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Abstract: Background. Fibrin sealant has been used as a scaffold to deliver genetically modified
human muscle-derived stem cells (hMDSCs) for bone regeneration. Alternatively, autologous blood
clots are safe, economic scaffolds. This study compared autologous blood clot (BC) with fibrin
sealant (FS) as a scaffold to deliver lenti-BMP2/GFP-transduced hMDSCs for bone regeneration.
Methods. In vitro osteogenic differentiation was performed using 3D pellet culture and evaluated
using microCT and Von Kossa staining. The lenti-GFP transduced cells were then mixed with human
blood for evaluation of osteogenic differentiation. Furthermore, a murine critical- sized calvarial
defect model was utilized to compare BC and FS scaffolds for lenti-BMP2/GFP-transduced hMDSCs
mediated bone regeneration and evaluated with micro-CT and histology. Results. Lenti-BMP2/GFP
transduced hMDSCs formed significantly larger mineralized pellets than non-transduced hMDSCs.
hMDSCs within the human blood clot migrated out and differentiated into ALP+ osteoblasts. In vivo,
BC resulted in significantly less new bone formation within a critical-sized calvarial bone defect than
FS scaffold, despite no difference observed for GFP+ donor cells, osteoclasts, and osteoblasts in the
newly formed bone. Conclusions. Human lenti-BMP2/GFP-transduced hMDSCs can efficiently
undergo osteogenic differentiation in vitro. Unexpectedly, the newly regenerated bone in BC group
was significantly less than the FS group. The autologous blood clot scaffold is less efficacious for
delivering stem cells for bone regeneration than fibrin sealant.

Keywords: blood clot scaffold; fibrin sealant; human muscle derived stem cells; lenti-BMP2/GFP;
bone regeneration; bone tissue engineering

1. Introduction

Treatment of fracture non-unions and segmental bone defects are challenging clinical
scenarios. Bone tissue engineering mimics bone healing by providing bone morphogenic
proteins, stem cells and a supportive or bioactive scaffold. Many osteo-inductive scaffolds,
such as demineralized bone matrix, biphasic calcium phosphate [1–5], tricalcium phosphate
(TCP) [6,7], hydroxyapatite [8], and collagen sponge or gel [9,10], have been used as sup-
portive materials for bone regeneration. Previous work by our group compared different
scaffolds for the use of delivery of muscle derived stem cell-mediated bone regeneration.
The results demonstrated that fibrin sealant (Tisseel, Baxter)-mediated bone regeneration
led to a bone tissue quality comparable to native bone [11]. Furthermore, fibrin sealant
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has also been used as a scaffold for bone regeneration in critical-sized calvarial bone
defects to address different questions of bone tissue engineering, such as gene function
and aging [12–18]. The utilization of fibrin sealant as a scaffold has several advantages,
as it is a natural blood clot product, as well as safe and fully absorbable by day 7 after
implantation [14]. A fibrin sealant scaffold, in essence, mimics natural blood clot formation
with fibrin and thrombin but without other blood components. It is known that the blood
clot or hematoma formation is the first stage of callus formation, initiating bone fracture
or defect healing as well as other healing tissue injuries [19]. More than two decades ago,
it was shown that utilizing exogenous blood clots for meniscal repair enhanced healing
by providing chemotactic and mitogenic stimuli for reparative cells [20]. More recently,
human blood clots were found to have the ability to preserve human stem cells within the
clot, further drawing interest in its utility as a potential biologic scaffold [21].

The use of blood clots for different types of tissue regeneration applications have also
proven effective for bone regeneration. In a rat osteotomy model, autologous blood clots
loaded with bone morphogenetic protein-2 (BMP2) demonstrated the ability to completely
bridge the defect, while in situ hematoma and artificial blood clot groups did not bridge
the defect [22]. These results indicate that autologous blood clots can be a suitable scaffold
for delivery of BMPs, but BMP supplementation is usually required [22]. Furthermore,
blood clots in combination with biphasic calcium phosphate (BCP) alone demonstrated
the ability to repair a rat femoral defect even without the presence of BMPs [23]. The
OSTEOGROW device, which utilizes bone morphogenetic protein 6 (BMP6) and a whole
blood coagulum, has been observed to promote bone formation without increasing bone
resorption [24]. Based on these promising results of autologous blood clots as a scaffold for
bone regeneration, in this study, it is hypothesized that autologous blood clots can serve
as both a scaffold and simultaneously provide nutrition for transplanted stem cells until
host circulation is re-established in a bone defect. Furthermore, blood clots have promising
potential to support human muscle-derived stem cell (hMDSC) survival and osteogenic
differentiation and improve qualitative and quantitative bone formation when compared
to fibrin sealant.

2. Materials and Methods
2.1. Cell Isolation and Lenti-BMP2/GFP Construction

Human muscle-derived stem cells (hMDSCs) were isolated from a 74-year-old male
using the preplate technique [25]. The preplate 6 (PP6) cells, also called hMDSCs, have been
proven to express high levels of mesenchymal stem cell markers and exhibit multipotent
differentiation potential [13]. The lenti-BMP2/GFP viral vector was constructed by Dr. Bing
Wang at the University of Pittsburgh. The hMDSCs were transduced with lenti-BMP2/GFP
viral vector at a dilution of 1:8 with overnight incubation using polybrene (8 µg/mL). Lenti-
BMP2/GFP-transduced hMDSCs were then subjected to fluorescence-activated cell sorting
for isolating GFP-positive transduced cells. Secretion of BMP2 in the culture medium
was measured with BMP-2 Quantikine ELISA Kit (DBP200, R&D system, Minneapolis,
MN, USA).

2.2. In Vitro Osteogenesis Using 3D Pellet Culture

Lenti-BMP2GFP-transduced hMDSCs and non-transduced hMDSCs were expanded in
proliferation medium containing DMEM high glucose supplemented with 20% fetal bovine
serum (FBS), 1% chicken embryo extract, and 1% penicillin/streptomycin. Pellet cultures
were performed using a protocol previously described [13,15,17]. Briefly, 2.5 × 105 cells
were aliquoted into 15 mL conical tubes and centrifuged at 2000 rpm for 5 min, after
which the supernatant was removed. The cells were then resuspended with osteogenic
medium containing DMEM high glucose supplemented with 10% FBS, 10−2 M sodium
glycerophosphate, 50 µg/mL ascorbic acid, and 10−7 M dexamethasone (all from Sigma-
Aldrich, St. Louis, MO, USA). The cells were mixed and centrifuged at 500× g for 5 min.
The pellet was then cultured in osteogenic medium for 28 days and the osteogenic medium
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was changed every 2–3 days. After 28 days, pellets were fixed in neutral buffered formalin
(NBF) for 1 h and scanned with microCT to detect mineralization using 70 kVP and 114 µA
with 25 µm resolution (voxel size) using Viva CT 40 (Scanco Medical AG, Fabrikweg 2,
Brüttisellen, Switzerland). After the micro-CT scan, the pellets were embedded in NEG
frozen medium and flash frozen in liquid nitrogen. Next, 8 µm sections were cut and Von
Kossa staining was performed using the IHC world protocol (Woodstock, MD, USA).

2.3. Cell Survival in Blood Clot

In order to test whether the blood clot would maintain cell survival and osteogenic
differentiation capacity, 10 mL of fresh drawn human blood (Institutional Review Board
of University of Texas Health Science Center at Houston approved as part of previous
study [21]) was mixed with 5 × 105 cells of lenti-GFP-transduced hMDSCs in 1 mL phos-
phate buffered saline (PBS). After the clot formed, the blood clot was wrapped with a sterile
woven cotton sponge in order to remove any residual blood. The blood clots were then
cut into six segments and cultured at 37 ◦C and 5% carbon dioxide (CO2) in 12 well plates
for 7 days. Following this, the blood clots were removed from the plate wells. Then,
the adhered cells that migrated out of the blood clot were replaced with fresh medium
and imaged for GFP using a fluorescent microscope. These same cells were then further
cultured in osteogenic medium or proliferation medium (three wells each) for 25 days.
The cells were then fixed in NBF for 2 min and stained for the osteogenic marker, alkaline
phosphatase, to validate osteogenic differentiation following the manufacturer’s protocol
(86C Kit, Sigma-Aldrich, St. Louis, MO, USA).

2.4. Optimization of the Volume of Whole Blood and Cells for Clot Formation

PBS was tested for its potential effect on blood clot formation time, as it is necessary
for cells to be resuspended in PBS prior to implantation. Two approaches of drawing blood
from mice were also tested in addition to different volumes of blood mixed with PBS.

Test 1: Draw blood from mice heart, and test in the 1.5 mL Eppendorf tube:

(1) 40 µL blood + 20 µL PBS;
(2) 45 µL blood + 15 µL PBS;
(3) 50 µL blood + 10 µL PBS;
(4) 50 µL blood only.

Test 2: Clot formation in the skull defect environment
First, a critical-sized 5 mm calvarial skull defect was created, after which blood was

drawn from the retro-orbital space of mice using a sterile capillary glass pipet. The blood
was then deposited from the capillary tube and placed onto a petri dish. Different volumes
were then measured and mixed with different volumes of PBS (options #1 through #3
below), which were then placed into the critical-sized calvarial bone defect with a custom
cut 200 µL pipet tip:

(1) Add blood 50 µL to 10 µL PBS
(2) Add blood 50 µL to 20 µL PBS;
(3) Add 50 µL blood to the defect.

Blood clot formation time was documented for each condition.

2.5. Creation of a 5-mm Critical-Sized Calvarial Defect

The in vivo animal experiment was approved by Animal Welfare Committee (AWC-
15-0074) of the University of Texas Health Science Center at Houston. Male ICR-SCID
mice (Taconic Biosciences, Rensselaer, NY, USA) were divided into two groups (n = 6);
a fibrin sealant scaffold (FS) group, and a blood clot (BC) group. A 5-mm critical- sized
calvarial bone defect was created in each mouse using a trephine drill, as previously
described [13,15–17]. Briefly, after sterilization of the skin of scalp, an incision was made
just off the midline, exposing the right parietal bone, and after removing the periosteum
with scalpel, a 5 mm bone defect was created in the right parietal bone using 5 mm drill
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trephine. Throughout drilling, saline irrigation was performed to prevent overheating and
potential cell necrosis during drilling process. Care was taken to prevent damage of both
the dura mater and the brain tissue. Then, the cells and scaffold were implanted into the
defect according to the steps described in Section 2.6.

2.6. Application of Lenti-BMP2/GFP-Transduced hMDSCs Plus Scaffold

For the FS group, after creation of the defect, 1.5 × 106 lenti-BMP2/GFP-transduced
hMDSCs (20 µL) were mixed with 25 µL of thrombin and added to the defect area using
custom cut 200 µL pipet tip rings to maintain cells in the defect area. Then, 25 µL of
fibrin was added on top of the cells, which was allowed to set for approximately 1 min
for fibrin gel formation. For the BC group, after creation of the defect, whole blood
(approximately 100 µL) was collected in a sterile petri-dish drop-wise via retro-orbital
plexus puncture using a sterile capillary tube. Immediately, 50 µL of blood was mixed
with 1.5 × 106 lenti-BMP2/GFP-transduced hMDSCs in 20 µL PBS and then added to the
defect area in a custom cut 200 µL pipet tip ring. The blood/cell mixture was allowed
to set for approximately 5 min to form a clot in a cylinder-like shape that covered the
defect area. Following scaffold/cell implantation, each defect was then closed using three
4-0-prolene sutures.

2.7. MicroCT Scanning and Analysis

After surgery, mice were subjected to microCT scanning at days 1, 14, 28, and 42 post-
surgery. The scanning parameters were 70 kVP and 114 µA using 30 µm resolution (voxel
size) and live scanning under 2% isoflurane anesthesia. For microCT analysis, the overview
of defect healing was analyzed by one observer (XG) using 400 × 200 dimension and
sigma = 1, Gauss support = 0.8, and threshold = 163 using microCT evaluation program
V6.6. To quantify the newly regenerated bone volume in the defect area, the new bone
formed within the 212 axial microCT slices that spanned the defect area were carefully
contoured for the views of interest. The contoured slices were then quantified automatically
using a 3D evaluation program and applying the same thresholds as the overview analysis
(Supplemental Figure S1). The software places a box to cover all of the contoured area to
calculate the total volume, bone volume, and other bone microarchitectural parameters.
New bone volume and the bone volume density of the regenerated bone were compared
between the two groups.

2.8. Histology

Mice were sacrificed at day 42 after microCT scanning and the entire skull tissue
was harvested and fixed in neutral buffered formalin for 3 days. The tissues were then
decalcified with 10% w/v EDTA plus 1% sodium hydroxide for 1 month, and then processed
for paraffin sectioning (5 µm sections). H&E was performed using Hematoxylin and Eosin
(Sigma-Aldrich, St. Louis, MO 68178, USA) Herovici’s staining was used for general
morphology and identification of collagen type 1 and 3 according to the literature [15,26].
Tartrate resistant acid phosphatase (TRAP) staining was performed using a Sigma 387A-1
KT (Sigma Aldrich, St. Louis, MO, USA) following the manufacturer’s protocol. Microscope
images were captured using Nikon CIL upright microscope (Nikon Instruments Inc.,
Melville, NY, USA). TRAP+ cells were quantified using Image J and bone area and surface
area was measured using Image J (ij153-win-Java 8) at the same time. TRAP+ cells/bone
surface was calculated using Excel.

2.9. Immunohistochemistry of GFP and Osterix (OSX)

Immunohistochemistry staining for GFP and OSX was performed as previously de-
scribed [16,17]. Briefly, after deparaffinization the slides were washed with PBS three times
and then blocked with 5% donkey serum in PBS for 1 h at room temperature. Sections were
then incubated with primary antibody diluted in 5% donkey serum overnight at 4 ◦C. The
primary antibody dilution was 1:1000 dilution for both GFP (Ab290, Abcam, Waltham, MA,
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USA) and OSX (ab22552, Abcam). Rabbit isotype control (I-1000-5, Vector Laboratories,
Burlingame, CA, USA) was used as a negative staining control (1:1000 dilution). Slides
were then washed with PBS and incubated with goat anti-rabbit IgG biotinylated secondary
antibody (BA-1000, Vector Laboratories) for 2 h at room temperature. After another PBS
wash, the slides were incubated for 2 h in VECTASTAIN® Elite ABC-HRP Kit, Peroxidase
(Standard) (PK-6100, Vector Laboratories) reagent with A and B premixed for 30 min.
Slides were then washed with PBS and a color reaction was performed using a DAB kit
(SK-4100, Vector Laboratories) for 6 min. Subsequently, slides were rinsed with tap water
and nuclei were counterstained with Hematoxylin QS (H-3404-100, Vector Laboratories)
for 30 s. Finally, slides were rinsed with running tap water for 10 min and dehydrated
with gradient alcohol, cleared with xylene, dried, and cover glassed with Cytoseal mount
medium (Fisher Scientific, Waltham, MA, USA).

2.10. Statistical Analysis

The unpaired two-tailed t-test was used to compare values between the two groups
using GraphPad Prism 9 software. A p < 0.05 was considered statistically significant.

3. Results
3.1. hMDSCs Transduction Efficiency and BMP2 Secretion Levels

Following transduction, 65% of the cells were GFP-positive. The lenti-BMP2/GFP-
transduced hMDSCs were sorted with GFP green fluorescence to enrich GFP+-transduced
cells. The mean BMP2 secretion level by lenti-BMP2/GFP-transduced hMDSCs was
1.2 ± 0.25 ng/million cells/24 h after cell sorting for GFP.

3.2. Lenti-BMP2/GFP-Transduced hMDSCs Demonstrated Significantly Enhanced In Vitro
Osteogenic Differentiation

In vitro osteogenesis of lenti-BMP2/GFP-transduced hMDSCs was compared to non-
transduced hMDSCS. MicroCT 3D results showed larger mineralized osteogenic pellets
formed by lenti-BMP2/GFP-transduced cells when cultured for 28 days in osteogenic
culture (Figure 1a). The mineralized pellet volume was significantly larger for lenti-
BMP2/GFP-transduced hMDSCs than non-transduced hMDSCs (Figure 1b). Furthermore,
Von Kossa staining showed significantly bigger pellets area and higher percentage of
brown-black mineralization in lenti-BMP2/GFP-transduced hMDSCs than non-transduced
hMDSCs (Figure 1c–e).
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Figure 1. In vitro osteogenesis of lenti-BMP2/GFP-transduced hMDSCs compared to non-transduced hMDSCS. (a) MicroCT
3D images of osteogenic pellets at day 28. Lenti-BMP4/GFP-transduced hMDSC formed larger mineralized pellets.
Scale bars = 1 mm. (b) Quantification of mineralized pellet volume. (c) Von Kossa staining showed bigger pellets and
higher percentage of brown-black mineralization in lenti-BMP2/GFP-transduced hMDSCs than non-transduced hMDSCs.
Scale bars = 100 µm for 100× images and 200 µm for 200× images. (d,e) Quantification of Von Kossa staining (100×) for
pellet section area and brown-black calcium deposit percentage.
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3.3. hMDSC Can Migrate out from Cultured Blood Clot and Undergo Osteogenic Differentiation

hMDSCs trapped in the blood clot during blood clot formation demonstrated the
ability to migrate out from the blood clot as well as the ability to be grown in culture
(Figure 2a). When the cells that migrated out of the blood clot were cultured in osteogenic
medium for 25 days, these cells underwent osteogenic differentiation, as demonstrated by
ALPstaining (Figure 2b).
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cultured in proliferation medium (PM) and osteogenic medium for 25 days. Cells cultured in osteogenic medium express
ALP, while cells cultured in PM (non-osteogenic) remain ALP-negative. Scale bar = 100 µm.

3.4. Blood Clot Formed in the Skull Defect Injury Area Faster Than in the Plastic Tubes

To determine the optimal ratio of whole blood and cell suspension to ensure clot
formation in vivo, several different conditions were tested. First, a 1.5 mL Eppendorf
tube was tested. Surprisingly, the blood drawn from heart puncture did not form a clot
in the tube after 20 min, even without the addition of PBS (Table 1, Test condition 1–4).
Furthermore, the ratio was tested in vivo using the skull defect model. The blood was
drawn from the same mice used for the skull defect surgery using the retro-orbital capillary
method. Both whole blood alone and 50 µL whole blood mixed with 10 µL or 20 µL
PBS formed a clot within 5 min after implantation into the skull defect area covered with
a custom cut 200 µL tip cylinder ring. The formed clot took the shape of ring cylinder in
the defect (Table 1 Test condition 5–7). Therefore, 50 µL of blood mixed with 20 µL PBS
was chosen for the in vivo experiment of cell implantation with scaffolds based upon this
condition, as the mixed fibrin sealant in 50 µL and cells in 20 µL volume were typically used
when performing critical-sized cavarial bone defects using the fibrin sealant as a scaffold.

Table 1. Clot formation test conditions and results.

Test
Conditions Test Sites Blood Draw Method Whole Blood

Volume (µL)
PBS Volume

(µL)
Clot Formation Time

(Formed Gel) in Minutes

1 1.5 mL Eppendorf tube Heart puncture 40 20 Not formed clot in 20 min
2 1.5 mL Eppendorf tube Heart puncture 45 15 Not formed clot in 20 min
3 1.5 mL Eppendorf tube Heart puncture 50 20 Not formed clot in 20 min
4 1.5 mL Eppendorf tube Heart puncture 50 0 Not formed clot in 20 min
5 Calvarial bone defect Retro-orbital capillary 50 10 Formed clot in 5 min
6 Calvarial bone defect Retro-orbital capillary 50 20 Formed clot in 5 min
7 Calvarial bone defect Retro-orbital capillary 50 0 Formed clot in 5 min
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3.5. hMDSCs Regenerated Significantly Less Bone Using an Autologous Blood Clot Scaffold When
Compared to a FS Scaffold

The feasibility of using autologous blood clot as a scaffold for hMDSC-mediated bone
regeneration was tested and compared to an FS scaffold. One mouse in the FS group died
after surgery and was excluded from the study due to the surgical complication. The
microCT 3D images demonstrated bone regenerated in the defect area, but incomplete
healing of the 5 mm critical-sized calvarial bone defect in both FS and BC groups at
6 weeks post-surgery (Figure 3a). Surprisingly, the newly regenerated bone volume in the
BC group was significantly lower than that in the FS group at days 14, 28, and 42 post
surgery (* p < 0.05, ** p < 0.01 compared to the FS group; Figure 3b). The bone defect healing
percentage was 29.93% ± 16.51% and 22.5% ± 19.57% in the FS and BC groups, respectively.
No statistically significant difference was observed between the groups. In addition, the
new bone volume density of the regenerated bone was not significantly different between
the FS and BC groups (Figure 3c).
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3.6. Histological Analyses of the Regenerated Bone

Herovici’s staining was performed to reveal the major bone structural protein, matrix
collagen type 1 (COL1). The BC group formed less COL1 positive red matrix in the critical-
sized calvarial bone defect area (Figure 4a). H&E staining showed the newly formed bone
was functional trabecular bone that consisted of bone matrix (Figure 4b, yellow arrows)
and bone marrow that contained red blood cells, hematopoietic cells, and megakaryocytes
for both FS groups and BC groups (Figure 4b).
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Figure 4. Histological analyses of the regenerated bone. (a) Herovici’s staining. The entire defect area is shown between the
two black arrows in each image (top panels at 20×). Less collagen type I (red, COL1) matrix was found in the BC than in
the FS group, in the defect area. Higher magnification (200×) showed the newly regenerated bone in the defect area (red,
COL1). Fibrotic tissues are stained as blue fibers (COL3). (b) H&E staining showed that the newly regenerated bone was
mainly trabecular bone and contained bone matrix (yellow arrows) and bone marrow that consisted of red blood cells (red
arrows), hematopoietic cells (blue arrows), and megakaryocytes (insets). Scale bars = 1000 µm and 100 µm for 20× and
200× magnifications, respectively.

3.7. Participation of GFP-Positive Donor Cells and the Formation of Bone Cells in the Regenerated
Bone Are Equivalent in the BC Group Compared to the FS Group

Immunohistochemistry of GFP was performed to determine the donor cells’ contribu-
tion to the regenerated bone. GFP+ cells were found in the bone surface (osteoblasts) and in
bone area (osteocytes) (Figure 5a). There was no significant difference of GFP+ cells/bone
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area between the groups (Figure 5b). At the host bone and new bone interface, GFP+ cells
were found in the new bone area, but not in the host bone area (Figure 5c). Rabbit isotype
negative control showed negative staining (Figure 5d). Furthermore, immunohistochem-
istry of OSX for osteogenic progenitor cells was additionally performed. OSX+ cells were
located on the bony surface, but some osteocytes also expressed OSX (Figure 5e). The
OSX+ cells/bone surface demonstrated no statistical difference between the BC and FS
groups (Figure 5f). In addition, TRAP staining for osteoclasts was used for detection of
bone remodeling. TRAP+ cells (violet-red multinuclear or single nuclear) were detected on
the bone surface of newly regenerated bone, a finding that is qualitatively similar to the
host natural bone (data not shown) for both groups (Figure 5g). Quantification of TRAP+

cells/bone surface of the newly regenerated bone demonstrated no statistical differences
between the BC and FS groups (Figure 5h).
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found in the bone surface (osteoblasts) and in the bone area (osteocytes). Insets are enlarged red box area to show GFP+

osteoblasts and osteocytes. Scale bars = 100 µm. (b) Quantification of GFP+ cells and normalized to cells/200× field. No
statistical difference was found between the BC and FS groups. (c) GFP staining in the location of newly formed bone and
the host–bone interface. The area above the red lines demonstrates new bone. GFP+ cells can be found on the bone surface
or in the bone matrix for both groups in the newly formed bone area but not in the host bone area. Scale bars = 100 µm.
(d) Rabbit isotype controls for both GFP and OSX staining of new bone area. All cells are negative. Scale bars = 100 µm.
(e) Immunohistochemistry of OSX for osteogenic progenitor cells. OSX+ cells showed a brown color and were mainly
located on the bone surface. Some osteocytes also expressed OSX. Insets are enlarged red boxed area to demonstrate OSX+

cells. Scale bars = 100 µm. (f) Quantification of OSX+ cells on the bone surface of newly regenerated bone. No statistical
difference of OSX+ cells/bone surface was found between the BC and FS groups. (g) TRAP staining for osteoclasts. TRAP+

osteoclasts are seen in a violet-red color and exist as multinuclear or as single nuclear cells on the bone surface. Insets are
enlarged red boxed area for TRAP+ cells. Scale bars = 100 µm. (h) Quantification of TRAP+ cells on the bone surface of the
newly regenerated bone. No statistical difference was found between the BC and FS groups.

4. Discussion

This study demonstrates that lenti-BMP2/GFP hMDSCs undergo osteogenic differen-
tiation more extensively than non-transduced hMDSCs. When the lenti-GFP-transduced
hMDSCs are mixed in the blood clot, the cells survived and migrated out from the clot
when cultured in hMDSCs proliferation medium. In addition, we found that lenti-GFP-
transduced hMDSCs could further differentiate into ALP-positive osteoblasts when cul-
tured in osteogenic medium. However, in vivo, autologous blood clot delivered lenti-
BMP2/GFP-transduced hMDSCs regenerated significantly less bone than the delivery
of the same number of cells in FDA-approved fibrin sealant, although, qualitatively, the
regenerated bone was similar between the groups.

Both blood clot and fibrin sealant have been used as scaffolds for bone regeneration.
Utilizing blood clots as scaffolds has gained more attention in recent years, given their
autologous nature, safety profile, and lower cost, as well as their ability to circumvent the
FDA approval process. It has been shown that autologous blood clots applied to a rabbit
2.7 mm non-critical-sized defect promotes bone formation when compared to hemostasis
reagent microfibrillar collagen (8-fold increase), oxidized regenerated cellulose (1.5-fold
increase), and equivalent to soluble alkylene oxide copolymer [27].The OSTEOGROW
device, which utilizes a blood coagulum carrier to bind BMP6, has been found to stimulate
mesenchymal stem cell differentiation and enhance healing of critical-sized ulnar bone
defects without incurring bone resorption and inflammation. The device has demonstrated
efficacy in regenerating bone in a canine bone defect healing model [24,28,29]. Furthermore,
a recent study has shown that autologous blood clots can sustain-release BMP2 in vitro and
promote osteogenic differentiation of stem cells. Autologous blood clot delivery of BMP2
at a 500 ng dose for a critical-sized murine calvarial defect or a 1 µg dose for a critical-sized
rat calvarial defect significantly enhanced bone repair compared to a blood clot alone.
Furthermore, blood clot scaffold-mediated bone regeneration can be further enhanced to
aid in bone defect healing when illuminated with a near-infrared laser [30].

Blood clots have long been used as scaffolds in the oral cavity, where they have been
utilized for tooth socket healing. Removal of the initially formed blood clot significantly
delayed the socket healing, even when a new clot formed later on [31]. It has been shown
that liposome-delivered BMP4 or TGF β1 were superior to PBS-delivered BMP4 and TGF
β1 for tooth extraction socket healing when used alone or with a blood clot. Liposome-
delivered BMP4 or TGF β1 increased the percentage of bone trabeculae and showed a higher
number of blood vessels in the extracted tooth socket. Lower levels of immunoreactivity
were also observed in the sockets filled with blood clots treated with liposomes only,
PBS only, and BMP4 in PBS or TGF β1 in PBS when compared with sockets treated with
liposome-delivered BMP4, TGF β1, or the combination of both in a rat model [32]. It has
also been shown in a canine model that a blood clot combined with gel foam increased the
ingrowth of hard tissues (2 out of 6 vs. 1 out of 4 and showed significantly more apical
narrowing and hard tissue deposition when compared to scaffold-free controls [33].
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Recent clinical trial results demonstrated that leukocyte- and platelet-rich fibrin-
mediated defect filling showed the same dimensional and volumetric behavior as normal
blood clots in healing the alveolar ridge in the setting of extracted teeth [34]. Blood clots
have also been used for sinus subantral bone augmentation and resulted in less structural
support than bone chips and hydroxyapatite [35]. Another study using a sinus augmen-
tation model showed that venous blood clots did not induce enough bone formation to
provide long-term support for sinus elevation [36]. Inflammatory factors and growth
factors in the clot have the potential to be both beneficial and harmful. Specifically, granu-
locyte colony-stimulating factor (G-CSF) -enriched blood clots have been shown to have
a negative effect on bone formation in a subcutaneous model [3].

On the other hand, fibrin such as commercialized fibrin (Tissucol), as a carrier, can
sustain-release BMP2 for up to 28 days in vitro. In vivo, fibrin loaded with BMP-2 showed
an extremely fast rate of bone healing, with a large amount of new bone formation through-
out the entire defect in the first 4 weeks and complete cortical repair and fusion after
8 weeks, all with an absence of ectopic bone formation. In contrast, the control fibrin-
only group did not fuse after 12 weeks, which indicates that fibrin itself does not have
an osteo-inductive effect. Therefore, commercially available fibrin is a very efficient carrier
for rhBMP-2 to promote critical-sized cortical bone defect healing and might be a more
optimal delivery vehicle for BMP-2-induced bone regeneration than currently available
collagen sponges [37].

Fibrin biopolymer (FBP), in combination with mesenchymal stem cells (MSCs), showed
higher bone matrix deposition over time when compared with FBP plus biphasic calcium
phosphate (BCP), MSCs with FBP in addition to BCP, and the FBP-only groups. BCP did
not show additional benefits for bone formation [38]. However, it has also been shown that
fibrin-mediated bone repair is negatively affected by the fibrinolysis inhibitor because it
delayed fibrin matrix degradation [39]. It was found that if inhibitors were added, nonde-
graded matrix remained in the tissue even after 15 days and affected the migration of repair
cells [39]. It is suggested that the use of aprotinin with fibrin glue may not be required,
because liver, which is known to have high fibrinolytic activity, sealed and repaired well
when using fibrin in the absence of plasminogen inhibitors [39].

Although both blood clots and fibrin have a very similar structure for the delivery of
BMPs for bone regeneration, there is a paucity of direct comparisons for these two scaffolds
in the setting of bone regeneration. In the current study, both the autologous blood clot
and fibrin sealant were compared in parallel as delivery systems for lenti-BMP2/GFP-
transduced hMDSCs. Our results indicated that blood clot delivery of lenti-BMP2/GFP-
transduced hMDSCs resulted in significantly lower amounts of new bone formation within
a critical-sized calvarial defect compared to the fibrin sealant. Since many studies showed
that blood clots as scaffolds for bone regeneration without using cells are effective, it is
possible that the blood clot is not suitable as a scaffold for delivery of live cells; rather, it is
a more appropriate delivery vehicle for BMPs and other growth factors.

The reason why autologous blood clot scaffolds resulted in less bone formation
than fibrin sealant is unclear. In the current experiments, a commercially available FDA-
approved Tisseel fibrin sealant containing a fibrinolysis inhibitor in the system was utilized.
Despite this, more bone formation was still seen in the fibrin sealant group. Theoretically,
a blood clot is analogous to a hematoma; it not only contains fibrin gel scaffold, but
also serum/plasma and a variety of different blood cells as well as circulating growth
factors and cytokines. In the setting of bone regeneration, blood clots mimic the natural
healing environment, including inflammation, which results in white cell scavenging of
the tissue damage debris, cell proliferation of regenerative cells including mesenchymal
cells and vascular cells, mesenchyme condensation, chondrogenic differentiation and
endochondral bone formation, and, finally, bone remodeling [40]. In the current study, the
lenti-BMP2/GFP-transduced hMDSCs served as regenerative cells as well as a bone growth
factor delivery system which orchestrates host blood cells in the bone regeneration process.
However, a blood clot also has a large number of red blood cells, which normally function
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as oxygen carriers to systemic cells of all tissues. Once red blood cells are trapped in the
clot, they are degraded and cleared by macrophages and, therefore, they may pose a burden
for macrophages and delay their transition from M1 to M2 macrophages, a process which
facilitates tissue repair and results in less bone formation. Furthermore, when surgery
was performed, surgical site bleeding and hemostasis was achieved and rinsed with PBS
before implanting the hMDSCs with fibrin sealant or autologous blood clot in an effort not
to interfere with the implanted scaffold. Finally, the iron released from the degraded red
blood cells may also have affected the initial hMDSCs survival after transplantation and
again potentially interfering with the amount of bone regenerated. It is also possible that
hMDSCs did not survive as well in the blood clot scaffold than in fibrin sealant due to the
reasons described above. Therefore, the release of less BMP2 to induce host cell-mediated
bone regeneration may have subsequently resulted in less new bone formation.

Finally, GFP staining was performed and no differences between the blood clot and
fibrin sealant groups was observed. No significant difference for osteoclasts (TRAP+) and
osteoblasts (OSX+) in the new regenerated bone between the groups were observed. It is
believed that during the bone regeneration process, as long as hMDSCs survive, they
can make similar contributions to the new regenerated bone despite a decreased quantity.
Hence, autologous blood clot scaffolds may be more suitable as delivery vehicles for growth
factors rather than cells.

5. Conclusions

In summary, autologous blood clots can serve as a safe scaffold for bone regeneration
in critical-sized bone defects; however, the newly formed bone volume was significantly
less in the BC group than in the FS group. Although many reports have shown blood
clot scaffolds can promote tissue repair, fibrin sealant are more effective in promoting
hMDSCs-mediated bone regeneration in a critical-sized calvarial defect model. Blood clots,
although convenient, autologous, and safe as scaffolds for bone tissue engineering, may be
more suitable as delivery vehicles for bone morphogenetic factors in the setting of bone
regeneration. If using stem cells, fibrin sealant is more advantageous and leads to more
bone formation without the negative effects on the donor and host cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9080983/s1, Figure S1: Representative 3D evaluation of new bone volume in
critical-sized bone defects. Contours were drawn manually and by the morph function. New bone
volume was computed automatically by including every contoured area in each slice. We chose
Gauss sigma = 0.8, Gauss support = 1, and lower threshold = 163. The threshold determines the bone
volume and other microarchitecture parameters.
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