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Abstract: Cyclophilin A (CypA) is the main member of the immunophilin superfamily 

that has peptidyl-prolyl cis-trans isomerase activity. CypA participates in protein folding, 

cell signaling, inflammation and tumorigenesis. Further, CypA plays critical roles in the 

replication of several viruses. Upon influenza virus infection, CypA inhibits viral 

replication by interacting with the M1 protein. In addition, CypA is incorporated into the 

influenza virus virions. Finally, Cyclosporin A (CsA), the main inhibitor of CypA, inhibits 

influenza virus replication through CypA-dependent and -independent pathways.  

This review briefly summarizes recent advances in understanding the roles of CypA during 

influenza virus infection.  
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1. Introduction 

Influenza virus is an enveloped negative-sense RNA virus that causes major public health  

problems worldwide. There are eight RNA segments in the influenza A virus encoding  

14 viral proteins: the polymerase proteins (PB1, PB2, PA) [1,2], nucleocapsid protein (NP), 

hemagglutinin (HA), neuraminidase (NA), matrix proteins (M1 and M2), nonstructural proteins (NS1 

and NS2) and the recently described PB1-F2, PB1 N40, PA-X and M42 proteins [1–4]. The M1 

protein is the most abundant protein in the viral particle and forms the bridge between the viral 
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envelope and core. M1 is a multifunctional protein in the influenza virus lifecycle that is involved in 

uncoating, transcription, the nuclear export of viral ribonucleoprotein complexes (vRNP), assembly 

and budding. Several host cell factors are putatively required for regulation of influenza virus 

replication via interaction with M1 at different stages of infection [5–8]. For instance, the  

peptidyl-prolyl cis-trans isomerase Cyclophilin A (CypA) participates in influenza virus infection at 

several steps [9–12]. In addition, as a ubiquitously expressed host factor, CypA plays important roles 

in several viral infections [9,11,13–19]. The aim of this review is to promote our understanding of the 

effects of CypA during influenza virus infection. 

2. The Localization and Function of CypA 

CypA is a ubiquitously distributed intracellular protein found in all tissues in mammals, and it 

possesses peptidyl-prolyl cis-trans isomerase activity [20]. CypA has chaperon-like activity and takes 

part in protein-folding processes [21]. Further, CypA is the major intracellular receptor for the 

immunosuppressive drug cyclosporin A (CsA), and the CsA-CypA complex interacts with and inhibits 

calcineurin, a calcium-calmodulin-activated serine/threonine-specific protein phosphatase [22], which 

in turn suppresses T-cell activation. In addition to its intracellular functions, CypA can be secreted into 

the extracellular environment [23,24]. Extracellular CypA acts as a growth factor in several cell types. 

Furthermore, CypA is also involved in the pathogenesis of several diseases, including viral infection, 
cardiovascular disease and cancer. The extracellular functions of CypA are mediated by CD147, 

which is expressed on a wide variety of cells, including hematopoietic, epithelial and endothelial  

cells [25–29]. CD147 is a widely expressed type I integral membrane protein that is implicated in 

many physiological and pathological activities. Drugs targeting either CD147 or Cyps demonstrate a 

significant anti-inflammatory effect in animal models of acute or chronic lung diseases, suggesting a 

therapeutic pathway for some diseases. 

3. CypA as an Important Host Factor in Viral Infections 

Accumulating evidence indicates that CypA is an important host factor for successful  

viral infection. CypA is involved in the lifecycle of several viruses, such as human immunodeficiency 

virus type 1 (HIV-1), influenza virus, hepatitis C virus (HCV), hepatitis B virus (HBV), vesicular 

stomatitis virus (VSV), vaccinia virus (VV), severe acute respiratory syndrome coronavirus  

(SARS-CoV) and Rotavirus (RV) [10–19,30,31]. CypA is also incorporated into several enveloped 

virus particles, such as HIV-1, influenza virus, VV and VSV [9,14,15,32,33]. However, the function of 

CypA in virus particles is still unclear. 

CypA has been extensively studied from the gene to protein level during HIV-1 infection. CypA is 

encoded by the peptidyl prolyl isomerase A (PPIA) gene, and regulatory PPIA polymorphisms are a 

component of genetic susceptibility to HIV-1 infection or disease progression [34]. In addition, the 

interaction of CypA and capsid protein (CA) in newly infected human target cells usually aids viral 

infectivity [16,35]. Furthermore, the interaction of newly synthesized HIV-1 CA with CypA is 

required for HIV-1 to induce dendritic cell (DC) maturation [36]. CypA may interact with other HIV-1 

proteins, such as Vpr and p6, to regulate HIV infection [37–41]. Finally, CD147 is the main receptor 

for CypA on human leukocytes [42], and the interaction of CD147 and CypA may regulate an early 
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step of HIV-1 infection [43]. The interaction of CD147 with CypA induces MA phosphorylation to 

regulate the liberation of the RT complex into the cytoplasm [44]. CypA mediates HIV-1 attachment to 

target cells via heparans, and heparans in turn facilitate the interaction of CD147 and CypA [45]. 

Furthermore, the interaction of CD147 and CypA regulates HIV-1 infection in a  

signal-independent fashion [46]. 

Several lines of evidence indicate that CypA positively regulates the replication of HCV [47].  

The PPIase activity of CypA assists the replication of HCV [48] and CypA increases the affinity of the 

polymerase to viral RNA via binding to NS5B, enhancing HCV replication [49]. In addition, CypA 

binds the HCV NS5A protein to aid viral replication [50]. Concerning HBV, CypA interacts with small 

surface proteins (SHBs) of the HBV surface antigen (HBsAg). In HBsAg-expressing cell lines, the 

expression level of CypA is lower than controls, and more CypA is secreted into the supernatant via 

the vesicular secretion pathway [19,51]. During VV infection, CypA stability is increased and CypA is 

translocated to the peripheral region of the nucleus, co-localizing with the sites of virus production. 

CypA is incorporated into the virus particle during morphogenesis and specifically localizes in the  

core [15]. In addition, CypA interacts with the nucleocapsid protein of VSV-NJ and VSV-IND in 

infected cells and is incorporated into the released virions of both serotypes. VSV-NJ utilizes CypA for 

post-entry intracellular primary transcription [14]. CypA is also reported to regulate SARS-CoV 

replication by binding to the nucleocapsid protein [52]. Recently, CypA was found to inhibit RV 

replication by facilitating host IFN-β production, which is independent of CypA PPIase activity, but 

dependent on the activation of the JNK signaling pathway [30]. 

4. CypA and Influenza Virus Infection 

Host factors may play important roles in restricting cross-species transmission of influenza virus. 

Physical interaction methods have been developed to identify host factors that interact with  

viral components. These methods include yeast two-hybrid systems, proteomics analysis, cell-free 

reconstitution systems and a yeast-based influenza virus replicon system. To date, many host factors 

have been identified to interact with influenza viral proteins and take part in certain stages of the  

virus lifecycle. Influenza A virus M1 protein is the most abundant and relatively conserved protein in 

the viral particle, and core histones interact with the M1 protein [53]. M1 is phosphorylated by 

extracellular signal-regulated kinase (ERK) downstream of the Ras-activated factor  

(Raf)/mitogen-activated protein kinase (MEK)/ERK pathway. When cells are treated with a  

MEK-specific inhibitor after virus infection, NP and vRNP complexes accumulate in the nucleus [54]. 

The cellular receptor of activated C kinase (RACK) 1 may also interact with M1 and be involved in its 

phosphorylation [55]. Heat shock cognate (Hsc) 70 interacts with M1 protein, causing vRNP 

complexes to accumulate in the nucleus during heat shock [56]. Intracellular caspase-8 binds M1, 

which involves M1 in a caspase-8-mediated apoptosis pathway in influenza virus-infected cells [57]. 

Most importantly, we found that CypA interacts with M1 and has multiple functions in the lifecycle of 

influenza virus. 

In 2008, CypA was shown to be in the core of the influenza virion [32] and is upregulated upon 

infection by avian H9N2 influenza virus in a human gastric carcinoma cell line (AGS) [58]. In 2009, 

we found that CypA is able to directly interact with the M1 protein of influenza virus, hindering its 
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entry into the nucleus in the early stage of influenza virus infection (Figure 1), and avian CypA can 

also negatively regulate influenza virus replication [10]. We had confirmed that both CypA and  

CypA-R55A bound to the M1 protein, and there was no significant difference between  

CypA-transfected cells and CypA-R55A transfected cells in the viral titer levels. These results 

suggested that the isomerase activity of CypA is not necessary for viral replication in the cell level [9]. 

The effect of CypA on influenza virus replication was different from HIV and HCV, since the PPIase 

activity of CypA is required for viral replication. So, the precise functions and roles of CypA in the 

influenza virus lifecycle need further study. A cell line depleted of endogenous CypA was constructed 

to understand the precise functions of CypA in the influenza virus lifecycle. A one-step growth curve 

assay indicates that the first lifecycle of influenza virus in CypA knock-out cells is 2 h shorter than in 

control cells. Further studies indicate that CypA regulates influenza virus replication at the  

post-transcriptional level. However, CypA does not impair the nuclear export of viral mRNA.  

Indeed, CypA accelerates the degradation of the M1 protein by the ubiquitin proteasome system (UPS) 

(Figure 1) [11]. CypA degrades M1 via the proteasome-dependent pathway and, thereby, inhibits the 

replication of influenza virus at the post-translational level. These results suggest the struggle between 

virus offense and host defense via the UPS. Further studies are needed to identify the preferential 

ubiquitination site on M1 so that differences among the various M1 protein subtypes can be compared, 

which could also indicate the possible relationship between the different levels of infectivity in the 

numerous subtypes of influenza virus. CypA is firstly reported to play an important role in viral 

replication through accelerating the degradation of a viral protein [11]. Recently, the peptidyl-prolyl 

cis/trans isomerase Pin1, another member of the cyclophilin family, was reported to stabilize the 

human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein and promote malignant  

transformation [59]. This suggests that the cyclophilin family may be involved in the regulation of 

viral replication at different stages by affecting the stability of various viral proteins. Thus, it is of 

interest to further study the detailed effect of the cyclophilins, with a focus on the proteasome system 

upon viral replication. 

The well-known immunosuppressive drug CsA inhibits influenza virus replication through  

CypA-dependent and -independent pathways. In detail, CsA inhibits influenza virus replication at a 

post-transcriptional level and impairs the nuclear export of viral mRNA in the absence of  

CypA (Figure 1). In addition, the effect of CsA on influenza virus replication is independent of 

calcineurin signaling [12], because CsA partially inhibits influenza virus replication by regulating 

functional CypA. In addition, the immunosuppressive activity of CsA is not needed for its  

anti-influenza virus activity. Thus, we can develop CsA derivatives that have low toxicity and high 

activity as anti-influenza virus drugs. 

As was reported, CypA is also incorporated into influenza virions [9,32]. However, the function of 

virion-associated CypA is still unclear. Recently, we found that the presence of CypA in the virions 

aids the infectivity of influenza virus particles, and CypA affects the ratio of M1/NP in the influenza 

virions (unpublished data). These results suggest that CypA may take part in the assembly of influenza 

virus and the uncoating process of the virus particles (Figure 1). However, how CypA is incorporated 

into the virions and how CypA assists in the infection of the virion requires further studies. 
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Figure 1. The functions of CypA in the lifecycle of influenza virus. 

 

Conclusion and Future Directions 

Upon influenza virus infection, CypA acts at multiple steps of the viral lifecycle, including 

uncoating, viral protein entry into the nucleus, viral protein stability and assembly (Figure 1). In some 

stages, CypA negatively regulates influenza virus replication, but in other stages, CypA positively 

regulates the viral infection. Indeed, CypA is a cell-intrinsic regulator for influenza virus at different 

steps of its lifecycle. 

Viral infection usually triggers host antiviral defenses, such as the interferon-I (IFN-I)-mediated 

antiviral response. Recently, CypA was found to play important roles in host antiviral innate immunity. 

For example, during HIV-1 infection, the interaction of CypA and newly synthesized HIV-1 CA 

assists HIV-1 to induce DC maturation, an antiviral type I interferon response, and the activation  

of T-cells. In addition, CypA inhibits Rotavirus replication by facilitating host IFN-β production. 

Whether CypA mediates host antiviral defenses during influenza virus infection is an interesting 

question and requires further study. In addition, CypA is secreted into the extracellular space, and the 

function of extracellular CypA during influenza virus replication deserves further study. 
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