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ABSTRACT A variety of autoimmune and allergy events are becoming increasingly
common, especially in Western countries. Some pieces of research link such condi-
tions with the composition of microbiota during infancy. In this period, the predomi-
nant form of nutrition for gut microbiota is oligosaccharides from human milk
(HMO). A number of gut-colonizing strains, such as Bifidobacterium and Bacteroides,
are able to utilize HMO, but only some Bifidobacterium strains have evolved to di-
gest the specific composition of human oligosaccharides. Differences in the propor-
tions of the two genera that are able to utilize HMO have already been associated
with the frequency of allergies and autoimmune diseases in the Finnish and the
Russian populations. Our results show that differences in terms of the taxonomic
annotation do not explain the reason for the differences in the Bifidobacterium/Bac-
teroides ratio between the Finnish and the Russian populations. In this paper, we
present the results of function-level analysis. Unlike the typical workflow for gene
abundance analysis, BiomeScout technology explains the differences in the Bifido-
bacterium/Bacteroides ratio. Our research shows the differences in the abundances of
the two enzymes that are crucial for the utilization of short type 1 oligosaccharides.

IMPORTANCE Knowing the limitations of taxonomy-based research, there is an
emerging need for the development of higher-resolution techniques. The signifi-
cance of this research is demonstrated by the novel method used for the analysis of
function-level metagenomes. BiomeScout—the presented technology— utilizes pro-
prietary algorithms for the detection of differences between functionalities present
in metagenomic samples.

KEYWORDS bioinformatics, gut microbiome, infant microbiome, machine learning,
microbiome

Depletion of oligosaccharides from human milk (HMO)-adapted bifidobacterial
strains reduces their ability to dominate the gut microbiota in the presence of

human milk. It allows other taxa, e.g., Bacteroides, to reach the dominant position. The
lack of some strains of the Bifidobacterium genus has been linked by other researchers
with the presence of more genes that encode virulence factors. Additionally, the
extensive growth of Bacteroides has been described as a potential factor for the
development of allergies and autoimmunity. Therefore, the described findings support
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the hypothesis that the depletion of HMO-utilizing bifidobacterial strains causes low
levels of Bifidobacterium in Finnish infants’ microbiota.

Importance of the gut microbiome. Understanding of the role of commensal

microbiota in human health and well-being has developed over the past few years
(1–3). The gastrointestinal (GI) tract community is the most deeply investigated micro-
biome of the human body. A number of pieces of research have indicated its role in the
development of various diseases, including but not limited to GI-related conditions like
irritable bowel disease (4, 5) or Crohn’s disease (6–8). Recent studies have shown the
impact of commensal microbiota on the immune system in processes like cancer
immunotherapy (9–11) or the development of autoimmune conditions (12–14). Now-
adays, a variety of autoimmune and allergy events are becoming increasingly common
(15). A well-established hygiene hypothesis connects such diseases with life conditions
during the developmental period of life (16). One proposed hypothesis that explains
the molecular background of autoimmunity and allergy development is that GI bacteria
stimulate the immune system during early childhood (14).

It has now been demonstrated that the compositions of GI microbiota differ in the
various populations of infants in the north European cohort. A study by Vatanen et al.
showed that Bacteroides are a major genus in the Finnish population, while Bifidobac-
terium spp. dominate Russian guts. Nonetheless, it remains unsolved why such a
difference occurs as both clades are present in both groups but with different abun-
dances. A potential explanation for such a phenomenon may be the fact that the
Bifidobacterium strains that colonize the Finnish population do not act as strong HMO
metabolizers. Due to poor adaptation to small type 1 oligosaccharides, the GI tracts of
infants may be not an optimal niche for them (17). On the other hand, some Bacteroides
strains are able to take advantage of the presence of some HMOs and outgrow
competing Bifidobacterium (18).

Infant gut microbiota characteristics. Various studies have reported a spectrum of

variants of the composition of GI microbiota that are typical of infants (19). Despite
these differences, the bacterial genera that are present in most research are Bifidobac-
terium, Bacteroides, Escherichia, and Lactobacillus (20). Multiple pieces of research have
reported an association between the relative abundances of clades and various devel-
opment conditions.

The infant microbiome profile relies on multiple factors. The most important are
delivery type, antibiotic usage in both mother and infant, and formula feeding (21–23).
The initial colonization of the infant takes place during and shortly after delivery as
different communities are transferred from the mother’s body depending on whether
birth is performed via vaginal delivery (predominantly vaginal lactic acid bacteria) or
C-section (predominantly skin-bound Staphylococcus) (24). Furthermore, the history of
the mother’s antibiotic usage determines the communities that may be transferred to
a newborn (23).

During the 20th century, the composition of the GI microbiota of infants gradually
changed. This can be noticed in comparisons of the pH levels of infant stool samples
reported in a number of publications from the 20th century. Additionally, analyzing
historical descriptions of the fecal microbiome, it can be easily noticed that there are
clear differences (25) between the preantibiotic era and current research.

It seems that of the multiple species that are commensal to infants, Bifidobacterium
spp. have the strongest association with infants’ health. Additionally, a significant
amount of research reports that Bifidobacterium spp. represent the original inhabitants
of infants’ GI tract (25–27). It was already proven that the presence of specific Bifido-
bacterium bacterial strains is correlated with a low level of virulence factor genes in the
whole microbiota of infants (28).

The research by Vatanen et al. on the DIABIMMUNE (http://www.diabimmune.org/)
cohort showed differences in autoimmunity and allergy events. The paper concluded
that differing compositions of GI microbiota are responsible for this difference (14).
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HMO as a key prebiotic. The primary food of a newborn is breast milk. Apart from
water, breast milk is mostly composed of carbohydrates, and the predominant sugar
present in breast milk is lactose (around 70 g/liter) (29). Breast milk also contains
indigestible oligosaccharides that act as prebiotics for coevolved GI microbiota mem-
bers— human milk oligosaccharides (HMOs)—that are present with an approximate
concentration of 20 g/liter. HMOs can be primarily divided into two groups: type 1
oligosaccharides, e.g., lacto-n-biose or lacto-n-tetraose, which are characterized by
Gal�1-3GlcNAc linkage, and type 2 HMOs, which possess Gal�1-4GlcNAc linkage (17).
What is specific only to human milk is that type 1 chain oligosaccharides are predom-
inant in the mixture (17, 30).

While present in breast milk with a full spectrum of different molecules, HMOs were
originally not a primary objective of formula manufacturing. Currently, different oligo-
saccharide mixtures are being added to formula to mimic the presence of HMO (31);
however, most formulas on the market do not offer full mimicking of a rich HMO
composition.

The ability of certain strains of Bifidobacterium to utilize some HMOs seems to be an
evolutionary adaptation to GI tract conditions. Additionally, these strains tend to
possess enzymes specific to type 1 HMOs (32). Studies on breast-fed and formula-fed
infants show different compositions of the GI microbiota of infants, with a decrease of
Bifidobacterium within formula-fed groups (33).

Bacteroides and Bifidobacterium species utilize HMOs in different pathways. A
variety of bacterial species are reported to grow on a medium with HMOs. In addition
to Bifidobacterium, Bacteroides species have also been reported to exhibit growth on a
full HMO spectrum (34). Comparison between the species growth dynamics of Bifido-
bacterium and Bacteroides shows that Bifidobacterium spp. are able to grow faster than
Bacteroides; thus, they become a dominant community member (18).

Analyses of growth on different HMO fractions have shown that short HMOs are
utilized exclusively by some strains of Bifidobacterium (e.g., B. longum subsp. infantis, B.
bifidum). On the other hand, more-complex HMOs are metabolized by a number of
species, including gut-inhabiting Bacteroides fragilis (18).

The proposed source of this difference is the fact that Bifidobacterium spp., which
coevolved with GI tract conditions, are able to adapt to the utilization of the HMOs that
are present in the intestines of breast-fed infants. This hypothesis is supported by the
fact that the major HMO molecules that are present in human milk are of short chain
type 1. Bacteroides spp., on the other hand, utilize longer type 2 HMOs by using the
mucin glycan-degrading pathway. Due to the similarity of host mucin glycans to some
HMOs, Bacteroides are able to utilize a large fraction of breast milk; however, the ability
of Bacteroides to grow with HMOs as a carbon source has limitations due to the fact that
the HMO proportion in human milk is better suited to Bifidobacterium (18, 35).

Utilization of HMOs depends on a number of enzymes. The most general HMO-
related enzymes are collocated in the so-called HMO cluster that is present in a number
of Bifidobacterium species. The members of this cluster that are used for utilization of
HMOs are beta-galactosidase, alpha-fucosidase, and sialidase, transporters that allow
the transport of predigested oligosaccharides to bacterial cells and other proteins (36).

In addition to the enzymes that are common to a number of species, there are a
variety of strain-specific enzymes that play key roles in certain metabolic pathways. B.
longum subsp. infantis—the most-studied HMO-metabolizing strain—possesses addi-
tional �-galactosidase—lacto-n-biosidase (LNB)-�-galactosidase (Bga42A)—that is not
collocated with other HMO cluster genes. This enzyme is used exclusively to utilize
short type 1 HMOs as it has high specificity for lacto-N-tetraose (LNT) (37).

The same phenomenon is observed in B. bifidum—another HMO-utilizing bacterial
species that possesses a metabolic pathway for type 1 HMOs and uses specific LNB (38).

As both Bifidobacterium and Bacteroides spp. are able to utilize breast milk prebiot-
ics, it seems that different strains of each genus, each with different modes of metab-
olism, are present in both populations. The research by Vatanen et al. described equal
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abundances of HMO cluster genes in both groups. The aim of our study was to detect
the genomic features associated with the strain-specific enzymes crucial for short type
1 HMO metabolic pathways and to explain the differential abundances of both HMO-
utilizing genera in the Finnish and the Russian group.

RESULTS AND DISCUSSION
Taxonomy-based analyses. As reported by Vatanen et al., the Russian and Finnish

groups can be characterized by their different compositions of GI microbiota. Data from
principal-coordinate analysis (PCA) done on the genus level (Fig. 1a) and on the
“deepest achieved” taxonomic level (Materials and Methods and Fig. 1b) show sepa-
ration of the Finnish and Russian groups; nevertheless, no significant difference in GI
microbiota diversity was detected. Operational taxonomic unit (OUT) richness analyzed
for both the deepest achieved taxonomic level and the genus level was higher in the
Finnish group (P � 0.02 and P � 0.01, respectively). However, exclusion of extremely
rare (�0.005% abundance) taxa resulted in insignificant differences in OTU richness
(P � 0.68 and P � 0.25 for the deepest achieved taxonomic level and genus level,
respectively). While richness is highly dependent on sequencing depth and the actual
composition of the community, inclusion of Shannon index allows better understand-
ing of a sample’s diversity. The Shannon index (39) values do not differ significantly
between populations, both at the genus level (P � 0.8) and at the deepest achieved
level (P � 0.77).

The major differences between the groups were the levels of Bacteroides and
Bifidobacterium (P � 0.005) (Fig. 2; see also Table S1 in the supplemental material).
Finnish infants were mostly colonized by Bacteroides species, while the Russian infants
were hosts for a variety of Bifidobacterium species.

However, while Bacteroides species are rare in the Russian population (1.3% abun-
dance at the 75th percentile), the GI microbiome composition in the Finnish population
contains a significant amount of Bifidobacterium spp. (8.7% abundance at the 75th

FIG 1 Principal-coordinate analysis done for the taxonomy profiling results of all the samples, with the
Russian (solid dots) and Finnish (open circles) groups done with genus-level taxonomy assignment and
deepest-achieved-taxonomy assignment.
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percentile). It can be clearly seen that despite their GI tracts being dominated by
Bacteroides, a significant amount of Bifidobacterium spp. is present in the Finnish
population. Therefore, it is not the lack of colonization of infants’ GI tract by members
of Bifidobacterium genus that results in the dominance of Bacteroides. Moreover, the
levels of major clades (Bifidobacterium and Bacteroides) differ in the Russian and Finnish
populations, respectively. While Bifidobacterium reaches 69.7% at the 75th percentile in
the Russian population, the Finnish infants have 58% Bacteroides at the 75th percentile.
Additionally, as reported by Vatanen et al., differences in Bifidobacterium abundance
within a cohort should not be related to differences in breastfeeding duration, as the
breastfeeding period in the Russian group was shorter. The reported abundance
analyses show that Bifidobacterium gut-colonizing strains are stronger colonizers of
infants’ GI tracts than Bacteroides strains. Moreover, the presence of a significant
amount of Bifidobacterium in the Finnish population may support the hypothesis that
the strains that colonize these infants are different from those colonizing Russians.
However, observations of such taxonomic differences require function-level evidence
to fully support this hypothesis.

Genomic feature-based analysis. Genomic features were extracted from a data set
comprising approximately 400 M reads in 35 samples (see Materials and Methods). The
constructed feature space had roughly 1.2 M genomic features. The BiomeScout Fea-
ture Selection module selected �50,000 genomic features, all of which were signifi-
cantly (P � 0.05) enriched in one but not both of the groups. In contrast to the lack of
differences in compositional diversity between groups (shown by comparison of Shan-
non indices of samples from the Russian and the Finnish groups), the majority of
enriched genomic features were found in the Russian population (Fig. 3).

Detection of the majority of selected genomic features that were enriched in the
Russian population suggests the presence of unique genomic components in genomes
of members of that population’s commensals. We also noticed that there are very few
genomic features that are specific to microbes that inhabit the guts of Finnish infants.
The fact that there were relatively few unique genomic features in the Finnish guts
made it possible to infer that the majority of bacteria present there were highly similar
to those that colonize the GI tract of Russians.

Comparison of these findings with data from taxonomy-based compositional anal-
ysis suggests that the Russian microbiome-specific genomic features may come from

FIG 2 Relative abundances of Bifidobacterium (a) and Bacteroides (b) genera in samples of the Russian
(left) and the Finnish (right) groups.
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specific strains of Bifidobacterium that overgrow other clades. This is in accordance with
the previous description of the breast milk-boosted growth of Bifidobacterium (17).

Functional analysis. For the functional analysis, all genomic features were associ-
ated with the known bacterial genes. Annotation was performed with regard to the
sequence comparison with a curated UniProtKB database (http://uniprot.org/).

The analysis of selected genomic features showed that a number of them were
associated with HMO-processing functionalities (Table 1). Genes known to be collo-
cated within a bifidobacterial HMO cluster (fucosidase, sialidase, galactosidase) were
associated with the multiple genomic features enriched in the Russian population.

Apart from the fact that such functionalities were associated with the genomic
features typical of Russian infants, the same functionalities were also associated with a

FIG 3 Heat map showing a normalized BiomeScout score level in samples for selected (P � 0.05) genomic
features. Genomic features were sorted by an average normalized BiomeScout score in the Russian group
(highest at the bottom).

TABLE 1 List of top scored genomic features significantly differentiating in two
populations (the Russian and the Finnish) that were associated with proteins playing key
role in HMO metabolism (located in bifidobacterial HMO cluster)

Genomic feature IDa P value Annotated name

SRX2234520_64394 0.005 6-Phospho-beta-galactosidase
SRX2199553_754 0.005 Beta-galactosidase; evolved beta-galactosidase subunit alpha
SRX2199674_8463 0.007 Beta-galactosidase; evolved beta-galactosidase subunit alpha
SRX2199674_13733 0.007 6-Phospho-beta-galactosidase
SRX2199763_1108 0.022 Alpha-L-fucosidase 2; probable alpha-fucosidase A
SRX2199670_2849 0.024 Alpha-L-fucosidase 2; probable alpha-fucosidase A
SRX2199670_12138 0.024 Probable alpha-fucosidase A
SRX2199300_19278 0.024 Probable alpha-fucosidase A
SRX2199674_15004 0.012 Sialidase; exo-alpha-sialidase
SRX2199674_12906 0.015 Exo-alpha-sialidase; sialidase-1
SRX2199670_6933 0.016 Sialidase
SRX2199553_8800 0.025 Sialidase
SRX2199608_26754 0.033 N-Acetylneuraminate lyase
SRX2234520_48491 0.041 N-Acetylneuraminate lyase
SRX2234453_7550 0.043 N-Acetylneuraminate lyase
aID, identifier.
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number of other genomic features. Consequently, these functional annotations re-
vealed the presence of approximately equal levels of genomic features that are related
to genes corresponding to the HMO cluster in the Russian and Finnish populations
(Fig. 4).

Detection of genomic features associated with the genes present within the HMO
cluster and of equal distributions of them in the two populations is consistent with the
analysis by Vatanen et al. In their 2016 paper (14) on the same cohort, they reported
such equality with regard to HMO cluster genes. In the same research, they found that
such genes are mostly present in Bacteroides within the Finnish population and in
Bifidobacterium within the Russian population. Such findings are consistent with our
findings based on the BiomeScout technology, but taxonomy-agnostic genomic fea-
tures do not imply the source organism at this step of analysis.

Detection of enzyme enrichment. To verify the hypothesis that the bifidobacterial
strains present in the Russian population possess functionalities typical of enzymes
reported as strain specific, we analyzed different HMO-processing enzymes. We chose
two enzymes that are key for the utilization of the type 1 HMOs that are most common
in human milk in the two key bifidobacterial species: lacto-n-biosidase (LNB) of B.
bifidum and �-galactosidase from B. longum subsp. infantis (Bga42A).

As was already noticed in the case of HMO cluster genes, analyses of significantly
enriched genomic features may be misleading; therefore, all genomic features were
used in the analysis of strain-specific functionalities. Among these features, we chose
those associated with specific HMO-processing enzymes: LNB and Bga42A (Materials
and Methods).

BiomeScout analysis showed a significantly higher level of genomic features asso-
ciated with gene-encoding enzymes specific to short type 1 HMOs in the Russian
population. Genomic features associated with lacto-n-biosidase, present predominantly
in B. bifidum and some bifidobacterial strains, were found to be significantly enriched
(P � 3.6e�11) in the Russian population (Fig. 5a).

Additionally, genomic features associated with Bgal42A that are present specifically
in B. longum subsp. infantis were found to be present at a significantly higher level
(P � 5.2e�19) in that population (Fig. 5b).

FIG 4 BiomeScout scores for enzymes present in the HMO cluster. Mean values for those enzymes were
approximately equal for the Russian and the Finnish groups and were as follows: for beta-galactosidase, 8.1e�8:
8.7e�8 (a); for alpha-fucosidase 1.3e�7:1.8e�7 (b); for sialidase 1.4e�7:1.1e�7 (c); for N-acetylneuraminate lyase,
4.5e�8:7.5e�8 (d). All genomic features detected in the whole cohort were used.
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Differences in the genomic features associated with short type 1 HMOs reveal the
basis of the differences between the Bifidobacterium abundances in the guts of Russian
and Finnish infants. Bifidobacterium strains that lack the ability to utilize short type 1
HMOs have to compete with other community members that are able to utilize a broad
HMO fraction, mostly Bacteroides. Additionally, over 26% of the whole human HMO
composition consists of LNT (40); thus, the lack of ability to metabolize this compound
is a significant handicap. As described by Marcobal et al. (18), under conditions of use
of porcine mucin glycans as a sole source of carbon, Bacteroides overgrow Bifidobac-
terium. The proposed explanation for such a difference was the fact that the com-
pounds in a large fraction of HMO are similar to mucin glycans. Bacteroides spp. use
such oligosaccharides as their main carbon source, while Bifidobacterium spp. are
adapted to the use of the small oligosaccharides of human milk. Therefore, our findings
are in accordance with the growth dynamics on short type 1 HMOs, complex glycans,
and full HMOs that were described by Marcobal et al.

Such a finding shows the possibility of detecting enzyme-specific function-level
differences between two populations. Such an analysis, performed with a straightfor-

FIG 5 BiomeScout scores of all genomic features annotated as matching lacto-N-biosidase (a) and beta-
galactosidase Bga42A (b) significantly differentiate the Russian and the Finnish groups. In contrast, the counted
reads mapped against those genomic features (c and d, respectively) were shifted in the same way, but the
difference was insignificant. Differential presence of Bga42A in samples cannot be inferred from the abundance of
B. longum subsp. infantis. The strain that contains this enzyme was not detected with significantly higher
abundance in the Russian population (f), while bacteria of the Bifidobacterium genus were significantly more
abundant (e).
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ward pipeline that counts reads mapped to each reference gene, shows no significant
differences between the two groups in the levels of these genes (Fig. 5c and d).

Enrichment of LNB could be inferred from analysis of the taxonomic content of
samples, as the Russian group was significantly enriched with B. bifidum (averages of
15.8% and 0.8% in the Russian and Finnish groups, respectively, P � 0.003), which
possesses such an enzyme. Importantly, in the case of Bga42A from B. longum subsp.
infantis, genomic feature-based analysis showed differences that were not revealed by
the traditional taxonomy-based approach. Distinguishing B. longum subspecies— even
with shotgun sequencing data—is an extremely complex task because these bacteria
may share over 99% of genomic sequences. The fractions of microbiome members
assigned as B. longum species and of those specifically assigned as B. longum subsp.
longum were significantly enriched in the Russian population (P � 0.01 and P � 0.03,
respectively). However, no significant difference in B. longum subsp. infantis abundance
was detected between the Russian and the Finnish populations (P � 0.2) (Fig. 5e and f).
Importantly, strain level was annotated only rarely.

In this paper, we report the ability to determine enzyme-scale differences between
two populations using next-generation sequencing data. What is more, our approach
makes it possible to detect differences that are hard to detect with standard pipelines
for both taxonomy analysis and gene catalog annotation.

Importantly, BiomeScout analysis is done with no prior taxonomy assignment
analysis –Genomic feature data are extracted from the raw sequencing data. Therefore,
we were able to also utilize reads of ambiguous origin without bias toward information
stored in the available databases.

The described use case allows detection of the differences between the bifidobac-
terial strains that colonize the Russian and the Finnish infants’ GI tract in terms of the
presence of enzymes specific to short type 1 HMOs. As such oligosaccharides represent
a large portion of the whole HMO mixture, we hypothesize that the lack of dedicated
enzymes in the strains colonizing the Finnish infants allows Bacteroides to overgrow
Bifidobacterium. Further studies are necessary to more deeply investigate the pheno-
typic differences between the dominating and dominated Bifidobacterium strains.

MATERIALS AND METHODS
The data set analyzed in this study represents a subset of the DIABIMMUNE cohort (http://www

.diabimmune.org) (14). The chosen samples were sequenced during the first 180 days of the infants’ lives.
Infants from the DIABIMMUNE cohort were subsampled such that the groups were balanced. Sample
collection in the Russian population started later (around month 3 of life); therefore, the Finnish
samples from the earlier period of life were excluded from analyses. For each cohort member, only the
sample from the first time point was included in the analysis. Only the Finnish and the Russian groups
were chosen, as the Estonian population has previously been described as being in a “transition zone”
between west and east due to political changes over the last 30 years. For a better understanding of early
colonizing strains, only samples collected within the first 180 days of life were used for this study. During
this period breast milk is the primary or only nutrition for infants. Additionally, such a period is crucial
for the development of the immune system of infants. Consequently, 35 shotgun metagenomic se-
quencing samples were chosen for further investigation.

Taxonomy binning and profiling were done with Kraken2 (https://ccb.jhu.edu/software/kraken2/)
(41). For binning of reads and taxonomy profiling of samples, a standard database was built according
to the tool’s manual. Lineages were built for all assigned taxonomies with seven canonical levels
(kingdom, phylum, class, order, family, genus, and species) and subspecies if assigned. Such annotation
is referred to as the deepest achieved taxonomic level. Given the fact that multiple lineages were shorter
than the subspecies level, lineages truncated above the genus level were also used. The abundances
corresponding to the resulting identical assignments were summed.

Initial assembly of metagenomic samples was done with Megahit v1.1.3 (https://github.com/voutcn/
megahit/) (42). Genomic feature-based analysis was done with BiomeScout tool v.1.0.2. In BiomeScout’s
nomenclature, “genomic feature” is a general term that refers to any part of a genomic sequence. To
construct the genomic feature space, BiomeScout used preassembled metagenomes from the whole
studied cohort as an input-only data set.

Each feature was scored with respect to the two methodologies: counting mapped reads and
BiomeScout. In the first, all reads mapped on each genomic feature were counted. BiomeScout analysis
used its own internal proprietary scoring algorithm. The two scoring results were normalized with respect
to the number of sequenced reads.

The scored genomic features were then passed to the feature selection algorithms, which choose a
set of genomic features that significantly differentiate groups. Each selected genomic feature had a P
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value assigned by BiomeScout’s Feature Selection module using Student’s t test. The same test was used
in the whole analysis where P values are reported.

Functional annotation was done with bioinformatics analysis of each genomic feature. The similarity
of the sequence to full or partial sequences of known proteins was calculated. Reviewed entries from the
UniProtKB v. 2018_09 database (http://uniprot.org) (43) were used. Each genomic feature was matched
with a set of known genes using DIAMOND v0.9.22 (https://github.com/bbuchfink/diamond) (44).
Identity threshold analysis was based on a paper by Addou et al., which describes 80% identity as a
threshold for 100% consensus of a four-digit EC number (45, 46). The same percentage was chosen for
query coverage threshold based on the UniRef database clustering approach (47, 48).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphereDirect.00152-19.
TABLE S1, XLSX file, 1.4 MB.
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