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Abstract: Breast cancer is the most common cancer, with the highest mortality rate and the most
diagnosed cancer type in women worldwide. To identify the effect innate immune checkpoint for
breast cancer immunotherapy, the innate immune prognostic biomarkers were selected through the
ICI score model and the risk model in breast cancer patients. Moreover, the reliability and accuracy of
the ICI score model and the risk model were further examined through the analysis of breast cancer
prognosis and immune cell infiltration. The pan cancer analysis further confirmed and selected
CXCL9 as the key innate immune checkpoint for breast cancer immunotherapy and identified three
small molecular drugs for target CXCL9 through molecular docking analysis. In summary, CXCL9
significantly correlated with the prognostic of breast cancer and immune cell infiltration and could be
innate immune checkpoint for breast cancer immunotherapy.

Keywords: breast cancer; innate immune; immune microenvironment; checkpoint immunotherapy;
small molecular target drug

1. Introduction

Breast cancer is the most common cancer, with the highest mortality rate and the
most diagnosed cancer type in women worldwide [1]. Based on the clinical characteristics
and gene expression, breast cancer is a heterogeneous disease with multiple molecular
subtypes, including ER+, HER2+, and triple-negative [2–4]. Among these subtype breast
cancer patients, the treatment strategies and clinical characterization vary differently [5]. As
so far, the treatment solutions of breast cancer patients include surgery therapy, radiation
therapy, chemotherapy, and hormone therapy [6]. Even though the treatment options
for breast cancer patients have been more mature, the high fatality rate of breast cancer
has not been effectively improved. Therefore, novel therapy routes for breast cancer
patients are urgently needed. In recent research, immunotherapy has gradually become an
emerging effective treatment method for multiple type of cancer, including breast cancer
and subtypes of breast cancer [7,8]. However, the effective therapeutic target and specific
treatment strategy for breast cancer immunotherapy still needs further study.

Recently, the new upsurge of tumor research from tumor immunity and tumor mi-
croenvironment were stimulated, and it is believed that tumor immunity will be the most
powerful weapon to overcome cancer treatment [9–11]. With the progress of cancer im-
munotherapy, the importance of innate immune systems in antitumor were gradually
attracted the attention of researchers [12–16]. Innate immune response as the first line and
connect to adaptive immunity for protect the human body stay away from pathogens and
tumors through multi-type special immune cells and pathways. There are various types of
cells involved in innate immunity, including innate lymphoid cells (ILCs), macrophages
and natural killer (NK) cells. More and more research evidence suggested that most of the
immune cells in and around solid tumors come from the innate immune system in multiple
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type of cancer, including breast cancer [17–21]. Moreover, the importance of innate immune
in cancer immunology and anticancer progress were further studied. Oncolytic herpes
simplex virus-1 [16,22] significantly promoted the infiltration and activation of innate
immune cell in tumor microenvironment via mediated tumor lysis. The high expression
level of TIM-3 from tumor-associated dendritic cells significantly decreased innate immune
response through its interact with HMGB1 and suppressed the recognition and recruitment
of the molecular of nucleic acids [23]. These results suggested that the key role of innate
immune response in the progress of tumors and may be the core element of the success
of cancer immunotherapy. Furthermore, the treatment of immune checkpoints for can-
cer immunotherapy significantly inhibited antitumor immunity and innate immune cells
mediated immune responses, including CTLA-4 [24–26], PD-1 [27–29] and TIGIT [30–32].
Although the research study of innate immune response in cancer has made great progress,
the effect innate immune checkpoints for cancer immunotherapy based on innate immune
response systems still needs further exploration.

To understanding and screening the specific innate immune checkpoints for breast
cancer immunotherapy, a series of bioinformatics analysis were performed for the transcrip-
tome profiles of innate immune response genes in breast cancer patients via TCGA datasets
and GEO datasets. In this study, we constructed and calculated innate-cluster-immune (ICI)
score to predict the overall survival and prognosis of breast cancer patients through the
expression level of significantly differentially expressed innate immune response prognostic
signatures. Besides, the model of risk prognostic was also constructed. Comprehensive
analysis of the effectiveness of risk score and ICI score, 11 candidates innate immune
response signatures were selected. Pan analysis for those 11 candidates innate immune
response signatures and found that CXCL9 may be the key innate immune checkpoint for
breast cancer therapy.

2. Materials and Methods
2.1. Data Download and Preprocessing

The normalized transcriptional expression profile of breast cancer patients of were
download from TCGA database. A total of 1109 breast cancer patients’ tissues and 113 nor-
mal breast tissues were included from TCGA-BRCA project. Besides, the mRNA expression
data of 17 normal breast tissue samples and 104 breast tumor tissues were obtained from
GEO GSE42568 project. To analyze innate immune checkpoint for breast cancer patients,
we downloaded the genetic information of 1378 genes related to innate immunity from
the InnateDB database. The significantly differentially expressed immune-related genes in
breast cancer tissues compared with normal breast tissues were identified (|logFC (fold
change)| >1 and FDR value < 0.05) with R packages edgeR [33] and limma [34].

2.2. Identification of the Innate Immune-Related Signatures

Kaplan–Meier survival analysis was performed through the survival package to
screen differentially expressed innate immune-related genes (IIRGs) with p-value < 0.05 as
prognostic signatures to predict breast cancer prognosis. A total of 20 IIRGs were selected
for breast cancer. Furthermore, CNV analysis were performed for those 20 IIRGs in breast
cancer patients group compared with normal group.

2.3. Consensus Clustering Analysis

To further understand the correlation between 20 innate immune-related signatures
and the innate immune subtype of breast cancer, we clustered the expression profiles of
breast cancer patients into three subtypes through the ConsensusClusterPlus package [35].
Then, overall survival analysis were performed among three innate immune subtype of
breast cancer patients via chisq. test. Besides, we also performed GSVA analysis for three
innate immune subtype of breast cancer patients through the R package, GSVA [36].
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2.4. Functional Enrichment Analysis and Gene Set Enrichment Analysis

Firstly, the differentially expressed analysis among three innate immune subtype of
breast cancer patients. Secondly, Gene Ontology (GO) enrichment analysis for differentially
expressed gene sets through using the R package clusterProfiler (FDR value < 0.05) [37].
Gene Set Enrichment Analysis (GSEA) is a computational method to identify whether the
expression of the specific gene sets show statistically significant differences between two
groups. We performed GSEA analysis and multiple GSEA analysis in immune response
pathway via The Molecular Signatures Database (MSigDB).

2.5. Constructed and Calculated the Innate-Cluster-Immune (ICI) Score

Next, based on the expression profiles of three innate immune subtype of breast cancer
patients, we constructed and calculated the (innate cluster immune) ICI score via Principal
component analysis (PCA) method through using R package Boruta [38]. Then, overall
survival analysis was performed between the high ICI score group and the low ICI group
in breast cancer patients. Besides, TMB analysis was performed between the high ICI score
group and the low ICI group. Overall survival analysis for TMB score and ICI score was
combined with TMB score in breast cancer patients.

2.6. Establishment and Validation of the Risk Prognosis Model

Risk prognosis model was established based-on the innate immune-related prognostic
signatures by the LASSO Cox regression and multivariate Cox regression analysis through
R packages glmnet [39] and survival. Then, breast cancer patients were divided into high-
risk group and low-risk group according to the risk prognosis score. Kaplan–Meier survival
analysis was performed between high-risk group and low-risk group. Then, based-on the
risk score and clinical indicators (Age, T, Stage, M, N), the plot of prognostic nomogram was
established through multivariate regression via R packages survival and regplot. And the
correlationship of clinical indicators and risk prognosis score were assessed between high-
risk score group and low risk score group in breast cancer patients, including age, stage,
T, M and N. Besides, the correlationship of the risk score and the expression of immune
infiltration pathway, m6A readers and immune checkpoint in breast cancer patients were
evaluated.

2.7. Statistical Analysis

All statistical analysis and most of the bioinformatics analysis were performed via R
(R version 4.0.2) packages including RNAseq count data normalization, differential gene
expression analysis, Kaplan–Meier survival analysis, cox regression analysis and LASSO
regression analysis. Heatmap was performed by pheatmap package. Kaplan Meier survival
curves were plotted via survival packages. p-value < 0.05 was considered to be statistically
significant.

3. Results
3.1. Identification of the Innate Immune-Related Prognostic Signatures in Breast Cancer Patients

Firstly, we downloaded the expression profiles and the clinicopathological characteris-
tics of breast cancer patients from The Cancer Genome Atlas Program (TCGA-BRCA) and
Gene Expression Omnibus (GEO) database (GSE42568). Then, we identified 103 innate
immune-related genes were significantly differentially expressed in breast cancer tissue
samples compared with normal tissue samples (FDR < 0.05, |logFC| > 2; Figure S1A).
Secondly, to further screening prognostic signatures, univariate Cox regression analysis
were performed and the results found that 199 innate immune-related genes were selected.
Analysis of the transcriptome profiles and the results of the univariate cox regression anal-
ysis found that 20 out of these 103 differentially expressed innate immune-related genes
could be mapped to the prognostic signatures in breast cancer patients (Figure S1B). The
expression levels of these 20 innate immune-related prognostic signatures in breast cancer
were shown in Figure 1A. And these prognostic signatures all significantly differentially ex-
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pressed between tumor group and normal group. To further understanding the importance
of these 20 innate immune-related prognostic signatures in the progress of breast cancer,
the correlation of these 20 innate immune-related prognostic signatures were analyzed and
exhibited significantly strongly correlation in breast cancer patients (Figure 1B). As we all
known, copy number variations (CNV) is one of the mainly factors to affect the expression
abundance of genes in multiple cancers [40–42]. Thus, we performed CNV frequency analy-
sis for those 20 innate immune-related prognostic signatures in breast cancer. It’s noted that
17 out of 20 innate immune-related prognostic signatures were shown differentially levels
of the CNV of gain and loss in breast cancer patients (Figure 1C,D). Besides, the mutation
level of those 20 innate immune-related prognostic signatures also detected through R
packages maftools and shown in Figure S1C. Furthermore, we further confirmed that 15 out
20 innate immune-related prognostic signatures exhibited significantly differences overall
survival probability between the high gene expressed group and the low gene expressed
group in breast cancer patients (Figure S2A–O).
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Figure 1. Identification of differentially expressed innate immune-related signatures in breast cancer
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transcriptome profiles in breast cancer, the network of the correlation of these innate immune-related
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signatures were shown in (C,D).
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3.2. Construction of the InnateImmCluster Molecular Subtypes Based on the Expression of Innate
Immune-Related Prognostic Signatures in Breast Cancer

Then, identification of three innateImmCluster molecular subtypes via the expres-
sion levels of 15 innate immune-related prognostic signatures in breast cancer through R
packages, ConsensusClusterPlus (Figure S3A). And Kaplan–Meier survival analysis sug-
gested that significantly differences in overall survival probability of breast cancer among
these three-breast cancer innateImmCluster subtype (Figure 2A). Then, the GO enrich-
ment analysis and KEGG pathway enrichment analysis was performed for differentially
expressed genes among these three innateImmCluster molecular subtypes in breast cancer
patients. These differentially expressed genes were significantly enriched mainly involved
in immune-related pathways, including T cell chemotaxis, regulation of B cell activation, in-
flammatory response and TLR signaling pathway (Figures 2B and S3B). To further confirm
the immune function of the innateImmCluster subtypes, the GSVA analysis was performed
and it was found that most of the immune-related pathways were significantly repressed
in the cluster A group with poorer prognosis of innateImmCluster molecular subtypes
compared with cluster B or cluster C with better prognosis in breast cancer patients, includ-
ing cytokine-cytokine receptor interaction, T cell receptor signaling pathway, chemokine
signaling pathway and B cell receptor signaling pathway (Figures 2C and S3C). The GSVA
results are consistent with the pathway enrichment analysis and suggested that the in-
nateImmCluster molecular subtypes could be used for the immunophenotyping of breast
cancer patients. To further examine these results, analysis for the immune infiltration of
these three innateImmCluster molecular subtypes in breast cancer patients and found that
the lower abundance of immune cell infiltration in cluster A innateImmCluster molecular
subtypes than that in cluster B or cluster C innateImmCluster molecular subtypes in breast
cancer patients (Figure 2D). Besides, the expression of those 15 innate immune-related
prognostic signatures were identified and significantly differentially expressed among these
three innateImmCluster molecular subtypes in breast cancer patients (Figure S3D).



Genes 2022, 13, 88 6 of 18Genes 2021, 12, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 2. Identification of the InnateImmCluster molecular subtype of breast cancer by the expres-
sion of innate immune-related signatures in breast cancer. (A) Overall survival of breast cancer pa-
tients were analyzed among the three cluster of InnateImmCluster molecular subtype. (B) GO en-
richment analysis for differentially expressed genes among the three cluster of InnateImmCluster 
molecular subtype in breast cancer. (C) GSVA analysis revealed that most of the immune response 
related pathway were significantly repressed in cluster A of InnateImmCluster molecular subtype 
in breast cancer compared with cluster B. Boxplot showing that the abundant of immune cells infil-
tration (D) among these three clusters of InnateImmCluster molecular subtype in breast cancer pa-
tients. * p < 0.05, *** p < 0.001, NS for not significant (Chi-Squared test). 

3.3. Calculated the ICI Score to Forecast the Prognosis for Breast Cancer Patients 
To further explore the role of the innate signatures in tumor immunotherapy, we 

constructed the genecluster subtype of breast cancer via the expression levels of differen-
tially expressed among innateImmCluster molecular subtypes samples through principal 
component analysis. And overall survival analysis showed that the survival probability 
was significantly differences among these three genecluster subtypes of breast cancer (Fig-
ure S4A). Then, we further identified the 97 prognostics signatures significantly correlated 
with the progress of breast cancer from differentially expressed genes among genecluster 
subtypes of breast cancer patients through univariate Cox regression analysis. And the 

Figure 2. Identification of the InnateImmCluster molecular subtype of breast cancer by the expression
of innate immune-related signatures in breast cancer. (A) Overall survival of breast cancer patients
were analyzed among the three cluster of InnateImmCluster molecular subtype. (B) GO enrichment
analysis for differentially expressed genes among the three cluster of InnateImmCluster molecular
subtype in breast cancer. (C) GSVA analysis revealed that most of the immune response related
pathway were significantly repressed in cluster A of InnateImmCluster molecular subtype in breast
cancer compared with cluster B. Boxplot showing that the abundant of immune cells infiltration
(D) among these three clusters of InnateImmCluster molecular subtype in breast cancer patients.
* p < 0.05, *** p < 0.001, NS for not significant (Chi-Squared test).
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3.3. Calculated the ICI Score to Forecast the Prognosis for Breast Cancer Patients

To further explore the role of the innate signatures in tumor immunotherapy, we
constructed the genecluster subtype of breast cancer via the expression levels of differen-
tially expressed among innateImmCluster molecular subtypes samples through principal
component analysis. And overall survival analysis showed that the survival probability
was significantly differences among these three genecluster subtypes of breast cancer (Fig-
ure S4A). Then, we further identified the 97 prognostics signatures significantly correlated
with the progress of breast cancer from differentially expressed genes among genecluster
subtypes of breast cancer patients through univariate Cox regression analysis. And the
innate cluster immune (ICI) score was calculated through the expression levels of these 97
prognostics signatures in breast cancer patients. To examine the effectiveness of ICI score,
overall survival analysis was performed and found that the higher survival probability in
the high ICI score group of breast cancer patients than that in the low ICI score group of
breast cancer patients (Figure 3A). The connection of innateImmCluster subtype, geneclus-
ter subtype, ICI score and the status of prognostic in breast cancer patients were shown
in the Figure 3B through R packages, ggalluvial. Recently research suggested that Tumor
Mutational Burden (TMB) could be a new effective biomarker for cancer immunotherapy
through the WGS and WES analysis in multiple cancer type. Thus, TMB analysis was
performed for breast cancer patients. The overall survival analysis suggested that the high
TMB levels group in breast cancer with poorer prognosis compared with the low TMB levels
group in breast cancer patients (Figure 3C). And TMB analysis combined with ICI score in
breast cancer shows that the high TMB level with high ICI score exhibited better prognosis
and survival probability than that in the high TMB level with low ICI score in breast cancer
patients. Consistently, the low TMB level with high ICI score exhibited better prognosis
and survival probability than that in the low TMB level with low ICI score in breast cancer
patients (Figure 3D). The mutational panorama and mutation rates of the top 20 genes in the
high ICI score of breast cancer patients and the low ICI score of breast cancer patients were
shown in Figure 3E,F. The correlation of immune cell infiltration and the ICI score were
further analyzed and demonstrated that ICI score significantly positively correlated with
most of the infiltration abundance of immune cells (Figure S4B). Then, the expression levels
of these 15 innate immune-related signatures were detected and exhibited significantly
differentially expressed among these three genecluster subtype samples of breast cancer
(Figure S4C). Furthermore, the ICI score were exhibited significantly differences among the
innateImmCluster subtypes or genecluster subtypes (Figure S4D,E). Besides, the role of the
ICI score in the prognostic in breast cancer was further examined through the prognosis of
the other clinical features in breast cancer patients, including stage status, T, M, age and N.
The distribution of the ICI score in clinical characteristics of breast cancer patients were
analyzed and shown in Figure S5A–F, including survival status, age, stage, T, M and N.
The overall survival probability between the high ICI score and the low ICI score in breast
cancer patients with clinical characteristics of Stage, T, N and M were analyzed and shown
in Figure S6A–H. Consistently, the high ICI score with better prognosis in most of clinical
feature’s subgroup in breast cancer patients compared with the low score groups in breast
cancer patients. These results suggested that the ICI score may become a new biomarker
for cancer immunotherapy in breast cancer.
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Figure 3. Constructed the ICI score model in breast cancer patients. (A) Comparison of the high
ICI score level group and the low ICI score level group of overall survival of breast cancer patients
through Kaplan–Meier survival analysis. (B) Prediction of the connection of innateImmCluster
subtype, genecluster subtype, ICI score and the survival status of prognostic in breast cancer patients
were shown via sankey plot. (C) Analysis of overall survival probability of breast cancer between
the high TMB level group and the low TMB level group. (D) Combination of the ICI score and TMB
level, the overall survival probability of breast cancer prognosis were analyzed. Comparison of the
mutation rates of the top 20 genes between the high ICI score of breast cancer (E) and the low ICI
score of breast cancer (F) through maftools.
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3.4. Constructed the Risk Model for the Prognostic in Breast Cancer Patients

Subsequently, the sample of breast cancer patients were randomly divided into a
training group and a test group for further analysis. To further screened the innate im-
mune checkpoint for cancer immunotherapy, the univariate cox analysis and the Lasso
regression analysis were performed and 11 prognostic signatures were identified for con-
structed the risk model for the breast cancer prognosis in training group and test group
(Figure 4A,B). And the risk score = coefficient(ELANE) × Exp(ELANE) + coefficient(NRG1)
× Exp(NRG1) + coefficient(CLEC6A) × Exp(CLEC6A) + coefficient(IDO1) × Exp(IDO1) +
coefficient(PLK1) × Exp(PLK1) + coefficient(CXCL9) × Exp(CXCL9) + coefficient(IL12B) ×
Exp(IL12B) + coefficient(CFB) × Exp(CFB) + coefficient(CRISP3) × Exp(CRISP3) + coeffi-
cient(IGHE) × Exp(IGHE). The overall survival analysis was performed between high-risk
group and low risk group in entire-set, training set and test set. The results found that
all low-risk with higher survival probability in all data sets compared with the high-risk
groups (Figure 4C). The ROC analysis was performed and suggested that the risk model of
prognosis in breast cancer patients with good predictive performance and reliability was
shown in Figure 4D (AUC = 0.778 in training set; AUC = 0.758 in test set; AUC = 0.765 in
entire set). Then the distribution of the risk score in breast cancer patients were shown in
Figure 4E. Kaplan–Meier survival analysis showed that the high-risk group with lower
survival probability and poorer prognosis than low-risk group in training set, test set and
entire set in most of clinical characteristics group in breast cancer patients (Figure S7A–H).
For instance, the high-risk score group with significant poorer survival prognosis than
low-risk group in N1–3 phase patients, stage I–II phase patients, stage III–IV patients,
T1–T2 phase patients and T3–T4 phase patients of breast cancer. Moreover, univariate
and multivariate independent prognostic analysis further confirmed that these 11 innate
immune prognostic signatures of the risk prognostic model can be independent of other
clinical features for overall survival and outcome for breast cancer patients (Figure S8A,B).
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Figure 4. Identification of innate immune-related prognostic and constructed the risk model in breast
cancer. The distribution of the partial likelihood deviation of the LASSO coefficient was shown in
(A). (B) Exhibition of the LASSO coefficients of 11innate immune prognostic signatures. (C) Firstly,
the sample of breast cancer patients were randomly divided into entire group, training group and
a test group for prognostic analysis. Kaplan–Meier survival analysis between the high-risk group
and the low-risk group of breast cancer patients of entire-set, training set and test set. (D) ROC curve
of the risk prognostic model in breast cancer patients of entire-set, training set and test set. (E) The
distribution of the risk score in breast cancer showing through PCA analysis.

3.5. Correlation of the Risk Model and Cancer Immunity

Subsequently, the nomogram plot was used to forecast the overall survival of breast
cancer prognosis through the risk score and other independent prognostic factors of clinical
characteristics in breast cancer at one year, three year and five years (Figure 5A). The
heatmap showed that the expression levels of these 11 innate immune prognostic signatures
between high-risk group and low risk-group were exhibited in breast cancer patients (Figure
S9A). To further confirmed the role of the risk score in immune infiltration, the heatmap
suggested that most of the abundant of immune cells were significantly suppressed in
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high-risk group compared with the low-risk group in breast cancer patients (Figure S9B).
Besides, the pathway of immune-related were significantly repressed in the high-group
compared with the low-group in breast cancer patients (Figure 5B). Recently, components
of m6A readers and methyltransferase complex play the key role in cancer immunotherapy
in multiple cancer. Thus, the expression of these m6A related factors were analyzed and
it was found most of these factors were significantly differentially expressed between the
high-risk group and the low-risk group in breast cancer patients (Figure 5C). Furthermore,
we further analysis the correlation of risk score and immune checkpoint in breast cancer
and demonstrated that most of key checkpoint were significantly differentially expressed
between the two groups in breast cancer patients, including CD44, TIGIT, CTLA4, CD274,
CD86 and CD80 (Figure 5D).
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Figure 5. Correlation of the risk model and cancer immunity. (A) According to the risk model,
prediction of the one-year, three-year and five-year overall survival of breast cancer patients through
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nomogram plot. (B) Comparison of the abundant of immune function pathway between the high-risk
level group and the low-risk level group in breast cancer patients through GSVA analysis. (C) The
expression levels of m6A readers and component of the m6A methyltransferase complex were
showing between the high-risk level group and the low-risk level group in breast cancer patients.
(D) Comparison of the expression levels of immune checkpoint in the high-risk level group and the
low-risk level group of breast cancer patients. * p < 0.05, ** p < 0.01, *** p < 0.001, NS for not significant
(t-test).

3.6. Identification of CXCL9 as the Key Innate Immune-Related Prognostic Biomarker for Breast
Cancer through Pan Cancer Analysis and Immune Infiltration Analysis

Pan cancer analysis was performed and it was found that only 4 out of these 11 innate
immune prognostic biomarkers were significantly different between the high expression
level and low expression level in the prognosis of multiple cancer type, including breast
cancer and lung cancer (Figure S10A–D). Then, immune infiltration analysis was performed
through ESTIMATE and CIBERSORT methods. The results suggested that CXCL9 is one of
the most correlations of abundant of immune cell infiltration than other ten innate immune
prognostic biomarkers in multiple cancer types (Figures 6A and S11A,B). For instance, the
expression of CXCL9 was significantly positively correlated with the most of the immune
score and most of the immune cell infiltration. Consistently, the expression of CXCL9
was significantly negatively correlated with the tumor purity in multiple cancer types.
Moreover, the expression level of CXCL9 significantly increased in triple negative breast
cancer patients compared with the HER2-enriched or ER-positive breast cancer patients
(Figure S11C). To further examine these results, the correlation of the expression of CXCL9
and immune cell infiltration were analyzed through TIMER database. According to the
results, expression of CXCL9 was significantly correlated with immune cell infiltration in
breast cancer patients and subtype patients, including basal-like, luminal-like and HER2
enriched (Figure 6B). Moreover, the correlation of the expression of CXCL9 and the two key
immune checkpoints were analyzed and CXCL9 exhibited significantly negative correlation
with immune checkpoint (CD274 and TIGIT) (Figure 6C,D). Taken together, CXCL9 could
be a new innate immune checkpoint for breast cancer therapy and immunotherapy.
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Figure 6. Immune cell infiltration analysis for innate prognostic biomarkers through transcriptome
profile. Comparison of the correlation of the expression of 11 innate immune prognostic biomarkers
and the levels of immune score (A) of multiple cancer patients through the transcriptome profile.
(B) Analysis for the correlation of the expression of CXCL9 and the abundance of immune cell
infiltration in breast cancer patients through TIMER database. The expression of CXCL9 exhibited
significant negative correlation with the key checkpoint CD274 (C) and TIGIT (D) in breast cancer.

3.7. Identification of Small Molecular Drug for Target CXCL9 through Molecular Docking

Furthermore, we further performed molecular docking analysis to identify small
molecular drug of target CXCL9 for breast cancer immunotherapy. Firstly, we analyze for
the correlation of the expression level of CXCL9 and small molecular target drug through
the drug sensitivity analysis via CELLMINER database. In total, we have identified 16
small molecular target drugs for CXCL9. The 3D structure of these 16 small molecular
target drugs were downloaded from PubChem database. Then, molecular docking analysis
was performed to further screen the effector drug bind to the protein structure of CXCL9
via AutoDock-vina tools. The docking results were visualization through discovery studio
and shown in Figure S12A–L. And the top six small molecular drugs were selected for
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further research. The binding sites were shown in Figures 7A–F and S13A–F. Among these
small molecular target drugs, the top three drugs of target CXCL9 were selected, including
alectinib, nelfinavir and etoposide (alectinib: affinity = −7.2; nelfinavir: affinity = −7.3;
etoposide: affinity = −6.6). These results suggested that CXCL9 significantly correlated
with the prognostic of breast cancer and immune cell infiltration and could be innate
immune checkpoint for breast cancer immunotherapy.
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molecular drugs were selected with high affinity to bind CXCL9 through Autodock-vina tools,
including alectinib: affinity = −7.2, nelfinavir: affinity = −7.3 and etoposide: affinity = −6.6.

4. Discussion

Breast cancer is the most common female malignant tumor in the world [1]. Recently,
more and more research evidence demonstrated that tumor immunity will become the
most powerful weapon to overcome the treatment of all cancer types. The importance
of innate and adaptive immune response in cancer were gradually paid attention to by
researchers [12,20,30]. And recently, related research keeps pouring out. Although, the
molecular mechanism of innate immune in breast cancer is still unknown. The main pur-
pose of this study is to identify innate immune-related prognostic signatures as checkpoint
for immunotherapy of breast cancer patients. In this study, based-on the transcriptome
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profiles analysis, univariate Cox regression analysis and overall survival analysis for innate
immune related genes in breast cancer patients, 15 innate immune-related prognostic signa-
tures were identified and selected for further analysis, including CXCL9, TP63, IL12B, IL33
and so on. Interestingly, most of these selected prognostic biomarkers play the key roles
in the prognosis of multiple cancer, including lung cancer, liver cancer and breast cancer.
Therefore, these selected out 15 innate immune-related signatures may become series of
effective target for breast cancer therapy.

Recently, immunotherapy has significantly prolonged the overall survival prognosis of
multiple cancer types [10,19,26]. And most evidence showed that subtype of immunophe-
notyping of multiple cancer patients could provide more effective reference information for
cancer immunotherapy [43]. In addition, the effect of immunotherapy in cancer patients
mostly benefits from the innate immune response. Most of innate immune-related path-
ways and cells contributed to cancer immunotherapy. For instance, type I IFN pathway [44],
TLR signaling pathway [45] and chemokine pathway [46]. To further screen checkpoint
of innate immune response, the three subtype of innate immune in breast cancer patients
through the expression levels of these 15 identified innate immune prognostic signatures
and termed as innateImmCluster molecular subtype. Overall survival probability signif-
icantly differs among these three innateImmCluster subtype of breast cancer. And the
most of that immune related response pathways were significantly repressed in cluster A
with poorer prognosis compared with cluster B or cluster C with better prognosis in breast
cancer patients through GSVA analysis, GO and pathway enrichment analysis. In addition,
the abundance of immune cell infiltration also revealed cluster A of patients with the lower
the abundant of immune cell infiltration than that in cluster B or cluster C. These results
suggested that the cluster A of innateImmCluster molecular subtype with poorer prognosis
and significantly suppressed the level of immune infiltration in breast cancer could closely
reflect the immune infiltration status of cancer patients.

Subsequently, the ICI risk model was calculated through the transcriptome profiles of
differentially expressed genes among the three innateImmCluster molecular subtype of
breast cancer patients. It’s noted that the high level of the ICI score exhibited better progno-
sis and survival probability compared with the low level of the ICI score group in breast
cancer patients. Recent research suggested that tumor mutational burden (TMB) become a
new marker of cancer prognosis and to predict the effective of cancer immunotherapy [47].
Generally, the high TMB level groups had poorer prognosis and survival probability than
those in the low TMB level groups in breast cancer patients. Interestingly, while the high
level of ICI score in high TMB group patients showed significantly improvement, the over-
all survival status compared with the low level of ICI score in high TMB groups in breast
cancer. Consistently, the similar results were exhibited in the low TMB group combined
with the ICI score in breast cancer. Thus, these results revealed that the ICI score could
become a new biomarker for prediction of breast cancer prognosis. To further identify
the key innate immune signatures as checkpoints for breast cancer immunotherapy, based
on the expression level of those 15 innate immune related signatures, the risk model was
constructed through the univariate cox analysis and the Lasso regression analysis and
identified 11 prognostic biomarkers in breast cancer, including ELANE, NRG1, CLEC6A,
IDO1, PLK1, CXCL9, FREM1, IL12B, CFB, CRISP3 and IGHE. The overall survival and
univariate and multivariate cox analysis further confirmed the reliability and effectiveness
of the risk model in breast cancer prognosis. Moreover, the correlation of the risk model
and the abundant of immune cell infiltration were analyzed and suggested that most of
the immune cell exhibited significantly suppressed the abundant of immune infiltration
in the high-risk group compared with the low-risk group in breast cancer patients. In
addition, the expression of m6A readers, ferroptosis-related genes and immune checkpoint
molecule were all revealed significantly differentially expressed between the high-risk level
of group and the low-risk of group in breast cancer patients. Taken together, the ICI score
and the risk score may become a new biomarker for cancer immunotherapy in breast cancer,
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and these 11 innate immune prognostic signatures could be an effective checkpoint for
checkpoint immunotherapy for breast cancer patients.

Pan cancer analysis and the tumor immune microenvironment analysis further sug-
gested that CXCL9 has greater importance in cancer immunotherapy than other prognostic
biomarkers. Recent related studies suggested depletion of CXCL9 significantly affected
T cell infiltration and the anti-PD1 immunotherapy. Therefore, we focus on the CXCL9
for further study. With the progress of computer aid drug design, small molecular target
drug screening was widely used for cancer therapy, including immunotherapy. Therefore,
we identified small molecular target drug for CXCL9 through molecular docking. And 12
small molecular drugs with high affinity to bind CXCL9. These drug all FDA approves
Drugs and collected form CELLMINER database.

In summary, in this study the ICI score and risk score may become a new biomarker
for cancer immunotherapy in breast cancer. CXCL9 can be innate immune checkpoint for
cancer immunotherapy. However, some limitations still exist. Firstly, the ICI score model
and the risk model were constructed only according to the transcriptome expression level
of innate immune signatures from public database TCGA and GEO. Secondly, experimental
research verification and a large number of clinical phenotypic verification are still lacking.
Finally, whether CXCL9 can be determined as a new prognostic checkpoint for breast cancer
immunotherapy remains to be further verified.
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