF-α and IFN-γ by CD8 and CD4 T cells
mediates activation of microbicidal functions in phagocytic cells.
These cytokine-induced bactericidal mechanisms are marked by
the production of nitric oxide by nitric oxide synthase 2 (NOS2),
tryptophan degradation to kynurenine by indoleamine 2, 3-
dioxygenase (IDO), and reactive oxygen species. CD8 T cells
contribute to protective immunity during infection of mice with
E. muris. This was evidenced by higher susceptibility of MHC
class I deficient mice to infection. In this case, nearly 80% of
the MHC class I deficient animals succumbed to infection while
all WT control mice survive (58). Adoptive transfer of CD8 T
cells and CD4 T cells from E. muris-infected mice into naive
mice confers protection of recipient mice against IOE infection.
Depletion of IFN-γ or TNF-α resulted in lethality of 75% of these
animals (44, 59).

In contrast to mild Ehrlichia infection, virulent IOE induces
expansion of TNF-α-producing cytotoxic CD8 T cells. Notably,
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β2 microglobulin knockout mice and TAP knockout mice, that
are CD8 T cell deficient, are more resistant to lethal IOE
infection compared to WT mice. This observation suggested
that CD8 T cells play a role in immunopathology during fatal
ehrlichiosis (44, 47). Further studies in knockout mice indicated
that immunopathology mediated by CD8 T cells is likely driven
by TNF-α overproduction (46). Mice that do not express TNF-α
receptors I/II, after infection with IOE are marked by prolonged
survival, attenuated host cell death and reduced liver injury.
However, these animals present higher bacterial load when
compared to similarly-infected WT mice, indicating that TNF-
α produced by CD8 T cells plays a dual role mediating hepatic
pathology and control of intracellular ehrlichiae.

NK Cells
Our studies indicate that NK cells contribute to liver damage
during severe Ehrlichia infection via secretion of several pro-
and anti-inflammatory cytokines and production of granzyme
B/perforins that activate cell death mechanisms (49). Depletion
of NK cells enhanced mice survival and decreased tissue damage
in IOE-infected mice suggesting a pathogenic role of NK cells in
fatal ehrlichiosis. Considering persistent infection, which is the
case of animals that are inoculated with E. muris, NK cells play
a protective role during primary and recall immune responses.
Primary infection with E. muris promoted polarization of
memory CD4 Th1 cells and memory-like NK cells in the spleen
and liver at day 28 post-infection (60).

This memory/recall response protected E. muris-primed mice
against re-challenge with E. muris or lethal dose of virulent
IOE. Interestingly, depletion of NK cells in E. muris-primed
mice decreased the numbers of memory CD4 T cells and
antibody-producing B cells, and made animals more susceptible
to infection after re-challenge with IOE (60). These findings
suggest that memory-like NK cells generated following primary
E. muris infection are key for the development of effective long-
term immunity to fatal Ehrlichia infection.

CD4 Th1 and NKT Cells
Similarly to what occurs in other infections by intracellular
bacteria, IFN-γ -producing CD4 T helper-1 (Th1) cells and
natural killer T cells (NKT) mediate protective immunity against
Ehrlichia (53, 61, 62). Production of IFN-γ by these cells activates
microbicidal functions of macrophages enhancing bacterial
clearance. However, these protective immune cells undergo
apoptosis during late stages of severe Ehrlichia infection.

NKT cells are a subset of T cells that in addition to expressing
T cell receptors, also express several molecules typically expressed
by NK cells. NKT cells are CD1d-restricted cells that contribute
to host defense against various microbial pathogens. A study
by Mattner et al. highlighted an alternative pathway by which
Ehrlichia activate NKT cells compared to other Gram-negative
bacteria (61). This study showed that Gram-negative intracellular
bacteria, such as Salmonella, trigger activation of NKT cells via
recognition of endogenous lysosomal glycosphingolipid, iGb3,
presented by CD1d molecules on dendritic cells. In contrast,
antigen-specific activation of human and murine NKT cells

against LPS-negative E. muris occurs following recognition of cell
wall glycosylceramide-like molecules by CD1d molecules.

INTRACELLULAR INNATE IMMUNE
SURVEILLANCE IN EHRLICHIOSIS

Innate immune receptors play a central role in immune
surveillance by sensing pathogens and initiating protective
immune responses. However, under certain conditions,
the innate immune system plays a deleterious role by
overreacting to pathogens and causing excessive inflammation,
immunopathology, cell death, and tissue damage. Recent studies
have uncovered the complexity of innate immune receptors that
sense Ehrlichia species, and downstream fundamental eukaryotic
pathways, such as inflammasome activation, autophagy, and type
I IFN response, which have multiple immunological effects on
infection and immunity. This review highlights the cellular and
molecular mechanisms by which Ehrlichia infection is sensed by
different innate immune receptors, as well as the mechanisms
of crosstalk between autophagy and inflammatory signaling
cascades. We also discuss how these events mediate both host
resistance to infection and the pathogenesis of fatal ehrlichiosis.

Sensing of Ehrlichia by Pattern
Recognition Receptors (PRRs)
We previously showed that fatal IOE infection differentially
triggers upregulation of several PRRs in hepatic cells when
compared to infection with E. muris. Liver tissues from
IOE-infected mice express significantly higher levels of
nucleotide-binding oligomerization domain-containing protein
2 (NOD2), a cytosolic PRR that senses microbial ligands such
as peptidoglycan, and TLR2, a surface TLR that recognizes LPS
and lipoproteins. Both NOD2 and TLR2 signal via MyD88 to
induce activation of NF-κb and production of several cytokines
and chemokines. We have shown that TLR2 deficient mice are
more susceptible to severe and fatal IOE infection as indicated
by higher mortality, increased bacterial burden, and presence of
a significantly higher number of inflammatory foci and necrotic
hepatocytes and macrophages 7 days after infection when
compared to infectedWTmice (54). In contrast, NOD2 deficient
mice are more resistant to fatal ehrlichiosis when compared
to infected WT controls (54). IOE-infected NOD2 deficient
mice have less hepatic apoptosis and necrosis and were able to
effectively clear ehrlichiae compared to infected WT controls.
Enhanced resistance of NOD2 deficient mice to fatal ehrlichiosis
was associated with restoration of T cells and NKT cell numbers,
increased IFN-γ production, as well as decreased frequency of
pathogenic CD8 T cells, suggesting that NOD2, at least in part,
mediates disease progression following IOE infection.

We recently examined the role of MyD88 in the immune
response to lethal IOE infection. We showed that MyD88-
signaling functions under a “double-edged sword” manner,
with MyD88 signaling playing protective and pathogenic roles
in fatal ehrlichiosis by regulating two key innate immune
events in macrophages: autophagy and inflammasome activation
(63). As a host-protective mechanism, activation of MyD88
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signaling by IOE attenuates bacterial survival and replication by
inhibiting induction of autophagy, a host innate response that
promotes survival and/or replication of Ehrlichia as suggested by
studies from us and other investigators (63–66). Livers of IOE-
infected MyD88 deficient mice or primary bone marrow derived
macrophages (BMM) isolated from these animals and infected
with IOE, show higher autophagy induction as characterized by
autophagosome formation compared to similarly infected WT
mice or WT-BMM. This effect was associated with increased
bacterial burden in vivo or increased numbers of intracellular
bacteria in in-vitro cultured BMM. Further, pharmacological
enhancement of autophagy increased bacterial replication in
IOE-infected WT-BMM compared to untreated and infected
BMM. As a host-pathogenic mechanism, we found that MyD88
signaling blocks autophagy flux (i.e., autophagosome-lysosomal
fusion) in macrophages following lethal IOE infection, which
leads to inhibition of mitochondrial autophagy (i.e., mitophagy)
as well as blockage of ehrlichial degradation via lysosome due
to lack of colocalization of autophagosomes with lysosomes.
Defective mitophagy and the blocking of autophagic flux in IOE-
infected macrophages led to the accumulation of mitochondrial
DAMPS (e.g., ROS and mitochondrial DNA) and PAMPs, which
in turn resulted in activation of canonical and non-canonical
inflammasome pathways. As discussed below, inflammasome
activation plays a deleterious role in the pathogenesis of
fatal ehrlichiosis as it promotes excessive and dysregulated
inflammation, development of pathogenic innate and adaptive
immune responses (mediated by NK cells, neutrophils, and CD8
T cells), and finally cell death and multi-organ dysfunction.
This conclusion is supported by data showing that lack of
MyD88-attenuated liver pathology, decreased the production
of NF-κB-dependent pro-inflammatory cytokines (e.g., TNF-
α) and inflammasome-dependent cytokines (IL-1α, IL-1β), and
reduced the frequency of cytotoxic CD8 T cells. Attenuated
immunopathology in MyD88-deficient mice was associated
with enhanced survival and host resistance to fatal ehrlichiosis
(63). Indeed, the lack of correlation between bacterial burden
and survival in MyD88-deficient mice reinforces our previous
conclusion using WT mice that severe and fatal ehrlichiosis
is not due to an overwhelming infection, but rather due
to immunopathology.

Further analysis of the upstream TLRs that signal via MyD88
revealed TLR9 as the major TLR that mediates MyD88 effector
functions during fatal Ehrlichia infection. We also explored
whether other extracellular and endosomal TLRs such as
TLR2 and TLR7, respectively, are linked to MyD88 activation
and subsequent inflammasome promotion in the liver. Both
TLR7−/− and TLR9−/− mice produced lower amounts of
IL-1β , with TLR9−/− mice having significantly lower levels
compared to WT and TLR7−/− (63). Importantly, 85% of
TLR9−/− mice infected with lethal IOE survived until 60 days
post-infection while all infected WT mice died between 10
and 12 days post-infection (63). These data support that the
TLR9-MyD88 axis mediates host susceptibility and pathogenic
responses during fatal ehrlichiosis. The results from the IOE
model are consistent with observations from Rikihisa and
coworkers using E. chaffeensis strain Wakulla, a virulent strain

known to induce diffuse hepatitis in immunodeficient mice. E.
chaffeensis infection induced TNF-α and IL-1β expression in the
liver of immunodeficient mice and in isolated BMM (67). The
expression of these cytokines was MyD88-dependent, but not
dependent on TRIF, TLR2/4 or IL-1 receptor 1/IL-18 receptor
1. In vitro infection using human THP-1 cells (leukemia cell
line) indicated that E. chaffeensis induces upregulation of IL-8,
IL-1β , and TNF-α mRNAs as well as the extracellular regulated
kinase 2 (ERK2) activation. Hence, E. chaffeensis Wakulla strain
may induce inflammatory responses through MyD88-dependent
NF-κB and ERK pathways, independent of TRIF and TLR2/4.
Similarly, infection with Anaplasma phagocytophilum, another
obligate intracellular bacterium that infects neutrophils and
causes human anaplasmosis, triggers TLR2 signals which induce
secretion of proinflammatory cytokines via NF-κB (68).

The role of MyD88 in host resistance and susceptibility
to infections with other Rickettsial pathogens, such as
Rickettsia conorii or Rickettsia australis; Spotted fever group
(SFG) rickettsiae has also been examined. MyD88 deficient
mice infected with either R. conorri or R. australis were
more susceptible to infection than WT mice, suggesting a
protective role of MyD88 in the immune response against
SFG Rickettsiae (69, 70). Similar to its role in ehrlichiosis,
MyD88 signaling mediated clearance of intracellular rickettsiae
within macrophages and dendritic cells. Mechanistically,
MyD88 signaling promoted IFN-γ production in mice,
which is known to be critical for activation of microbicidal
functions of macrophages. In addition, MyD88 signaling
enhanced inflammasome activation, which was found to be a
host-protective mechanism during Rickettsia infection.

Inflammasome Activation in Ehrlichiosis
Inflammasomes are high molecular weight protein complexes
that consist of intracellular NOD-like receptors (NLRs),
programmed cell death ASC (apoptosis-associated speck like
protein) adaptor molecules and pro-caspases. Activation
of inflammasomes leads to the activation of caspases
which subsequently induce secretion of IL-1β and IL-18
proinflammatory cytokines (71–75). Inflammasome complexes
include NLRP1, NLRP2, NLRP3, NLRP4, NRLP6, NRLP7,
and NLRP12 (75). The canonical inflammasome activation
pathway requires a priming event via triggering of a PRR, such
as Toll-like receptors (TLRs), by a microbial or host ligand
or by binding of a pro-inflammatory cytokine to its receptor,
such as binding of TNF-α to TNF-α receptors (74–78). This
ligand-receptor binding causes the MyD88-mediated activation
of NF-κB leading to upregulation of pro-IL-1β , pro-IL-18,
and several inflammasome complexes, such as NLRP3 (75).
Next, assembly of the inflammasome complexes occurs upon
binding to PAMPS or DAMPS (e.g., bacterial toxins, DNA,
bacterial RNA and flagella, viral protein, host DNA and RNA,
and host-derived ATP, glucose, cholesterol crystals, calcium
pyrophosphate dihydrate, mitochondrial ROS and DNA, and
amyloid β), which leads to activation of caspase 1, cleavage of
IL-1β and IL-18, as well as pyroptosis. Recently, a non-canonical
inflammasome pathway has been described in which cytosolic
LPS activates the inflammasome via activation of caspase-11
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which promotes caspase 1-dependent secretion of IL-1β and
IL-18 as well as pyroptosis and release of IL-1α and high mobility
group box 1 (HMGB1) (3, 73, 79–83). The inflammasome
could function as a host protective mechanism to clear the
infection and promote induction of protective adaptive immune
responses against infectious agents, but it can also produce tissue
injury, excessive inflammation, and immunopathology under
dysregulated circumstances (75).

Employing murine models of ehrlichiosis, we have shown that
LPS-negative IOE infection differentially induces upregulation
of several inflammasome complexes including NLRP1, NLRP3,
NLRC4, AIM2, and NLRP12 (54). Unlike infections with other
intracellular bacteria, such as Legionella and Mycobacterium
tuberculosis, inflammasome activation plays a deleterious role in
the host response against Ehrlichia. This point is supported by
several studies showing a strong link between the production
of inflammasome-dependent cytokines, IL-18 and IL-1β , and
the induction of pathogenic adaptive immune responses and
liver damage. IL-18R knockout mice are more resistant to fatal
ehrlichiosis than WT mice as marked by prolonged survival and
decreased bacterial burden (48). A lack of IL-18/IL-18R signaling
enhanced bacterial clearance, attenuated liver injury, decreased
the production of pro-inflammatory cytokines (such as TNF-α),
and decreased expansion of pathogenic TNF-producing CD8 T
cells and NK cells following IOE infection. Further studies have
shown that production of IL-1β is mediated by NLRP3, caspase 1,
and caspase 11, indicating activation of both canonical and non-
canonical inflammasome pathways (54, 63, 84). Notably, IOE-
infected NRLP3-deficient mice effectively cleared Ehrlichia, but
still displayed acute mortality and liver injury compared to IOE-
infected WT mice. This suggests that pathogenic inflammasome
activation during fatal IOE infection is only partially mediated
by NLRP3 (84). The fact that virulent Ehrlichia infection
causes caspase-11 production is eye-catching considering that
the non-canonical inflammasome pathway is best-known to
be activated by LPS directly binding to pro-caspase-11 in
the cytosol, yet Ehrlichia species lack LPS as described above
(85). Regardless, IOE-induced activation of caspase-1 and -11
production contributes to the development of pyronecrosis, liver
injury, and excessive inflammatory responses (63).

Inflammasome Activation by Other Related
Bacterial Species
The number of studies showing the involvement of other related
bacterial species and inflammasome activation is minimal. In
a study using mouse and human macrophages by Smalley and
coworkers, it was shown that infection with Rickettsia australis
activates NRLP3 inflammasomes in an ASC-dependent manner.
ASC-inflammasome activation was characterized by significantly
higher concentrations of IL-1β , IL-18, and mature caspase-
1, however, BMM isolated from ASC−/− mice displayed an
attenuated inflammasome response with significantly reduced
levels of pro-inflammatory cytokines and caspases (86). This
work suggested that NLRP3 inflammasome contributes to
cytosolic recognition of R. australis.

Similar to Ehrlichia, infection with Anaplasma, another
tick-borne obligate intracellular bacteria that belongs to the
family Anaplasmataecae (1, 2), triggers inflammasome activation

(87). Even though sensing of Anaplasma spp. by PRRs
remains mostly unidentified, it was seen that infection by A
phagocytophilum, the etiologic agent of human granulocytic
anaplasmosis, induces activation of the NLRC4 inflammasome.
During A. phagocytophilum infection, cytosolic phospholipase
A2 metabolizes arachidonic acid from phospholipids, which
is converted to the eicosanoid prostaglandin E2 (PGE2) via
cyclooxygenase 2 (COX2) and prostaglandin mPGES-1 activity.
PGE2-EP3 receptor signaling culminates in the activation of the
NLRC4 inflammasome and secretion of IL-1β and IL-18 (87).

Autophagy and Its Role in Pathogenesis
Degradation of cytoplasmic components is achieved through
several pathways including macroautophagy, microautophagy
and chaperone-mediated autophagy (88). Macroautophagy
(standardly referred to as autophagy) is a highly conserved
process by which cells recycle organelles and intracellular debris
via degradation in the lysosomes. Autophagy is characterized
by the regulated formation of double-membrane compartments
known as phagophores. Phagophores encapsulate tagged
intracellular materials, as well as intracellular pathogens for
host defense purposes. Autophagic flux involves the maturation
of phagophores into autophagosomes, which then fuse with
lysosomes to form single-membrane autolysosomes, where
degradation of autophagic cargo, recycling of proteins and
ATP synthesis occur. Several autophagy-promoting molecules
including, ATG5, ATG12, ATG16, ATG8, and Beclin-1, mediate
the induction of autophagy (89–92). Any marked decrease in
production of these proteins or in lipidation of ATG8/LC3
(LC3 is the mammalian homolog of yeast ATG8) attenuates the
formation of autophagosomes and impairs the autophagy process
overall. Autophagy has been implicated in many fundamental
biological processes including aging, immunity, cell development
and differentiation by regulating inflammation.

Autophagy vitally combats pathogens during most infection
processes. However, several intracellular pathogens evade the
host innate immune defense system by exploiting autophagy as a
pathway to obtain nutrients, fatty acids, and carbohydrates
required for intracellular survival and replication (93).
Recent studies suggested that autophagy promotes survival
and replication of obligate intracellular bacteria, such as
Ehrlichia chaffeensis (64), Anaplasma phagocytophilum (94)
and SFG Rickettsia (95). These bacteria would be examples
of microorganisms capable of capturing nutrients through
autophagy to promote bacterial growth and replication (17, 96–
98). E. chaffeensis exploits autophagy proteins to obtain nutrients
by secreting the protein ETF-1 (Ehrlichia translocated factor-1).
ETF-1 targets the endosomal protein, RAB5, which is associated
with an early endosome-like membrane-bound compartment
that contains Ehrlichia but lacks bactericidal functions (i.e.,
ehrlichial inclusions). Binding of E. chaffeensis ETF-1 to
RAB5 and autophagy-initiating class III phosphatidylinositol 3
kinase (PtdIns3K) is followed by Beclin-1, VPS34, and ATG5
recruitment to form an autophagosome that binds to the
ehrlichial inclusion (64, 97, 99). Thus, E. chaffeensis hijacks
the RAB5 autophagy pathway to create a non-microbicidal
phagosomal complex to capture and deliver nutrients from
already degraded cellular debris within the cytoplasm. In other
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words, the RAB5-associated phagosomal complex acts as an
intracellular transport vesicle, in which captured cytosolic
nutrients are delivered to E. chaffeensis. E. chaffeensis remains
sheltered in endosome-like inclusions that were formed upon
initial entry and internalization into the host cell (100).

Using a murine model of fatal ehrlichiosis, we have shown
that IOE also exploits autophagy to survive and replicate
within macrophages. Like E. chaffeensis, IOE induces autophagy
in macrophages (the primary target cells) to survive and
replicate within these phagocytic cells. Enhanced autophagy in
IOE-infected MyD88−/− BMM enhanced intracellular bacterial
survival and replication (63). As a counteracting protective
mechanism, signaling via MyD88 negatively regulates autophagy
induction. Thus, MyD88 signaling during IOE infection
plays a protective role by attenuating bacterial survival
and replication via inhibition of autophagy induction (63).
As mentioned above, MyD88 not only blocks autophagy
induction, but also inhibits autophagosome-lysosomal fusion
and, consequently, also inhibits the autophagic flux. Blocking
autophagy induction with inhibitor compounds attenuated
bacterial survival. The MyD88-mediated blocking of autophagic
flux also resulted in defective elimination of mitochondrial
DAMPs (i.e., defective mitophagy).

Mechanistically, we found that MyD88 negatively regulates
the autophagy process in IOE-infected macrophages via
activation of mammalian target of rapamycin complex 1
(mTORC1), a member of the phosphoinositide 3-kinase (PI3K)
family (63). The mTORC1 pathway is a well-known negative
regulator of autophagy induction as it inhibits the binding
of Beclin-1 to ULK: a vital first step in the formation of
autophagosomes (101). It is not clear how MyD88 induces
activation of mTORC1 in macrophages following infection
with virulent IOE. The mTORC1 pathway is activated under
homeostatic conditions because it promotes cell survival and
proliferation. In contrast, mTORC1 is inhibited by amino
acid starvation and cellular stress. Cell starvation activates
mechanisms that cause upregulation of the autophagy process
during times of critical metabolic need. It is possible that
metabolic dysregulation during Ehrlichia infection may cause
mTORC1 activation. Although mTORC1 mediates inhibition of
autophagy, which works as a source of nutrients to Ehrlichia,
it promotes host cell survival and masks Ehrlichia within the
host cell. This paradoxical interaction between mTORC1 and
autophagy is an important immune evasion mechanism that
enables survival and replication of Ehrlichia. A model of the
canonical inflammasome activation involving regulation of
autophagy by the infection is described in Figure 2.

The Interplay Between Autophagy and
Inflammasome During Infection With Other
Rickettsial Pathogens
Similar to Ehrlichia infection and ehrlichiosis, autophagy appears
to play a major role in the pathogenesis of other rickettsial
diseases. Earlier studies in Rickettsia infection in mice suggested
a role of autophagy in host defense against SFG Rickettsia.
Endothelial cells infected with Rickettsia conorii displayed strong
antirickettsial effect upon cytokine-induced nitric oxide (NO)

stimulation. Ultrastructural analysis of infected endothelial
cells revealed double membrane structures that appeared to
be derived from the endoplasmic reticulum and contained
rickettsiae. This has been described as phagolysosomes, which
was postulated to be a process by which cytokine-activated
endothelial cells eliminate intracellular Rickettsia (102). The
anti-microbial role of autophagy in host response against
Rickettsia was also suggested by a study comparing the growth
kinetics of pathogenic and nonpathogenic rickettsiae in Vero
and Hela cells. Cells infected with the non-pathogenic strain,
R. montanensis, displayed the formation of autophagosomes,
which was associated with a low number of intracellular
organisms. On the other hand, superinfection of R. montanensis-
infected cells with the pathogenic species, R. japonica, failed
to control replication of both strains. This fact was associated
with restriction or inhibition of autophagosome formation
under superinfection conditions (103, 104). By employing
computational biology techniques, Gong and coworkers showed
that tissues or cells infected with R. conorii displayed the presence
of tRNA-derived RNA fragments (tRFs) which may interact
with transcripts associated with autophagy (105). Moreover, a
recent study using ATG5flox/flox mice suggested that autophagy
promotes Rickettsia australis infection. Tissues or BMM from
ATG5flox/flox infected with R. australis harbor a higher number
of Rickettsia compared to their counterparts of ATG5flox/flox Lyz-
Cre mice (in which macrophages only are deficient of ATG5,
one of the autophagy genes that are essential for initiation of
autophagosome). These data suggest that autophagy enhances
rickettsial survival and/or replication. Notably, treatment of
infected macrophages from ATG5flox/flox mice with recombinant
IL-1β attenuated rickettsial replication, indicating a protective
function of IL-1β and inflammasome activation in the host
response against Rickettsia. Importantly, these data suggest that
autophagy induction following R. australis infection negatively
regulates inflammasome activation and IL-1β production, a
consistent conclusion with the occurrence of cross-talk between
autophagy and inflammasome during Ehrlichia infection.

Similar to Ehrlichia and Rickettsia, autophagy induction
and formation of autophagosomes support the survival and/or
growth of Anaplasma phagocytophilum. This conclusion is
supported by earlier studies by Galindo and colleagues showing
that blood samples from pigs infected with A. phagocytophilum
express higher levels of several genes including GJA1, integrin
alpha-8, TSP-4, formin 1, Rho GTPase activating protein
5, keratin associated protein 26–1, calponin 3 and laminin
receptor 1 (106). These genes are involved in cytoskeletal
rearrangement and actin polymerization. Since autophagy
requires cytoskeleton rearrangement for the formation of
phagophore and internalization of invading microbes (107),
this study suggested that infection with A. phagocytophilum
induces modulation of autophagy. Elegant studies by Rikihisa
and co-workers revealed the key mechanism by which A.
phagocytophilum exploit autophagy to obtain nutrients for
their survival. A. phagocytophilum were initially found to
replicate in double-lipid bilayer membrane compartments that
colocalize with LC3 and Beclin 1. Stimulation of autophagy by
rapamycin favored A. phagocytophilum infection, and inhibition
of the autophagosomal pathway impaired bacterial growth
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FIGURE 2 | Model of canonical inflammasome activation involving regulation of autophagy induced by Ehrlichia. The canonical iflammasome activation pathway

proposed in Ehrlichia infection involves two steps. In the first step, Ehrlichia invade the target cell and induce TLR9/MyD88 downstream targets to activate NF-κB.

Activated NF-κB function as a transcription factor to upregulate NRLP3 complexes, pro-IL1β and pro-IL-18. In the second step, NRLP3 inflammasomes would be

activated after recognition of Ehrlichial PAMPS which are secreted to the cytosol via type I and IV secretion systems. Accumulation of mtDAMPS originated by

inhibition of autophagy via MyD88/mTORC1 signaling would also induce inflammasome activation. Inflammasome activation results in activation of caspase-1 that

subsequently induces cleavage of pro-IL1β and pro-IL-18 into their mature forms. Mature IL-1β and IL-18 are then secreted to the extracellular space to contribute to

the establishment of a pro-inflammatory environment. Direct arrow: positive regulation; blocking arrow: negative regulation; question mark (?) means hypothetical, and

not experimentally proven.

(94). Mechanistically, it was found that A. phagocytophilum
induces autophagy through binding of Anaplasma translocated
substrate 1 (Ats-1), type IV secretion system effector to Beclin
1-ATG14L pathway. This binding of the bacterial secreted
molecule to the autophagosome enables Anaplasma to obtain
nutrients and essential amino acids for their survival and
replication (65, 66, 108).

Type I IFN Response in Ehlichiosis
Type I IFNs vs. Bacteria

Classical studies have focused on the role of type I interferons
(IFN-I) in the induction of antiviral host defense (109, 110),
however, others have demonstrated that IFN-I are also induced
during infections with non-viral pathogens such as bacteria,
mycobacterium, and parasites (87, 111–115). Despite this
understanding, the mechanism of action of IFN-I in host defense
against bacterial infections is still poorly elucidated. It looks
like IFN-I exert disparate/dual roles depending on the type of
bacterial infection. For example, infection with Gram-negative
intracellular Chlamydia trachomatis can induce IFN-I, which

restrict bacterial growth (116–118). Similarly, IFN-I are induced
in mice infected with Gram-positive bacteria, such as Group
B streptococcus and Listeria monocytogenes. In these cases,
IFN-I are protective as evidenced by a higher susceptibility
to infection in IFNAR−/− mice compared to WT (119–122).
On the other hand, IFN-I play a deleterious role during
infection with other pathogens by promoting dysregulated
inflammation and host cell death. For example, induction of IFN-
I response in macrophages causes necroptosis upon infection
with Salmonella (80). Additionally, IFN-I have also strong pro-
inflammatory activities that contribute to high mortality rates
in cases of septic shock (123). Factors that determine the
protective or pathogenic function of IFN-I during infections
with diverse pathogens are not entirely understood. However,
studies suggested that the effector function of IFN-I depend
on multiple bacterial and host factors including route and site
of infection, bacterial virulence, and infectious dose. Table 1
summarizes the diverse contributions of IFN-I to host responses
against several pathogens and the potential mechanism(s) by
which they promote protective or deleterious roles.
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TABLE 1 | IFN-I response in bacterial infections.

Bacteria Mechanism of IFN-I induction and

effects on host

References

Ehrlichia Trigger IFN-I responses through

MyD88 and other unidentified

receptor(s). IFN-I block autophagy

and induce activation of the

caspase-11-dependent

non-canonical inflammasome

pathway. By engaging caspase-11,

Ehrlichia trigger pyroptosis in

macrophages and induce assembly

of the NLRP3 inflammasome or other

yet unidentified inflammasomes that

activate caspase-1 and IL-1β/IL-18

secretion.

(63)

Brucella abortus IFN-I induction required STING- and

MyD88- dependent signals.

(124)

Coxiella burnetii Induction of IFN-I is mediated through

TLR7/9, RIG-1 and NOD1 and NOD2,

and signaling via MyD88 and IRF7.

(118, 125, 126)

Salmonella

enterica serovar

Typhimurium

Induction of IFN-I occurs by binding of

LPS and nucleic acids to TLR4/TLR3

with signaling via TRIF pathway.

(127)

Francisella

tularensis

IFN-I induce GBPs and activate AIM2

inflammasome leading to pyroptosis

in macrophage and removal of

replicative niche.

(128, 129)

We and others have shown that infection of WT mice
with virulent Ehrlichia species (IOE) induces upregulation
of IFN-I mRNA in liver tissues and secretion of IFN-I by
plasmacytoid dendritic cells and macrophages in the spleen.
IFNAR signaling plays a deleterious role in ehrlichiosis as
evidenced by increased resistance of IFNAR−/− mice to fatal
IOE infection. IFN-I mediate host cell death and suppression
of protective adaptive immune responses provided by CD4
Th1 cells. IFNAR signaling suppresses IFN-γ signaling, which
impairs induction of antimicrobial pathways crucial for clearance
of intracellular Ehrlichia (130, 131). Both murine IFNAR
deficiency and neutralization of IFN-α and IFN-β individually
decreased bacterial burden while correlating with increased IFN-
γ production (130). Notably, increased IFN-γ in IOE-infected
IFNAR−/− mice was not essential for protection against fatal
Ehrlichia infection (130). Studies from our laboratory suggest that
attenuated inflammasome activation and enhanced autophagy
are potential mechanisms that afford protection against fatal
ehrlichiosis in IFNAR−/− mice (54, 84). Deficiency of IFNAR
resulted in attenuation of caspase-11 mediated-noncanonical
inflammasome activation during IOE infection, also leading
to reduced secretion of IL-1β and minimal cell death. IFN-
I signaling also contributed to a pathogenic immune response
during fatal Ehrlichia infection due to induction of cytotoxic
TNF-α-producing pathogenic NK cells, neutrophils, and CD8
T cells that cause tissue damage. Additionally, IFNAR signaling
induced pyroptosis or pyronecrosis in ehrlichiosis, which is
consistent with other infection models. Expression of IFNAR on
non-hematopoietic, but not on hematopoietic cells, is likely to be
an important point of modulation of immunopathology during
fatal Ehrlichia infection. Based on the above studies, we propose

that endothelial cells and/or hepatocytes are major cellular
sources of deleterious IFNAR signaling for the following reasons:
(i) although the primary target cells are macrophages, Ehrlichia
species infect other parenchymal cells, such as hepatocytes and
endothelial cells, as shown by immunohistochemistry staining of
infected liver tissues; (ii) fatal ehrlichiosis in humans andmice are
associated with hepatic apoptosis and necrosis which correlate
with IFN-I response in mice suggesting that hepatocytes play a
role in the pathogenesis of the disease; and (iii) Ehrlichia exhibit
tropism for microvascular endothelium leading to vascular
inflammation and dysfunction/damage; this represents one of the
key features of Ehrlichial pathogenesis, especially in patients with
meningitis or encephalitis.

Regulation of Inflammasome Activation by Type I

IFNs

How IFN-I regulate canonical or non-canonical inflammasome
activation is not completely understood. The major
inflammasome complex that is regulated by IFN-β is NLRP3.
Several studies showed that TLR4-TRIF axis regulates caspase-11
expression and non-canonical NLRP3 inflammasome-mediated
host defense against enteropathogens, such as Escherichia coli,
Citrobacter rodentium and Salmonella Typhimurium (132).
Further studies indicated that IRF3 and IFNAR signaling during
infections with intracellular bacterial pathogens that reside
within phagosomes are required for caspase-11 expression and
activation of the NLRP3 inflammasome and pyroptosis (80, 133).
Recent studies have demonstrated that IFN-I promote caspase-
11 activation by inducing several genes which are members of
the IRG and GBP families of IFN-inducible GTPases. These
GBP proteins are found to be essential for the activation of
caspase-11–dependent pyroptosis in response to infections with
Legionella pneumophila as they induce disruption of vacuoles
containing Legionella causing the release of bacterial LPS
into the cytosol (72, 117, 134–136). Cytosolic LPS is a known
PAMP that triggers activation of caspase-11. Other studies
have shown that IFN-I-induced GBP protein expression is
required for the full induction of pyroptosis by LPS delivered
to the cytoplasm independent of infection. Pyroptosis has been
widely associated with cleavage of gasdermin D with release
of its N-terminal portion that can destabilize the membrane
creating pores leading to cell death (137). Collectively, these
studies support that GBP proteins play a role in the detection
of cytoplasmic LPS and/or the subsequent activation of the
noncanonical inflammasome leading to pyroptosis (116, 117).
Interestingly, while the induction of pyroptosis by cytoplasmic
L. pneumophila LPS appears to be strictly dependent on GBP
proteins, cytoplasmic LPS derived from Enterobacteriaceae can
trigger pyroptosis in the absence of GBP proteins, however,
with diminished efficiency (117, 124). This discrepancy could be
due to the difference in the structures of LPS and TLR ligands
among these bacterial species. Nevertheless, whether IFN-I-
induced GBP proteins contribute to activation of caspase-11
by Ehrlichia that reside within vacuole or phagosome remains
elusive. A model for the participation of IFN-I in the regulation
of inflammasome activation in Ehrlichia infection is proposed
in Figure 3.
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FIGURE 3 | Model of regulation of inflammasome activation by type I IFNs in Ehrlichia infection. During Ehrlichia infection, type I IFNs are thought to regulate

inflammasome activation under a non-canonical fashion. Initially, Ehrlichia invade the target cell and induce TLR9/MyD88 signaling to upregulate NRLP3 complexes,

pro-IL1β and pro-IL-18 via NF-κB. Type I IFNs from autocrine or paracrine sources would signal through IFNAR to upregulate GBPs and caspase-11. GBPs would

disrupt vesicles containing Ehrlichia allowing the escape of ehrlichial PAMPs to the cytosol. Ehrlichial PAMPs would bind caspase-11 and subsequently induce

inflammasome activation followed by secretion of mature IL-1β and IL-18 (as in the canonical pathway) and cleavage of gasdermin D resulting in pyroptosis. Direct

arrow: positive regulation; blocking arrow: negative regulation; question mark (?) means hypothetical, and not experimentally proven.

CONCLUSION

The last decades were marked by several advances in the
description of how Ehrlichia-host interactions are established.
Animal models have provided valuable information regarding
the cell-mediated mechanisms that govern protection and
immuomopathogenesis. Even though there is no vaccination
available against Ehrlichia, understanding the mechanisms
that protect the host against infection will assist us in
the development of an effective vaccine. In terms of cell-
mediated immunity, we currently know the importance
of CD4 Th1 and NKT cell responses in protecting the
host. Therefore, vaccine prototypes that prioritize such
responses would represent promising tools within the vaccine
development pipeline. Regarding the intracellular innate
immune mechanisms and their nuances in modulating Ehrlichia
infection, targeting autophagy and inflammasome activation
can also represent promising options in drug development.
By inhibiting autophagy and attenuating inflammasome
activation via modulation of MyD88 and IFN-I signaling
it would be possible to control the disease, once these
mechanisms were categorically highlighted as key in Ehrlichia
pathogenesis. Despite the current understanding, several gaps
in knowledge concerning Ehrlichia-host interaction are yet to

be solved for better planning of translational strategies against
the disease.
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