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Macrophages interact with immunoglobulin G via cell surface receptors that 
recognize and bind the Fc portion of IgG. In the mouse, these Fc receptors (FcR) 1 are 
specific for IgG subclasses. A common FcR that is resistant to trypsin recognizes 
aggregated or immune-complexed IgG1 and IgG~b at high affinity but has low affinity 
for the monomeric proteins (1-3). There is a distinct FcR with similar properties for 
IgG3 (4). A third FcR is trypsin sensitive and has high affinity for monomeric IgG2a 
(1, 2). Cellular functions can be regulated by both the intact IgG molecule and by 
proteolytic fragments of IgG. Although not all the functions of Fc-mediated binding 
of intact IgG or IgG in immune complexes to the cell surface FcR are clearly 
understood, the IgG-FcR interaction mediates endocytosis of immune complexes and 
antibody-dependent cell-mediated cytotoxicity (5). 

Soluble Fc fragments from degradation of IgG by papain have also been shown to 
potentiate the immune response (6). These fragments can increase endogenous pro- 
duction of prostaglandin E by monocytes and of IgM by peripheral blood cells (7). Fc 
fragments and subfragments have also been shown to be lymphocyte activators (8- 
11). 

Because binding to the FcR involves the structure of the whole IgG molecule (12), 
proteinases that degrade the IgG molecule are likely to interfere with the function of 
the FcR and act as potential immunoregulators. Cells found at the site of acute and 
chronic inflammation, such as inflammatory macrophages, may be a source of IgG- 
degrading proteinases. One of the proteinases secreted by inflammatory macrophages 
is elastase (13). This metalloproteinase is a neutral endopeptidase capable of degrading 
elastin (14) as well as other proteins such as c~l-proteinase inhibitor (15). In the study 
reported here, we investigated the proteolytic activity of mouse macrophage elastase 
on specific subclasses of mouse monoclonal IgG. 

Materials  and  Methods  
Materials. Dulbecco's modified Eagle's medium (complete and methionine free) was ob- 

tained from the Tissue Culture Facility, University of California, San Francisco, CA. Tissue- 
culture flasks (T75; Costar, Data Packaging, Cambridge, MA) were purchased from Microbi- 
ological Associates (Walkersville, MD). Penicillin, streptomycin, fetal bovine serum, and 
Dulbecco's phosphate-buffered saline were purchased from Grand Island Biological Co. (Grand 
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Island, NY). IgG1 (MOPC 21), IgG2a (UPC 10, RPC 5), IgG2b (MOPC 195, MOPC 141), IgGa 
(FLOPC 21, Y 5606), IgM (TEPC 183), and IgA (MOPC 315) were obtained as purified mouse 
myeloma proteins from Bionetics Laboratory Products (Kensington, MD). Monoclonal mouse 
anti-sheep er~throcyte (SRBC) IgG3 was purified from culture medium of N-S.7 cells (16), and 
IgG2b anti-Ia was purified from culture medium of 10-2.16 cells (Cell Distribution Center, Salk 
Institute for Biological Studies, San Diego, CA). Monoclonal mouse IgG2b (Sp2/HL) and IgG~ 
(Sp3/HL) were purified from culture medium obtained from Accurate Chemical & Scientific 
Corp. (Westbury, NY). Human IgGa was a gift of G. Crabtree of the National Institutes of 
Health, Bethesda, MD. Human a~-proteinase inhibitor (al-antitrypsin) was purchased from 
Worthington Biochemical Corp. (Freehold, N J). Tris (Trizma base), sodium dodecyl sulfate 
(SDS), 1,10-phenanthroline, phenylmethanesulfonylfluoride (PMSF), EDTA, and 2-mercap- 
toethanol were purchased from Sigma Chemical Co. (St. Louis, MO). All eleetrophoresis 
reagents (electrophoresis grade) were purchased from Bio-Rad Laboratories (Richmond, CA). 
[35S]Methionine (>1,200 Ci/mmol) was purchased from Amersham Corp. (Arlington Heights, 
IL). Protein A-Sepharose was purchased from Pharmacia Fine Chemicals (Piscataway, N J). 
IgSorb was purchased from the Enzyme Center (Boston, MA). Acetyl-Ala-Ala-Ala-Ala-chlo- 
romethyl ketone [Ac(AIa)4CH2CI] was a gift ofJ. C. Powers, Georgia Institute of Technology, 
Atlanta, GA. YM 10 and XM50 uhrafihration membranes were purchased from Amicon Corp. 
(Danvers, MA). 

Macrophage Elastase. The active form of macrophage elastase was purified from medium 
conditioned by thioglycollate-elicited mouse peritoneal maerophages as previously described 
(14). The preparations used were >5,000 U/rag protein. 

Polyacrylamide Gel Electrophoresis. SDS-polyacrylamide gels were prepared and run by a 
modification of the method of Laemmli (17). Samples were applied to a 3% (wt/vol) polyacryl- 
amide stacking gel on a linear 8-20% (wt/vol) polyacrylamide gel slab (0.75 X 10 × 10 cm). 
Gels were run at room temperature at 20 mA/gel. After electrophoresis the protein bands were 
fixed in the gel by 20% (wt/vol) trichloroacetic acid at 4°C and stained with 0.05% Coomassie 
Brilliant Blue R250 dissolved in 20% (wt/vol) methanol. Radiolabeled IgG were located by 
autoradiography on prefogged Kodak X-Omat AR film (Eastman Kodak Co., Rochester, NY) 
at -80°C  (18). 

Proteolytic Reaction Mixtures. Macrophage elastase was incubated at 37°C with IgG (1:100, 
wt/wt) in 18 mM Tris-HCl, pH 8.0, containing 10 mM CaCI2 and 30 mM NaCI, for 1-20 h. 
Usually 0.1/lg of macrophage elastase (0.5 U, where 1 U degraded 1/.tg of insoluble elastin/h) 
was incubated with 10 #g of immunoglobulin. Typical reactions were carried out in 15-btl vol 
with reactant concentrations of 6.67 ~ug/ml (33.33 U/ml) elastase and 0.67 mg/ml immuno- 
globulin. When Fc fragments were used as substrates they were incubated at a 1:100 ratio in 
0.15 M Tris-acetate buffer, pH 7.4. Reactions were stopped by the addition of EDTA to a final 
concentration of 30 mM. When proteinase inhibitors were included in the reaction mixtures, 
they were preincubated with macrophage elastase for 30 min at room temperature. PMSF was 
dissolved in isopropanol and used at 1 mM. 1,10-Phenanthroline was dissolved in ethanol and 
used at 1 mM. Inhibition was determined with reference to solvent controls. Ac(Ala)4CH2CI 
and ax-proteinase inhibitors were prepared in Tris-HC1, pH 8.0. 

Radiolabeling of IgG. Radioiodination of IgG2a was done with Na12SI by the ehloramine T 
method (19). IgG3 was biosynthetically labeled by growing N-S.7 cells for 24 h in methionine- 
free Dulbecco's modified Eagle s medium containing [aSS]methionine (25/~Ci/ml). The condi- 
tioned medium was adjusted to pH 8.0 with solid Tris base and passed over a protein A- 
Sepharose column (9 × 0.9 cm). Chromatography was carried out at 30 ml/h at 4°C. IgG3 was 
eluted with 0.1 M citrate buffer, pH 3.0 (20). Fractions were collected into sufficient 1 M Tris 
base to give a final pH of 7.0-7.5. Fractions containing IgG~ were pooled and concentrated on 
an XM50 membrane with the buffer changed to 0.05 M Tris-HC1, pH 8.0. 

Adsorption of IgG Cleavage Products to Protein A. Intact IgG or IgG-macrophage elastase reaction 
mixtures were incubated at 0°C in 0.01 M Tris-HCl, 0.015 M CaCI2, pH 8.0, for 40 min with 
sufficient excess IgSorb (formalin-fixed Staphylococcus aureus, Cowan strain I, containing protein 
A) to bind twice the amount of IgG present. The protein-IgSorb complexes were collected by 
centrifugation for 5 min in a Microfuge B (Beckman Instruments, Inc., Palo Alto, CA). The 
supernatants contained the material lacking an Fc region, and the pellet contained intact IgG 
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and  proteolytic fragments  with Fc regions. T h e  pellet was washed with 0,01 M Tris-HCl,  pH 
8.0. Both superna tan t  and  pellet were then analyzed by SDS-polyacrylamide gel electrophoresis 
under  nonreducing  conditions. 

Fc Receptor Binding Studies. P388D1 macrophages,  ma in ta ined  in culture by established 
methods (21), were used to evaluate the abili ty of IgG2a cleaved by macrophage  elastase to 
compete with intact  [125IIigG2, for the  specific IgG2~ FcR. Detailed methods for the compet i t ion 
experiments are described elsewhere (1, 2). 

Fc Fragments. IgGz~ (UPC 10) (2 rag) was incubated  with papa in  (1:500 enzyme/subs t ra te ,  
wt /wt)  for 12 h at 37°C in 0.02 M Tris-buffered saline, 0.01 M EDTA, pH 8.1. The  reaction 
mixture was then passed over a protein A-Sepharose column at 4°C. Proteolytic fragments  
wi thout  Fc regions were conta ined in the pH 8.0 eluate, Intact  IgG2a and  Fc fragments  were 
eluted together at pH 3.0 and  then concentra ted by uh ra f ih ra t ion  on a YM10 membrane .  
IgG2, was fully separated from the Fc fragments  after size-exclusion ch romatography  on a 
Spherogel-TSK 2000-SW column (Ahex, Berkeley, CA) in 0.15 M Tris-acetate,  pH 7.4, at 1.0 
m l / m i n  on a 1084B liquid ch romatograph  (Hewlet t -Packard Co., Palo Alto, CA). Intact  IgG2, 
eluted at 13.5 rain and  the 58,000-mol wt Fc f ragment  eluted at 21.6 min. No other  peaks were 
detected at 280 nm. Molecular  weights were de termined on SDS-polyacrylamide electrophoresis 
gels under  nonreduc ing  conditions, 

Results 
Proteolysis of IgG Subclasses by Macrophage Elastase. Monoclonal mouse IgG1, IgG2a, 

IgG2b, and IgG3 were used as substrates for purified mouse macrophage elastase. Of 
these IgG subclasses, only IgG1 was resistant to degradation (Fig. 1). When analyzed 
by SDS-polyacrylamide gel electrophoresis under nonreducing conditions (Fig. 1), the 
proteolysis of IgG2a and IgG3 resulted in nearly identical major peptides with sizes of 
105,000 and 24,000 tool wt (IgGza) and 113,000 and 23,000 mol wt (IgGa), as well as 

FIG. 1. Limited proteolysis of IgG by macrophage elastase. SDS-polyacrylamide gradient gels with 
samples applied unreduced. Lanes a and b show IgG2a (UPC 10); c and d IgGzh (MOPC 141); e and 

fIgG3 (FLOPC 21); g and h human IgG1. Lanes a, c, e, and g show 15 h incubation of IgG with 
macrophage e[astase inhibited with l0 mM EDTA. Lanes b, d,f, and h show IgG incubated with 
active macrophage elastalse for 15 h. Molecular weight markers (× 10 -3) are shown at left. The 
major cleavage fragments produced under nonreducing conditions from IgG2a (lane b) were 144,000, 
105,000, and 24,000 tool wt; from IgG2b (lane d), 151,000, 116,000, 89,000, 50,000, and 22,000 tool 
wt; from IgG~ (lane f ) ,  113,000, 96,000, 23,000, and 14,000 mol wt; from human IgG1 (lane h), 
137,000, 109,000, and 28,000 mol wt. 
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a minor  cleavage peptide of  144,000 tool wt from IgG2,. The  proteolysis o f  IgGzb was 
more complicated. Not all forms of  monoclonal  IgG2b were degraded. There  was no 
detectable degradat ion of  IgG2b secreted by S p 2 / H L ,  whereas IgG2u secreted by 
10-2.16, M O P C  195, and M O P C  141 were degraded nearly to completion. The  
proteolysis of  IgG2b resulted in the product ion of  approximately  the same size major  
peptides detected from IgG2, and  IgG3, plus two addit ional peptides o f  89,000 and 
50,000 mol wt. 

Because it binds to the mouse IgG2a FcR,  we also used h u m a n  IgGa as a substrate 
for macrophage  elastase (Fig. 1). The  resulting proteolytic peptides were identical to 
those produced by the proteolysis of  IgG2, and IgGa. 

Macrophage  elastase also degraded mouse IgM and IgA. However,  the cleavage of  
these immunoglobul ins  was more limited than the cleavage of  IgG. The  subclasses of  
immunoglobul ins  degraded by macrophage  elastase are summarized in Table  I. 

Time Course of Proteolysis of IgG. To determine the rate at which macrophage  
elastase degrades immunoglobulins,  IgG2,, and a susceptible IgG2b were incubated for 
times up to 20 h (Fig. 2). SDS-polyacrylamide gel electrophoresis under  nonreducing 
conditions showed that  at a 1:100 ratio (enzyme/substrate,  wt /wt)  the proteolysis of  
IgG2, was detectable after 1 h of  incubat ion but that  the 144,000-mol wt peptide was 
most prominent  and remained prominent  throughout  15 h of  incubation. Proteolysis 
of  IgG2, did not approach  completion until the reaction mixtures had been incubated 
for at least 20 h. This suggests that  the proteolysis o f  IgG2~ proceeded in two stages, 
first the product ion of  the 144,000-mol wt peptide, then further degradat ion to the 
105,000- and 24,000-mol wt peptides. The  same results were found with IgG3 (not 
shown). In contrast, the more complex degradat ion of  IgG2b proceeded without  the 
apparent  accumulat ion of  a part icular  cleavage peptide. 

TABLE I 

Proteolysis of Immunoglobulins by Macrophage Elastase 

Light Degraded by 
macrophage Species Ig type Cell type chain type elastase* 

Mouse IgG1 Sp3/HL ND~ No 
MOPC 21 t¢ No 

IgG2a UPC 10 ~ Yes 
RPC 5 ~ Yes 

IgG~b MOPC 141 K Yes 
MOPC 195 ~ Yes 
Sp2/HL ND No 
10-2.16 ND Yes 

Ig'G3 FLOPC 21 ~¢ Yes 
Y 5606 ~. Yes 
N-S. 7 ~¢ Yes 

IgA MOPC 315 ~ Slightly 
IgM TEPC 183 r Slightly 

Human Ig, Gl Yes 

* Degradation was assessed at a 1:100 ratio (enzyme/substrate, wt/wt) and 
was considered positive if discrete cleavage peptides were detectable after 20 
h at 37°C by SDS-polyacrylamide gel electrophoresis. At least two experi- 
ments were performed for each Ig type. 

~: Not determined. 
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Fro. 2. Time course of the degradation of IgG by macrophage elastase. Reaction mixtures of 
macrophage elastase with IgG2a (UPC 10) or IgG2b (MOPC 141) were incubated for the times 
indicated, then analyzed unreduced on SDS-polyacrylamide gradienl gels. Molecular weight 
markers (× 10 -a) are shown at [ef~. 

Effect of Proteinase Inhibitors on the Degradation of IgG by Macrophage Elastase. To 
demonstrate that the cleavage of IgG2, is the result of proteolysis by macrophage 
elastase, we investigated the effect of proteinase inhibitors that distinguish metallo- 
proteinases from serine proteinases. Some of these inhibitors specifically distinguish 
macrophage elastase activity from granulocyte elastase activity. Fig. 3 demonstrates 
that, of the inhibitors used, only the metal chelators, 1,10-phenanthroline and EDTA, 
at 1 mM, inhibited macrophage elastase-mediated proteolysis of IgG. Neither PMSF 
(1 mM), a general serine proteinase inhibitor, nor Ac(AIa)4CH2C1 (0.1 mM), a specific 
inhibitor of both granulocyte and pancreatic elastase (22), inhibited degradation more 
than solvent controls (not shown). Organic solvents used to solubilize these inhibitors 
are slightly inhibitory to macrophage elastase (14). Because the metal chelator 1,10- 
phenanthroline completely inhibited degradation, the limited proteolysis of immu- 
noglobulins seen in this study could not be attributed to contamination by serine 
proteinases. The serum inhibitor of serine proteinases, c~t-proteinase inhibitor, also 
did not prevent degradation of IgG2a by macrophage elastase, but rather acted as a 
competitive substrate for macrophage elastase (15), resulting in less than complete 
degradation of IgG2a. 

Characterization of Proteolytic Fragments. To determine which chain of the immuno- 
globulin is recognized and cleaved by macrophage elastase, we analyzed the proteo- 
lyric reaction mixtures under reducing conditions on SDS-polyacrylamide electropho- 
resis gels. Fig. 4 shows that macrophage elastase-mediated proteolysis of IgG2,, IgG2b, 
and IgG3 was restricted to the heavy chain and that IgG1 was resistant to degradation. 
Under these conditions the major proteolytic fragments of IgG2~ migrated as peptides 
of 33,000 and 31,000 mol wt, with minor small fragments. These gels also showed the 
accumulation of a 26,000-mol wt peptide from IgG2~ that was approximately the same 
size as the light chain. The analysis of these reaction mixtures under nonreducing 
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Fie. 3. Effect ofproteinase inhibitors on the proteolysis oflgG2a (UPC 10) by macrophage elastase. 
SDS-polyacrylamide gradient gel. Lane a, IgG2a incubated with EDTA-inhibited macrophage 
elastase at 37°C for i5 h; b, IgG2~ incubated with active macrophage elastase at 37°C for 20 h. In 
lanes c f,  IgG2, was incubated for 20 h at 37°C with active macrophage elastase plus (c) 1 m M  1,10- 
phenanthroline; d, 0. I m M  Ac(AIa)4CHzCI; e, 1 m M  PMSF; f ,  1 m g / m l  al-proteinase inhibitor. 
Lanes g-3 show Ig(32, incubated with the same concentration of inhibitors as in c-f but without 
macrophage elastase. Cleavage seen in lanes d and e was indistinguishable from that seen with 
elastase in the presence of solvent alone (not shown). Molecular weight markers (× 10 -'~) are shown 
at left. 

Fro. 4. Limited proteolysis of  the heavy chain of  IgG by macrophage elastase. Reaction mixtures 
of macrophage elastase with IgGl (MOPC 21), IgG2. (UPC 10), IgG2b (MOPC 141), or IgG3 
(FLOPC 21) were analyzed after reduction (0.5% 2-mercaploethanol at 100°C for 5 rain) on SDS- 
polyacrylamide gradient gels. Lanes marked a contain IgG incubated for 24 h without macrophage 
elastase. Lanes marked b contain IgG incubated for 20 h with macrophage elastase. Molecular 
weight markers (X i0 -a) are shown at left. The  cleavage fragments produced under reducing 
conditions from IgG2a were 33,000, 31,000, 26,000 (co-migrating with and slightly faster than the 
light chain), 23,000, and 16,000 tool wt; from IgG2b, 35,000 and 33,000 tool wl; from IgG3, 31,000 
and 14,000 mol wt. The  31,000-mol wt peptide produced from IgGa frequently resolved as a doublet. 
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conditions (Fig. 1) showed the product ion of  a 24,000-mol wt fragment.  This fragment 
migrated with or near the light chain in the gel shown in Fig. 4. The  degradat ion of  
IgGa produced peptides of  31,000 and 14,000 mol wt. The  31,000-mol wt peptide 
frequently resolved as a doublet. The  degradat ion of  IgGzb produced peptides of  
35,000 and 33,000 mol wt. 

Analysis by gel electrophoresis (Fig. 4) did not indicate any loss of  the light chain, 
and susceptibility of  IgG to cleavage by macrophage  elastase could not be correlated 
to light chain type (Table I). IgG1 ( M O P C  21) was kappa light chain but was not 
cleaved, whereas several kappa  light chain IgGza and IgG2b substrates were cleaved. 
All three forms of IgG3 that were tested were cleaved; F L O P C  21 and N-S.7 were 
kappa light chain, and Y5606 was lambda  light chain. 

Because the heavy chain of  IgG is degraded by macrophage  elastase, we performed 
experiments to determine which proteolytic fragment contained the Fc region. To  
characterize the fragments resulting from macrophage  elastase proteolysis of  IgGza, 
IgG2b, and IgGa, reaction mixtures were absorbed with IgSorb, which binds Fc 
fragments because of  the interaction of  the CH3 domain with protein A. The  24,000- 
mol wt fragment was adsorbed to protein A (Fig. 5), which indicates that this 
fragment contained the Fc'  port ion of IgG2a. Because only the heavy chain of IgG2~ 
is degraded by macrophage  elastase, coincident with the appearance of  a band  slightly 
smaller than the light chain (Fig. 4), this 24,000-mol wt fragment is most likely the 
Cn2 and CH3 domain of  IgGza, which is consistent with an Fc'-size fragment.  The  
33,000- and 31,000-tool wt fragments, which were also visible on reduced gels (Fig. 4), 
are two possible cleavage sites in the heavy chain. The  105,000-tool wt fragment that 
was not bound  by protein A (Fig. 5) lacks an Fc region and is consistent with an 
F(ab')2-size fragment. The  144,000-mol wt intermediate degradat ion product  (Fig. 2) 

Fro. 5. Protein A absorption of IgG2a (UPC 10), IgG2b (10-2.16), and IgG3 (FLOPC 21) after 
degradation by macrophage elastase. Lanes contain (a) intact control IgG; (b) 20 h reaction mixture 
with macrophage elastase; (c) intact IgG adsorbed to protein A; (d) reaction mixtures of IgG and 
macrophage elastase adsorbed to protein A (pellet); (e) material from intact IgG not adsorbed to 
protein A (supernatants); and (f) material from reaction mixtures not adsorbed to protein A. 
Molecular weight markers (× 10 3) are shown at left. 
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was also bound by protein A. Thi~ is consistent with an elastase cleavage near the 
hinge region in the CH2 domain, resulting in the release of a single Fc' fragment and 
leaving the molecule with one intact heavy chain that could still bind to protein A. 
The proteolytic fragments of IgG3 were similar to those of IgG2, with respect to 
protein A binding (Fig. 5). 

All of the proteolytic fragments of IgG2b were absorbed by protein A except the 
50,000-mol wt peptide. It is likely that the IgGzb cleavage points are above the hinge 
region at the end of the CH 1 domain and below the hinge region at the beginning of 
the CH2 domain. 

Effect of Proteolysis by macrophage Elastase on the Binding of IgG2~ to FcR. We performed 
an experiment to determine whether the fragments resulting from the limited prote- 
olysis of IgG by macrophage elastase can compete with intact IgG for binding to the 
FcR. IgG2, was used as a substrate for macrophage elastase because the IgGza FcR 
binds monomeric IgG2a. Aliquots of the reaction mixtures shown in Fig. 5 or intact 
IgGza were combined with a constant amount of [125I]IgG2~ and incubated with 
P388D 1 macrophages (Table II). Intact IgG2~ inhibited binding of [125I]IgG2a by 71%. 
After 20 h of incubation with macrophage elastase, the degraded IgG2a would no 
longer efficiently bind to the FcR, as indicated by a reduction to only 27% inhibition 
of binding of [125I]IgG2~. Reaction mixtures that included the metal chelator, 1,10- 
phenanthroline (1 mM) inhibited the macrophage elastase proteolytic activity, allow- 
ing sufficient intact IgG2a remaining in the reaction mixture to inhibit the binding of 
[125I]IgG2~ by 62%. 

Proteolysis of Immune Complexes by Macrophage Elastase. The preceding experiments 
described the limited proteolysis of monomeric IgG by macrophage elastase. However, 
the conformation of the IgG molecule is altered in an immune complex; new 
proteolytic sites may be exposed while previously exposed ones are protected. Because 
of the conformational changes in an immunoglobulin involved in an immune complex, 
a series of experiments were performed to determine the ability of macrophage elastase 
to cleave IgG3 bound to SRBC. The IgGs anti-SRBC that was biosynthetically labeled 
with [SSS]methionine was used to opsonize SRBC. The reaction mixtures of these 
immune complexes with macrophage elastase were analyzed by autoradiography of 
SDS-polyacrylamide gels that were run under reducing conditions. A densitometric 
scan of the autoradiograph showed that macrophage elastase degraded IgGs bound 

TABLE II 

Competition of Macrophage Elastase (ME)-degraded IgG2a with [t~I]IgG2a 
for Binding to P388D1 IgG2a FcR 

Competing reaction mixture 

Inhibition 
Incuba- of [lzsI]- 

tion time IgGza 
binding 

None 
Intact IgG~a 
ME-IgG~ 
Me-IgG~ 
ME-IgG~ + PMSF (1 mM) 
ME-IgG2a + 1,10-phenanthroline (1 mM) 

h % 
0 

20 71 
15 40 
20 27 
20 30 
20 62 



1192 LIMITEI)  PROTEOI,YSIS OF lgG BY M A C R O P H A G E  ELASTASE 

" b IH 

H 

i. / 

ul 

° _L 3< 
e d 

m 
9t 

MIGRATION 

Fxc. 6. Densitometric scan of an autoradiograph of SDS-polyacrylamide gradient gels of reduced 
[3'SS]methionine-labeled mouse IgG3 anti-SRBC (N-S.7). Panel a shows intact soluble IgG~ anti- 
SRBC, b shows macrophage elastase-degraded soluble IgGa anti-SRBC, c shows intact IgG3 anti- 
SRBC that was bound to SRBC, and d shows IgG;j anti-SRBC degraded by macrophage elastase 
while bound to SRBC. The arrows in panels b and d indicate the cleavage fragments common to 
both soluble and imnmne-coroplexed IgG3-macrophage elas~ase reaction mixtures. The  bracket in 
panel d indicates cleavage fragments characteristic of immune-complexed IgGa-macrophage elastase 
reaction mixtures. The relative positions of the heavy (H) and light (L) chains are indicated in 
panels a and b. 

Fro. 7. Degradation of lgG2a (UPC 10) Fc fragments by macrophage elastase. Samples were 
applied unreduced to SDS-polyacrylamide gradient gels. (a) Unincubated Fc fragment; (b) Fc 
fragment incubated for 5 h at 37°C without macrophage elastase; (c) Fc fragment incubated for 1 
b at 37°C with macrophage elastase. Molecular weights of  the degraded Fc fragments (× 10 -3) are 
shown at right. 
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in an immune complex (Fig. 6). Although the cleavage by macrophage elastase of 
IgG3 in immune complexes differed from the cleavage of monomeric IgG3, there 
remain some important similarities. Whereas the cleavage of monomeric IgG3 gave 
two cleavage products, 32,000 and 31,000 mol wt, of the heavy chain, Fig. 6 indicates 
that the proteolysis of immune-complexed IgG3 was still limited to the heavy chain 
but that the 32,000-mol wt heavy chain fragment was not a degradation product. 
With immune-complexed IgG3 there was also an increase in the production of 
fragments smaller than the light chain. One result of the removal of the Fc portion of 
IgG~ by macrophage elastase would be that the IgG3-SRBC immune complex could 
not be bound by the FcR and therefore would not be phagocytized. 

Proteolysis of the Fc Fragments by Macrophage Elastase. Fc fragments generated in 
tissues by proteinases such as granulocyte elastase are conformationally different from 
the Fc region of the intact immunoglobulin. We investigated the possibility that an 
Fc fragment produced by another proteinase would present additional sites for 
proteolysis by macrophage elastase. A 58,000-mol wt papain-generated Fc fragment 
of IgG2a, which is similar to an Fc fragment produced by granulocyte elastase, was 
incubated for up to 5 h with macrophage elastase. Fig. 7 shows that degradation of 
this fragment was detected after only 1 h of incubation at pH 7.4. The fragments 
produced had apparent molecular weights from 43,000 to 15,000 mol wt on nonre- 
ducing SDS-polyacrylamide gels. 

Discussion 

We have shown that mouse macrophage elastase selectively cleaves mouse IgG2a, 
IgG3, and human IgG1 into F(ab')2-1ike and Fc'-like subfragments. These peptides are 
similar to the proteolytic fragments produced by pepsin rather than those produced 
by papain. Not all of the monoclonal IgG2b preparations that we investigated were 
degraded by macrophage elastase, and the IgG2b forms that were susceptible were 
degraded into more peptide fragments than were IgG2a and IgG3. 

The susceptibility of immunoglobulins to cleavage was independent of the type of 
light chain because immunoglobulins were degraded whether they contained kappa 
or lambda light chain. There was no indication of the cleavage of light c.hain in any 
of the experiments performed. The susceptibility of IgG to proteolysis by macrophage 
elastase did vary with the conformational state of the IgG molecule. The proteolysis 
of IgGz in immune complexes differed from the proteolysis of monomeric IgG3. The 
apparent two-stage degradation of monomeric IgGza and IgG3 suggests that the 
conformation of the first proteolysis product, 144,000 mol wt, where one heavy chain 
had been cleaved, was less favorable for degradation than was the intact molecule. 

The time course of proteolysis (Fig. 2) indicates that immunoglobulins are less 
favored substrates for macrophage elastase than is al-proteinase inhibitor. When these 
two proteins were used as substrates under identical conditions (1:100 enzyme/ 
substrate, wt/wt), all of the native al-proteinase inhibitor was degraded in 4 h (15), 
whereas the total degradation of native IgG (this study) required at least 20 h. al- 
Proteinase inhibitor was degraded at a rate of 9.48 tool h -1 (tool elastase) -1, whereas 
IgG was degraded at 0.67 mol h -1 (mol elastase) -1, a 14-fold lower rate. Also, when 
al-proteinase inhibitor was used in the inhibitor experiments with macrophage 
elastase (Fig. 3), it was cleaved preferentially. 

The degradation of IgG by macrophage elastase could possibly interfere with FcR 
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functions (23). Of the susceptible IgG subclasses, IgG2, and IgGa have different 
receptors, whereas IgG1 and IgG2b share an FcR distinct from the IgG2a FcR and the 
IgGa FcR (3). Whether the fact that IgGI and some forms of IgG2u were poorly 
degraded by macrophage elastase is coincidental or indicative of a regulatory scheme 
involving proteolysis of IgG and the interaction with the FcR is not known. Guinea 
pig peritoneal macrophages rapidly degrade soluble immune complexes once the 
complexes are bound to the FcR (24). The amount of elastase used in the present 
study (0.5 U) was equivalent to the active elastase present near the surface of as few 
as 5 X 10 4 inflammatory macrophages (25). 

The data presented here show that degradation by macrophage elastase prevents 
binding of monomeric IgG to the FcR and suggest that phagocytosis of immune- 
complexed IgG is also impaired because of degradation by macrophage elastase. 
Because the integrity of the Fc region is required for antigen-antibody complex- 
mediated suppression (26), macrophage elastase may also interfere with suppression. 

The nature of the cleavage of IgG by mouse macrophage elastase differs from the 
cleavage of IgG mediated by granulocyte elastase. Human granulocyte elastase, a 
serine proteinase, readily produces papain-like cleavages in human IgG1 and IgGa 
and to a lesser extent IgG2 and IgG4 (27, 28). The result is the production of Fab and 
Fc fragments rather than the F(ab')2-1ike and Fc'-like subfragments produced by 
mouse macrophage elastase, a metalloproteinase. 

More intriguing is the possible role that degradation of IgG and Fc fragments by 
macrophage etastase might have in lymphocyte activation and spleen cell mitogenesis. 
Fc fragments generated by papain, like those produced by granulocyte elastase, can 
induce mouse B cells to proliferate (8). These fragments also cause B cells to 
differentiate into polyclonal antibody-secreting cells (8, 9). Macrophages are required 
for B cell activation (29) because they secrete proteinase into the culture supernatant 
that converts the papain-produced Fc fragment into a smaller peptide with mitogenic 
activity. The active fragment resulting from the macrophage-mediated degradation 
of Fc fragments elutes from a gel filtration column as a broad peak with an average 
of 14,000 mol wt (30) and more recently has been shown to be derived from the CH3 
domain of human IgG1 (31). Macrophage elastase releases a fragment containing the 
CH3 domain from intact mouse IgG as well as from human IgG1. Although the 
24,000-mol wt Fc fragment was the major product of elastase degradation of intact 
IgG by macrophage elastase in this study, minor fragments as small as 14,000 mol wt 
were also produced (Figs. 4 and 5). It is therefore conceivable that in vivo macrophage 
elastase may participate in the production of mitogenic Fc subfragments from intact 
IgG. Thus, macrophage elastase may be a key proteolytic regulator of lymphocyte 
mitogen production. 

The data reported here demonstrate that macrophage elastase degrades selected 
IgG subclasses in a manner qualitatively different from that of proteinases from other 
inflammatory cells. Because macrophage elastase is a metalloproteinase, it is not 
subject to inhibition by cq-proteinase inhibitor, an inhibitor of serine proteinases. 
Thus, degradation of immunoglobulins by macrophage elastase may continue in 
situations in which granulocyte elastase, plasmin, or other serine proteinases are 
inhibited, resulting in a change in the type of IgG turnover. 

In this report we have established the potential for macrophage elastase to be a 
regulator of some aspects of immunoglobulin-associated cellular events. The biologic 
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role of  the proteolytic fragments of  IgG by this macrophage  proteinase will require 
functional studies. 

S u m m a r y  

Mouse macrophage  elastase, a metalloproteinase secreted by inf lammatory  mac- 
rophages, catalyzed the limited proteolysis of  selected subclasses of  mouse immuno-  
globulins, including monomeric  IgGza, IgG3, and some forms of  IgGzb. Mouse IgG1 
was resistant to elastase degradation;  however, h u m a n  IgG1 was degraded. IgG3 in 
immune  complexes was cleaved in a manner  similar to that  of  monomeric  IgG3. 
Degradat ion by macrophage  elastase was limited to the heavy chain, resulting in 
products that did not compete for binding to the macrophage  Fc receptor. Macro-  
phage elastase usually produced a pepsin-like rather than a papain-like pat tern of  
proteolysis, resulting in the release o f  F(ab')2 and Fc'  subfragments. This degradat ion 
of  IgG differed from the papain-like cleavage of  IgG by granulocyte elastase. Macro-  
phage  elastase degraded papain-generated Fc fragments of  IgG2a into multiple 
fragments. Therefore, macrophage  elastase at concentrat ions found in culture medium 
has the potential to regulate some aspects of  cellular events associated with immu- 
noglobulins. 
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