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An interplay between pairing and topological orders has been predicted to give rise to
superconducting states supporting exotic emergent particles, such as Majorana particles
obeying non-Abelian braid statistics. We consider a system of spin polarized electrons
on a Hofstadter lattice with nearest-neighbor attractive interaction and solve the mean-
field Bogoliubov–de Gennes equations in a self-consistent fashion, leading to gauge-
invariant observables and a rich phase diagram as a function of the chemical potential,
the magnetic field, and the interaction. As the strength of the attractive interaction is
increased, the system first makes a transition from a quantum Hall phase to a skyrmion
lattice phase that is fully gapped in the bulk but has topological chiral edge current,
characterizing a topologically nontrivial state. This is followed by a vortex phase in which
the vortices carrying Majorana modes form a lattice; the spectrum contains a low-energy
Majorana band arising from the coupling between neighboring vortex-core Majorana
modes but does not have chiral edge currents. For some parameters, a dimer vortex
lattice occurs with no Majorana band. The experimental feasibility and the observable
consequences of skyrmions as well as Majorana modes are indicated.

quantum Hall effect | topological superconductivity | Majorana modes | skyrmions

It has been nearly a century since the discovery of quantum mechanics, and yet some of
its fundamental consequences are still being uncovered to this day. In particular, the role
of topology in the quantum description, even for single-particle physics, had been largely
ignored until the discovery of the integer quantum Hall effect (IQHE) (1), which has led
to the development of topological band theory (2). In addition, a conceptually distinct but
practically related development was that of quantum statistics in two-dimensional (2D)
systems, which rely on the notion that two successive exchanges of a pair of particles in 2D
space need not be an identity operation, as must be the case in three or higher dimensions.
This fact leads to the possibility of additional types of quasiparticles, called anyons, which
generalize the quantum statistics of bosons and fermions (3–5).

Superconductivity (SC), when combined with nontrivial band topology such as that
found in the IQHE, can yield Majorana zero modes (MZMs), which are non-Abelian
Ising anyons (6–18). (For recent experimental progress on the phenomena arising from an
interplay between IQHE and SC, see refs. 19–22.) Moreover, when interacting topological
states, such as the fractional quantum Hall effect (FQHE) (23), are combined with
SC, even richer and more exotic classes of quasiparticles, for example parafermions and
Fibonacci anyons, are thought to result. Besides being of fundamental scientific interest,
anyons (particularly non-Abelian anyons) have played a role in proposals to engineer fault-
tolerant topological quantum computation (10, 14, 16, 24–33).

Previous works investigating SC in quantum Hall (QH) systems have focused on
proximity-coupled superconductivity, so that the SC pairing potential has been treated
as an external field (20, 34–41). Because the pairing potential is not gauge invariant (it
transforms with charge 2e), the choice of the form of the (proximity-induced) pairing
potential must be specified together with the gauge. A gauge invariant treatment is
necessary for physical observables, such as the Chern number—a manifestly gauge-
invariant quantity, since it counts edge modes of the system.

Previous works have studied the problem in the presence of a pairing field describing an
Abrikosov vortex lattice—the expected ground state for type II superconductors subject
to a magnetic field (39, 42, 43). These treatments do not allow for more exotic pairing
order—such as half quantum vortices (HQVs), skyrmions, and giant vortices—that is
possible in p-wave superconductor materials due to the multicomponent nature of the
order parameter (44–52). Without a more complete, self-consistent treatment of the
pairing-order parameter, one cannot establish a priori what sort of order the ground state
would adopt.
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Our approach in this paper is to solve the Bogoliubov–de
Gennes (BdG) mean-field equations self-consistently for a model
of spinless (or spin polarized) fermions with attractive interactions
on a square lattice. Self-consistency guarantees gauge invariance
for physically observable quantities. We do not assume a form of
the pairing potential, other than its being the result of a nearest-
neighbor attractive interaction, and therefore we treat the possible
ground states on an equal footing. To explore all topological sec-
tors, we find self-consistent solutions starting from many random
initial guesses; we find that most of them converge to the same
solution that has the lowest energy and that we identify with the
ground state. We are interested in the topological nature of the
ground states, which is characterized by the (superconducting)
Chern number of the BdG Hamiltonian (defined below). In
particular, odd SC Chern number is an indicator for the non-
Abelian, or topologically nontrivial, phase of superconductivity,
which is of primary interest.

A schematic of the various phases following from our calcula-
tions is shown in Fig. 1; a more detailed phase diagram is given
below. We find that upon increasing the strength of the attractive
interaction U , the system transitions into a superconducting
phase, as expected. However, typically, the ground state does
not form an Abrikosov lattice of vortices, but instead a lattice
of skyrmions—where a skyrmion texture is formed by the two-
component SC pairing functions and represents a domain of
inverted chirality in a chiral p-wave superconductor, with half
quantum vortices bound along the domain wall. In the skyrmion
lattice phase, the SC Chern number is odd, and so the system
hosts chiral Majorana edge modes. However, the bulk fermionic
spectrum is gapped, implying that there are no MZMs in the
bulk. Upon further increasing U , the system forms a square
lattice of Abrikosov vortices. The MZMs located at the vortices
hybridize into low-energy Majorana bands, but the ground state
has an even SC Chern number, implying that the system is in a
topologically trivial phase with no chiral Majorana edge modes. In
addition, at some isolated points in the parameter space, a lattice
of vortex dimers may compete with the vortex lattice and become
the ground state. This phase, like the skyrmion phase, has chiral

Fig. 1. A schematic phase diagram showing the phases of the model. The
types of edge modes that the phases can support are indicated: The quantum
Hall phase hosts chiral fermionic edge modes (solid lines); the skyrmion lattice
phase hosts chiral Majorana edge modes (dashed lines labeled with γ); the
vortex lattice phase hosts either fermionic edge modes or no edge modes
at all. In the vortex lattice phase, the Majorana excitations, which in a chiral
p-wave supeprconductor are bound to vortices, hybridize between proximate
vortices (depicted via dashed lines between vortices) and open a low-energy
spectral gap. In the skyrmion lattice phase the yellow and blue colors indicate
different chiralities of the superconducting order parameter, and the arrows
depict the direction of a pseudospin vector (defined in the main text).

Majorana edge modes, because the SC Chern number is odd,
but the bulk spectrum is gapped, indicating an absence of bulk
MZMs.

Model

We start with the interacting Hamiltonian, which is defined on a
square lattice with unit lattice constant as

H=H0 +HI

H0 =−
∑
j ,δ

(
eiAj+δ,j ĉ†j+δ ĉj + eiAj ,j+δ ĉ†j ĉj+δ

)
− μ

∑
j

ĉ†j ĉj

HI =−U
∑
j ,δ

ĉ†j+δ ĉ
†
j ĉj ĉj+δ, [1]

where ĉ†j (ĉj ) creates (annihilates) a spinless fermion on site j ,
located at position r j , and ĉ†j+δ (ĉj+δ) creates (annihilates) a
spinless fermion on a site that is a nearest neighbor to site j ,
located at position r j + δ̂, where δ = x , y . The chemical poten-
tial is μ, the interaction strength is −U with U > 0, and the
external magnetic field is incorporated through complex hopping
matrix elements with phases Aj+δ,j =−Aj ,j+δ. We measure all
energies in units of the hopping amplitude. The set of hopping
phases encodes the magnetic flux Φj through each square lattice
plaquette

2π
Φj

Φ0
= Aj+x̂ ,j + Aj+x̂+ŷ,j+x̂ − Aj+x̂+ŷ,j+ŷ − Aj+ŷ,j , [2]

where Φ0 = h/e is the flux quantum.
In the presence of an external magnetic field, the noninter-

acting part of the Hamiltonian H0 does not commute with
translations by a single site. Therefore, the unit cell must be
enlarged into the so-called magnetic unit cell (MUC) that encloses
an integer number of flux quanta (53). The noninteracting part
of the Hamiltonian H0 commutes with translations defined by
the operators TR =

∑
j ĉ

†
j+Rĉj , where R is a translation vector

corresponding to the MUC. It is possible to choose a vector
potential such that eiA has spatial period R (see next paragraph),
thus ensuring that

[H0,TR] =
∑
j ,δ

ĉ†j+R+δ ĉj

(
eiAj+δ,j − eAj+R+δ,j+R

)
[3]

vanishes. We choose the MUC lattice vectors R1 =M ŷ and
R2 = N x̂ , with precisely h/e flux through the MUC.

The phases Aj+δ,j are periodic only if the total magnetic flux
through the MUC is zero. This can be ensured by performing a
singular gauge transformation that inserts a point flux of −h/e
through a single square plaquette in the MUC to cancel the total
flux. We emphasize that the insertion of the point flux, having
magnitude h/e, has no effect on any physical observable and is
therefore a pure gauge transformation. To fix the gauge we impose
the condition Aj+x̂+ŷ,j+x̂ = Aj+x̂ for all sites j , and the point
flux is chosen to pass through the lower right plaquette of the
MUC; with these conditions, the set of linear equations (Eq. 2)
uniquely fixes the gauge. See SI Appendix for an example of our
gauge-fixing scheme.

To proceed with mean-field theory in real space, we consider
an alternative Hamiltonian HMF obtained by replacing the in-
teraction term in H by fermion bilinears coupled to fields. The
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Hamiltonian, after the standard mean-field decomposition in the
pairing channel, is

HMF =−
∑
j ,δ

(
eiAj+δ,j ĉ†j+δ ĉj + eiAj ,j+δ ĉ†j ĉj+δ

)
−μ

∑
j

ĉ†j ĉj

−
∑
j ,δ

(
Δj ,δ ĉ

†
j+δ ĉ

†
j +Δ∗

j ,δ ĉj ĉj+δ −
|Δj ,δ|2
U

)
, [4]

where the vector field Δj ,δ is treated as a variational parameter
whose optimal value is given by

Δj ,δ = U 〈ĉj ĉj+δ〉, [5]

where the expectation value is with respect to the ground state
of the mean-field Hamiltonian HMF. The Hamiltonian is in-
variant under the gauge transformation ĉj → eiφj ĉj , Δj ,δ →
ei(φj+δ+φj )Δj ,δ , and Aj+δ,j →Aj+δ,j + φj+δ − φj .

We consider a lattice with L× L MUCs, with each MUC of
size M ×M ; we take L= 10 and M = 20 for our numerical
calculations. We write the mean-field Hamiltonian in momentum
space by Fourier transforming ĉj = 1

L

∑
k e

ik ·Rĉα(k), where R
is the position vector for the origin of the MUC in which site j lies
and α is a site label within the MUC corresponding to site j . The
number of allowed k magnetic momenta is L2. We have tested
that our results do not change qualitatively when larger values of
L are used.

Assuming that the pairing field Δj ,δ has the same periodicity
as the MUC, we obtain the mean-field Hamiltonian in the BdG
form

HMF =
1

2
Ĉ †(k)HBdG(k)Ĉ (k)

+
1

2

∑
m

(
εm(k)− μ

)
+
∑
j ,δ

|Δj ,δ|2
U

, [6]

where εm(k) are the eigenenergies of the noninteracting Hamilto-
nian H0. The row vector Ĉ †(k) =

(
ĉ†1(k) · · · ĉ†M 2(k) ĉ1(−k)

· · · ĉM 2(−k)
)

and

HBdG(k) =

(
h(k) ΔA(k)

Δ†
A(k) −h∗(−k)

)
, [7]

where ΔA(k) = Δ(k)−ΔT (−k) and Δ(k) is the Fourier
transform of Δj ,δ . The BdG Hamiltonian HBdG(k) is 2M 2 ×
2M 2, Hermitian, and so is diagonalizable by a unitary
transformation. We write the quasiparticle operators, which are
the eigenoperators of the Hamiltonian H, as

γ̂m(k) =
∑
α

uα,m(k)ĉα(k) + vα,m(k)ĉ†α(−k), [8]

where uα,m(k) and vα,m(k) are determined from the eigenvec-
tors of HBdG(k), and m labels the BdG quasiparticle bands. Note
that the BdG Hamiltonian is particle–hole symmetric

PHBdG(k)P−1 =−HBdG(−k), [9]

where P = τxK, K is the complex conjugation operator, and
τx is a Pauli matrix acting on the particle and hole subspaces.
This means that not all eigenvectors are independent—if(
V 1(k) V 2(k)

)T is an eigenvector of HBdG at positive
E (k), then

(
V 2(k)

∗ V 1(k)
∗)T is an eigenvector of HBdG

at −E (−k). This, in turn, implies that not all quasiparticle
operators are independent

γ̂m(k) = γ̂†
m′(−k), [10]

where band m ′ is such that Em(k) =−Em′(−k). Given all this,
the full Hamiltonian Ĥ can be expressed as

HMF =
∑
k

M 2∑
m=1

(
Em(k)γ̂†

m(k)γ̂m(k)+
1

2
εm(k)− 1

2
Em(k)

)

+
∑
j ,δ

|Δj ,δ|2
U

. [11]

The ground-state energy is given by

Eg =
∑

Em(k)<0

Em(k) +
1

2

∑
k

M 2∑
m=1

(
εm(k)− μ− Em(k)

)

+
∑
j ,δ

|Δj ,δ|2
U

. [12]

By inverting Eq. 8, we can express the expectation value 〈ĉj ĉj+δ〉
in terms of uα,m(k) and vα,m(k) (at zero temperature) to write
the self-consistency equation Eq. 5 as

Δj ,δ =
U

L2

∑
k

∑
m

e−ik ·ΔRuα+δ,m(k)v∗
α,m(k), [13]

where α is the site within the MUC corresponding to site j
and ΔR is difference in MUC location of site j + δ and site j .
The subscript α+ δ refers to the nearest neighbors of site α and
is understood to be taken modulo the MUC. This equation is
solved iteratively by starting with a random guess for the pairing
potential Δ(0)

j ,δ , diagonalizing HBdG to obtain uαs and vαs, and
then obtaining a new pairing potential Δ(1)

j ,δ using Eq. 5. The
new pairing potential is treated as a new guess and the process is
repeated until convergence is achieved to within a relative error
of 10−5. Many random initial guesses are tried, and the one
that yields the lowest energy (expressed in Eq. 12) is taken to
be the ground-state solution. Generically, a large majority of the
initial guesses produce the ground state. Solutions with higher
energies than the ground state are taken to be excited states. We
emphasize that the solutions to the self-consistency equation are
gauge invariant in the sense that if Δj ,δ is a solution to the self-
consistency equations with energy Eg in a certain gauge, then
ei(φj+δ+φj )Δj ,δ is a self-consistent solution in another gauge,
related to the first one by the gauge transformation φj , with the
same energy Eg .

The BdG Hamiltonian HBdG(k), describing a system in two
spatial dimensions and being particle–hole symmetric only, resides
in class D of the Altland–Zirnbauer classification (54) and is
therefore characterized by a Z bulk topological invariant, called
the Chern number C (2). For superconducting systems, the Chern
number C counts the number of chiral Majorana edge modes
(6, 12, 13, 15) and, in particular when C is odd, the system is
topologically distinct from an ordinary quantum Hall state that, in
the BdG framework, possesses an even Chern number. The Chern
number of the BdG Hamiltonian can be computed in the same
fashion as for noninteracting Hamiltonians: One defines the Berry
connection, determined by the eigenvectors |um(k)〉 of the BdG
Hamiltonian HBdG(k), where m labels the band, as

Amn
μ (k) = i〈um(k)|∂μ|un(k)〉, [14]
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where ∂μ is the shorthand for ∂/∂kμ. The Berry curvature is then
defined as

Fmn
μν (k) = ∂μA

mn
ν − ∂νA

mn
μ + i [Aμ,Aν ]

mn
. [15]

The only nonzero components of the Berry curvature are Fxy =
−Fyx ≡ F . The Chern number is then given by the Berry curva-
ture integrated over the magnetic Brillouin zone (MBZ):

C =
1

2π

∫
MBZ

d2kTr [F (k)]E(k)<0 [16]

We compute Eq. 16 numerically using the method of Fukui et al.
(55)—the Berry curvature is determined on a grid in a discretized
MBZ by defining

Mmn
λ (kα) = 〈um(kα)|un(kα + eλ)〉. [17]

The points on the grid are labeled by kα and the spacing vectors
are eλ, where λ= 1, 2. In terms of the link variables defined as

Uλ(kα) =
detMλ(kα)

| detMλ(kα)|
[18]

the discrete Berry curvature at each point on the grid is given by

F̃ (kα) = ln
(
U1(kα)U2(kα + e1)

U−1
1 (kα + e2)U

−1
2 (kα)

)
. [19]

The Chern number is then given by

C =
1

2πi

∑
α

F̃ (kα). [20]

Results

We are primarily interested in the ground state and the low-energy
fermionic spectrum of the model. Indeed, we find a rich phase
diagram with unexpected ground states, as shown in Fig. 2, which
we discuss in detail below.

A. Quantum Hall Phase. Superconducting regions in the phase
diagram are denoted with color (Fig. 2A), and the nonsupercon-
ducting region is indicated in white, where the single-particle
spectrum forms very flat and nearly equally spaced Landau level-
like Chern bands (we henceforth refer to them as LLs), with super-
conducting Chern number C =−2ν, where ν is the filling factor
(56). The energy of these bands is indicated by the horizontal black
lines in Fig. 2A, and this phase is deemed a QH phase.

It should be noted that if the chemical potential is tuned to
lie precisely within a LL, superconductivity extends to arbitrarily
low interaction strength. The indicated boundary between the
QH and the superconducting regions (dashed line in Fig. 2) is
determined for chemical potentials that lie halfway between LLs.

B. Skyrmion Phase. Starting from the nonsuperconducting re-
gion and increasing the attractive interaction strength, the QH
system transitions into a superconducting ground state that forms
a skyrmion lattice (44, 46, 48, 49, 51, 52) (discussed below at
more length) for values of the chemical potential corresponding to
filling factor ν � 3. This region is indicated in red in Fig. 2. The
SC Chern number C changes rapidly near the phase boundary
(narrow regions with high C have not been indicated in the
phase diagram for simplicity), attaining the value C =−1 slightly
away from the phase boundary. The phase boundary also has an
oscillatory dependence on the chemical potential, not shown in
Fig. 2.

In a chiral p-wave superconductor, a skyrmion is a closed
domain of inverted chirality with half-quantum vortices (HQVs)
located on the domain wall (44, 46, 48, 49, 51, 52). As shown
below, these configurations have a skyrmionic texture in a suitable
pseudospin representation and carry a nonzero topological charge.
The magnitudes of the two components of the order parameter,
|Δj ,x | and |Δj ,y |; the particle density; and the low-energy BdG
quasiparticle band structure are shown in Fig. 3 A–D. It can be
seen that there are two vortices per component of the order
parameter that each have different locations (the vortices are
coreless). The phase of only one component of the order parameter
winds by 2π around each vortex while the other component
remains constant. The vortices are HQVs since each one is as-
sociated with a h/4e magnetic flux (the entire skymion in each

Fig. 2. (A) The mean-field phase diagram as a function of the magnitude of the nearest-neighbor attractive interaction U and the chemical potential μ, in
units where the hopping amplitude is set to unity. Horizontal black lines in the quantum Hall phase indicate the energies of the Landau levels. The phase with
skyrmion lattice region is marked in red. (The phase boundary separating the QHE and the skyrmion lattice phases is somewhat more complicated than that
depicted. The boundary is constructed by taking the chemical potentials μ half-way between Landau levels; for μ closer to a LL energy, the skyrmion phase
appears at smaller U. Also, skyrmion lattice phases with very high Chern numbers occur very close to the phase boundary, which have not been depicted to
avoid clutter.) The regions with vortex lattice are indicated in blue and cyan, and the gridded region has competing vortex lattice/dimer vortex lattice phases. The
yellow star, square, and triangle correspond to the skyrmion, vortex lattice, and dimer vortex lattice phases shown in Fig. 3, respectively. (B) The average particle
number per site (density in units of a−2 where a is the lattice constant) as a function of μ and U. (C) Spatially averaged magnitude of the pairing potential as a
function of μ and U. Note that the discontinuous changes in the spatially averaged pairing potential and the average density at the (first-order) phase transition
are too small to be visible in the plots; for example, for μ = −3.6, at the vortex lattice–skyrmion lattice phase boundary, the former is 0.006 (reflecting a 4%
change in the magnitude) and the latter is 0.0002 (0.5%).
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Fig. 3. (A and B) The magnitude of the components of the pairing potential |Δj,x| and |Δj,y |. (C) The particle density. (D) The low-energy quasiparticle bands for
the skyrmion lattice solution with U = 4.05 and μ = −3.4. E–H show the same but for the vortex lattice solution with U = 5.25 and μ = −3.8. I–L show the same
but for the dimer lattice solution with U = 5 and μ = −3.8. The red dashed lines denote the boundary of the MUC.

MUC is associated with h/e flux). The skyrmion has a ring
structure in the density, as seen in Fig. 3C, which may provide a
signature of skyrmions in scanning tunneling microscopy (STM)
measurements. The fermionic spectrum in the skyrmion phase,
shown in Fig. 3D, is gapped, indicating the absence of zero-
energy Majorana-bound states in the bulk. The SC Chern number,
computed using Eq. 16, is C =−1, signifying that it is in the
phase of p-wave superconductors with non-Abelian excitations
and has exactly one chiral Majorana edge mode.

It is useful to contrast the skyrmion phase with the more
familiar vortex phase, which is discussed below. Unlike in the
skyrmion phase, the vortices in each component occur at the
same location in the vortex phase. Also, in the vortex phase the
“total gap”

√
|Δj ,x |2 + |Δj ,y |2 almost vanishes at the locations

of the vortices; for the skyrmion lattice, in contrast, the total gap
is everywhere finite. Finally, the vortex phase has a low-energy
Majorana band, which is absent in the skyrmion phase.

To classify the self-consistent solutions of the order parameter
Δj ,δ , it is convenient to define a topological invariant called the
(real space) skyrmion number

Q=
1

4π

∫
d2r n̂ ·

(
∂x n̂ × ∂y n̂

)
, [21]

where the pseudospin vector n̂ is defined in terms of the supercon-
ducting order parameter in the continuum n̂α = Δ†σαΔ

Δ†Δ
, where

Δ= (Δx (r),Δy(r))
T and σ is a Pauli matrix (α= x , y , z ).

We expect Q= 0 for vortex solutions and Q= 2 for skyrmions
(48). On the lattice, a problem arises with this definition of Q.
The order parameter transforms nonlocally under a gauge trans-
formation ĉj → eiφj ĉj , i.e., Δj ,δ → ei(φj+δ+φj )Δj ,δ , and so

the vector n̂(r j ) transforms as n̂(r j )→ Rxy(δθ)n̂(r j ), where
Rxy(δθ) is a rotation matrix in the xy plane by an angle δθ =
φj+ŷ − φj+x̂ . Consequently, the skyrmion number Q defined in
this way is not invariant under gauge transformations on the lattice
(the skyrmion number in the continuum, in contrast, is gauge
invariant since there the continuum order parameter transforms
locally under gauge transformations).

To construct a gauge-invariant skyrmion number on the lat-
tice, we define the gauge-invariant phase difference between the
components of the order parameter in the following way: We first
define the phase of the two order parameters θj ,δ,

Δj ,δ = |Δj ,δ|eiθj ,δ , [22]

where δ = x , y . Instead of the bare phase, we consider the phase
θ̃j ,δ = θj ,δ − Aj+δ,j , which by itself is not gauge invariant, but
the combination θ̃j ,y − θ̃j ,x is gauge invariant:

θ̃j ,y − θ̃j ,x →θj ,y + φj + φj+ŷ −
(
Aj+ŷ,j + φj+ŷ − φj

)
−θj ,x − φj − φj+x̂ +

(
Aj+x̂ ,j + φj+x̂ − φj

)
=
(
θj ,y − Aj+ŷ,j

)
−
(
θj ,x − Aj+x̂ ,j

)
=θ̃j ,y − θ̃j ,x . [23]

This motivates us to define a pseudospin vector on the lattice using
θ̃j ,δ:

n̂j ,α =
Δ†

jσαΔj

Δ†
jΔj

, where Δj =

(
|Δj ,x |ei θ̃j ,x
|Δj ,y |ei θ̃j ,y

)
. [24]
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The pseudospin n̂j ,α is gauge invariant on the lattice and the
skyrmion number, computed using a lattice-discretized version
of Eq. 21, is Q= 2 for a skyrmion and Q= 0 for two vortices
(both evenly spaced and dimer vortices discussed below) when
rounded to the nearest integer. This is consistent with the values
found in continuum systems (48, 49, 51). Furthermore, it can
be shown that the lattice pseudospin vector is identical to the
continuum pseudospin vector, defined above, in the continuum
limit. Therefore, we conclude that the deviation of the lattice
skyrmion number from an integer is a result of lattice discretiza-
tion; using a finer lattice (i.e., more sites per MUC) will yield
skyrmion numbers closer to their continuum limit values.

It is also instructive to look at the spatial variation of the (gauge-
invariant) phase difference θ̃j ,y − θ̃j ,x in the skyrmion phase.
Fig. 4 shows the cosine and sine of the angle difference for the
skyrmion phase. The cosine shows alternating sign between the
half-quantum vortices, a signature of skyrmions in p-wave super-
conductors (51). The sine plot displays another defining feature of

Fig. 4. (A) The cosine of the gauge-invariant phase difference between the x
and y components of the order parameter for the skyrmion phase. Along the
boundary of the skyrmion, the pairing symmetry oscillates between px + py
and px − py . (B) The sine of the gauge-invariant phase difference between
the x and y components of the order parameter for the skyrmion phase.
Inside the skyrmion, the pairing symmetry is px + ipy , and outside, the pairing
symmetry is px − ipy .

skyrmions in this context—closed domains of inverted chirality.
In the present case, the pairing symmetry is px + ipy (the phase
difference is π/2) inside the skyrmion, and outside it is px − ipy
(the phase difference is −π/2). The half-quantum vortices reside
on this domain wall. We note that the phase difference plots for
the vortex and dimer vortex phase are comparatively featureless—
the phase difference is pinned to π/2, implying that the entire
system has px + ipy pairing symmetry.

C. Vortex Lattice and Dimerized-Vortex Lattice. The region
where the ground state forms a vortex lattice is indicated by
blue and cyan in Fig. 2, with SC Chern numbers equal to
C = 0 and C = 2, respectively. The vortex lattice solution is
energetically favored in the superconducting region when the
chemical potential is low or the interaction strength is high. Note
that for low chemical potentials the transition is directly from the
QH phase into the vortex lattice phase.

The magnitudes of the two components of the order parameter,
|Δj ,x | and |Δj ,y |; the particle density; and the low-energy BdG
quasiparticle band structure for the vortex lattice phase are shown
in Fig. 3 E–H. The vortices in each component occur at the
same location and form a square lattice. Note that the total
gap

√
|Δj ,x |2 + |Δj ,y |2 almost vanishes at the locations of the

vortices. The vortex lattice phase has a low-energy band structure
(shown in Fig. 3H ) that is consistent with the findings of previous
studies of Majorana bands (40, 57–68), where the dynamics were
described by Majoranas hopping between vortices with nearest-
neighbor and next–nearest-neighbor hopping. The spectrum has
a small gap and we find that the Chern number is C = 0, 2 in
the vortex phase, which is also consistent with previous studies
(37, 67). This supports the claim that the non-Abelian phase is
not possible for a lattice of vortices with one vortex per vortex
unit cell (36, 37, 67).

Additionally, we find that vortices show a tendency to dimerize
(i.e., form a lattice with two vortices per vortex unit cell). This
phase is energetically competitive in the black gridded region of
the phase diagram; for some parameters it is the clear ground state
whereas in other cases it is only slightly higher in energy than
the vortex lattice solution. It is also found as a higher-energy self-
consistent solution in much of the phase diagram. The magnitudes
of the two components of the order parameter, |Δj ,x | and |Δj ,y |;
the particle density; and the low-energy BdG quasiparticle band
structure for the dimer vortex lattice phase are shown in Fig. 3
I–L. As can be seen, the vortices are not equally spaced. This breaks
the vortex magnetic translation symmetry (35, 36) and allows for
odd SC Chern number and hence the non-Abelian phase. We
find that the SC Chern number C = 1 is the same as that of the
background px + ipy superconductor. It is encouraging to find
that the system breaks the vortex translation symmetry all on its
own; translation symmetry-breaking perturbations may thus not
be required to realize the non-Abelian phase of vortex lattices in
p-wave superconductors (36, 61, 63).

The current textures for the skyrmion, vortex, and dimer vortex
lattice phases are shown in Fig. 5. The current is determined by
evaluating the expectation value of the current operator

Ĵ j ,δ = i
(
eiAj+δ,j ĉ†j+δ ĉj − eiAj ,j+δ ĉ†j ĉj+δ

)
[25]

in the ground state. This expression can be derived by considering
variation of the Hamiltonian with respect to the hopping phases
or by using the continuity equation (69). The current texture for
a skyrmion (shown in Fig. 5A) shows inner and outer currents
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Fig. 5. (A–C) The current texture for a skyrmion (A), a pair of vortices in a vortex lattice (B), and pair of vortex dimers (C). Half-vortices in A and vortices in B and
C are marked by X.

flowing in opposite directions. This structure can be understood
as coming from the combined supercurrent of the bound half-
quantum vortices. The vortex lattice phase (Fig. 5B) shows rela-
tively separated current circulation for each vortex whereas for the
vortex dimers (Fig. 5C ) the current percolates between the vortices
in the dimer.

The spatially averaged pairing potential and the average density
are also shown in Fig. 2 B and C. The discontinuous jumps in
these quantities at the (first-order) phase boundary separating the
vortex lattice–skyrmion lattice phases are small because they arise
primarily from the regions in the immediate vicinity of the vortices
and the skyrmions. For example, for μ=−3.6, the change in
the spatially averaged pairing potential is 0.006 (reflecting a 4%
change in the magnitude) and that in the average density is 0.0002
(0.5% change in the magnitude). These jumps are not visible in
Fig. 2 B and C. The QHE to skyrmion lattice transition is also first
order, as expected from the large change in the Chern number.
Here we find that the average pairing potential jumps from zero
to a number approximately equal to twice the energy separation
between μ and the nearest LL.

Discussion

Despite the attention that vortices have received in the context
of topological p-wave superconductivity in QH systems, the
question of whether or not the vortex lattices are the stable self-
consistent ground-state solutions has been relatively unexplored.
Nevertheless, recent studies have pointed out that systems with a
regular lattice of Abrikosov vortices carrying flux h/2e have an
even SC Chern number C, due to the vortex magnetic translation
symmetry that enforces an even number of Dirac crossings, and
hence these systems have the same classification as the QH phase
with fermionic (as opposed to Majorana) chiral edge modes (36,
37, 67). These results are indeed consistent with ours, for the
portion of the phase diagram at relatively strong pairing strength,
but we find cases where the system seems to circumvent this
problem by forming skyrmions or vortex dimers, thereby allowing
for odd SC Chern number and hence chiral Majorana edge modes.

Some insight into the origin of the vortex dimer phase can
be gained by analogy to Peierls-type physics: A Peierls distortion
opens a larger gap, pushing the states near zero energy to lower
energies, as shown in Fig. 3 D, H, and L, thereby reducing the
energy of the Majorana band. However, whether such distortion
actually occurs depends on other bands as well as the last term in
Eq. 12. Similarly, the formation of skyrmions also opens a large
gap at the Fermi energy that can stabilize it in some parameter
regimes.

It should be noted that our choice of a square MUC containing
one quantum of flux h/e, which is limited by the need of com-
putational resources, forces the skyrmions, Abrikosov vortices,
and vortex dimers to all form a square lattice. Choosing a larger
number of magnetic flux quanta per MUC would constrain
the lattice to a lesser degree and could allow for a triangular
lattice of vortices. Although the lattice type may change, we
expect the phase diagram to qualitatively remain the same, es-
pecially when the skyrmions, vortices, and vortex dimers are far
separated.

A comment on the center-of-mass (COM) magnetic momen-
tum of the Cooper pairs is also in order. Our assumption that
the mean-field pairing potential Δj ,δ has the same periodicity
as the MUC of the noninteracting system (described by the
Hamiltonian H0) allows only for pairing between fermions of
opposite magnetic momenta k and −k , resulting in Cooper pairs
with zero COM magnetic momentum. (A nonzero COM mo-
mentum would manifest through a phase twist across an MUC.)
In studies of the SC Hofstadter model in large magnetic fields,
pairing instabilities can also occur at finite COM momentum, due
to degeneracies arising from the magnetic translation symmetry,
leading to Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) supercon-
ductivity (70–73). We neglect in our work FFLO pairing because
our interest has primarily to do with skyrmion/Majorana physics
in the continuum limit and also because FFLO pairing has not yet
been decisively observed in condensed-matter systems.

We end with a remark on the experimental relevance of our
results. We expect our model with nearest-neighbor attractive in-
teraction to be relevant to p-wave superconductors under external
magnetic fields. In addition, our study will provide a guidance to
understand physics in s-wave superconductors with strong spin–
orbit coupling under an external magnetic field or in heterostruc-
tures consisting of a 2D SC coupled to a 2D QH system.
Data Availability. The program used to generate the data in this article may be
accessed on Zenodo at https://doi.org/10.5281/zenodo.6656573 (74). All study
data are included in this article and/or SI Appendix.
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