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The fact that various immune cells, including macrophages, can be found in

tumor tissue has long been known. With the recent introduction of the novel

concept of macrophage differentiation into a classically activated phenotype (M1)

and an alternatively activated phenotype (M2), the role of tumor-associated mac-

rophages (TAMs) is gradually beginning to be elucidated. Specifically, in human

malignant tumors, TAMs that have differentiated into M2 macrophages act as

“protumoral macrophages” and contribute to the progression of disease. Based

on recent basic and preclinical research, TAMs that have differentiated into pro-

tumoral or M2 macrophages are believed to be intimately involved in the angio-

genesis, immunosuppression, and activation of tumor cells. In this paper, we

specifically discuss both the role of TAMs in human malignant tumors and the

cell–cell interactions between TAMs and tumor cells.

I t has long been known that many leukocytes including
macrophages are present in tumor tissues and that these

cells, together with fibroblasts and vascular endothelial cells,
form the tumor microenvironment (Fig. 1).(1–4) Previously,
activated macrophages were believed to exhibit antitumor
activity by directly attacking tumor cells in the tumor microen-
vironment.(5) However, many recent studies have indicated the
protumoral functions of tumor-associated macrophages
(TAMs), and thus, TAMs are believed to directly or indirectly
promote tumor progression.(6–8) Great advances have been
made in TAM research over the past dozen years or so, with
one of the most significant breakthroughs being the develop-
ment of immunohistochemical methods for identifying TAMs
in tumor tissue. Numerous studies using human samples have
been carried out using CD68 as a macrophage marker, whereas
CD163 and CD204 have been used as markers of M2 macro-
phages in recent studies.(9,10) Although variability is observed
according to tumor tissue type and location, over 80% of
immunohistochemical studies using various human tumor tis-
sues have shown that higher numbers of TAMs are associated
with worse clinical prognosis.(9) Supporting these clinical
observations, in vitro experiments using human tumor cells
and experiments using animal models indicate that TAMs pro-
mote tumor cell growth by suppressing antitumor immunity
and inducing angiogenesis.(11,12)

As the relationship between TAMs and malignant tumors
becomes clearer, TAMs have begun to be seen as the target of
new cancer treatments. Clarification of how TAMs are
involved in tumor progression and metastasis is anticipated to
lead to the development of novel treatments and drugs.

Intratumoral infiltration of TAMs

Intratumoral infiltration of monocytes ⁄macrophages is induced
by various chemokines including chemokine (C-C motif)
ligand (CCL)2, CCL5, CCL7, and chemokine (C-X3-C motif)
ligand (CX3CL)1, as well as cytokines such as macrophage
colony-stimulating factor (M-CSF), granulocyte-macrophage
colony-stimulating factor, and vascular endothelial growth fac-
tor (VEGF), which are produced by tumor cells.(13–15) Subse-
quent differentiation into TAMs is induced by various factors
produced by tumor cells. While the tumor size is small, macro-
phages from the surrounding tissue accumulate in and around
the tumor by tumor cell-derived chemotactic molecules
described above, and TAMs derived from the surrounding tis-
sue macrophages account for the majority of TAMs.(4,16) As
the tumor subsequently increases in size and an intratumoral
vascular network forms, monocyte-derived TAMs become the
dominant source of TAMs.(4,16)

Although many macrophage chemotactic factors are secreted
by tumor cells, CCL2 and M-CSF are considered to be impor-
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tant molecules involved in macrophage infiltration. CCL2 is
expressed in a wide variety of tumor cells, including gliomas,
squamous cell carcinoma, ovarian cancer, prostate cancer,
lung cancer, cervical cancer, and undifferentiated sarcoma,
CCL2 also plays an important role in the intratumoral infiltra-
tion of monocytes.(13,17) In addition to inducing monocyte
infiltration, M-CSF plays a critical role in the differentiation of
monocytes into macrophages and, in particular, into M2
macrophages.(18–20)

Role of TAMs in tumor progression

Based on numerous studies using murine tumor models, acti-
vated TAMs were found to produce a variety of angiogenic,

immunosuppressive, and growth-related factors.(7,8) However,
few studies have been carried out using human materials, and
thus the detailed mechanisms and molecular characterization
of TAMs in human tumors have yet to be described. One
method for studying the relationship between TAMs and tumor
development is to carry out statistical analysis using clinical
data related to survival rates or survival times. Studies compar-
ing TAM infiltration into diseased tissue, using CD68 as a
macrophage marker, are summarized in Table 1. The majority
of studies in human malignant tumors have found that a higher
level of TAM infiltration is associated with lower survival
rates, and these observations indicate that TAMs may enhance
tumor progression. However, other reports in certain types of
cancer such as gastric, colon, and prostate cancer, have shown
that a higher number of TAM infiltration results in a better
outcome.
For a localized tumor a few millimeters in size to grow lar-

ger, intratumoral angiogenesis must occur. Genetic analysis
has revealed that TAMs produce VEGF, interleukin (IL)-8
(CXCL8), basic fibroblast growth factor, thymidine phosphory-
lase, MMP, and other molecules that are involved in angiogen-
esis, indicating that TAMs promote the formation of
intratumoral blood vessels. Furthermore, TAMs produce immu-
nosuppressive factors, including prostaglandin E2 (PGE2),
indoleamine 2,3-dioxygenase, and IL-10, and thus contribute
to the immunosuppressed state of cancer patients.(5–7) In fact,
in studies using human tissue samples, the number of intratu-
moral TAM infiltration is positively correlated with formation
of blood vessels and the number of regulatory T cells. Tumor-
associated macrophage-derived PGE2, indoleamine 2,3-dioxy-
genase, and IL-10 play important roles for induction of
regulatory T cells and TAM-derived CCL17, CCL18, CCL22
are chemotactic factors for regulatory T cells.(5–7) These results
indicate that TAMs create environments conducive to tumor
progression through their effect on angiogenesis and immuno-
suppression. In addition, growth factors produced by TAMs,
including basic fibroblast growth factor, hepatocyte growth
factor, epidermal growth factor, platelet-derived growth factor,
and transforming growth factor-b (TGF-b), are considered to
directly promote tumor cell growth.(5–7)

Of further interest is the suggestion, based on the results of
animal model analysis, that TAMs may play a role in form-
ing premetastatic niches in organs to which the tumor will
eventually metastasize.(21–23) Specifically, tumor necrosis fac-
tor-a, VEGF, and TGF-b (VEGF and TGF-b are also pro-
duced by cancer cells), which are secreted by TAMs in
cancer tissues, are believed to be transported through the
bloodstream to destination organs such as the lung, where
they induce macrophages to produce S100A8 and serum amy-
loid A3.(23) Both S100A8 and serum amyloid A3 recruit mac-
rophages and tumor cells to these organs and promote the
formation of metastatic foci.(24,25) Thus, TAMs are believed
to not only influence their local environment, but also to
impact macrophages throughout the body and contribute to
disease progression.

CD163 and CD204 as markers for protumoral or M2
macrophages

The heterogeneity of macrophage functions was suggested as
early as the late 1990s.(26,27) Macrophage activation can be
broadly divided into the following two types: classically acti-
vated macrophages (M1), which promote inflammation, and
alternatively activated macrophages (M2), which inhibit

(a)

(b)

Fig. 1. Tumor microenvironment. (a) Tumor tissue contains not only
tumor cells, but also large numbers of normal cells, including tumor-
associated macrophages, lymphocytes, blood vessels, and fibroblasts,
that affect tumor development in various ways. The photographs show
an example of a clinical case of human breast cancer (invasive ductal
carcinoma). The relative distributions of the above-mentioned cell
types differ by organ and tissue type as well as individual case.
CK, cytokeratin. (b) Metastatic tumors contain a larger number of
tumor-associated macrophages. The photographs show an example of
a clinical case of human kidney cancer (clear cell renal cell carcinoma).
The primary tumor tissues and the metastatic (lung) tumors are shown.
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inflammation.(27,28) Those TAMs demonstrating enhanced
expression of CD163 (hemoglobin scavenger receptor), CD204
(class A macrophage scavenger receptor), CD206 (mannose
receptor, C type 1), stabilin-1, arginase-1, and accelerated pro-
duction of IL-10, VEGF, PGE2, and MMP9, generally show
characteristics of M2 macrophages.(6–8) The proangiogenic and
immunosuppressive activity in the tumor microenvironment
mediated by TAMs can also be considered the result of M2
macrophage function.(6–8) Because CD163 and CD204 are spe-
cifically expressed on macrophages, and antibodies to these
antigens that are suitable for immunohistochemical analysis
are commercially available,(10,29,30) many researchers have
used these molecules as markers of the M2 phenotype in both
in vitro and in vivo studies. The details of the functions of
these molecules remain unclear; however, a few studies have
indicated that these molecules are involved either in regulating
the inflammatory responses or in maintaining the protumoral
functions of macrophages.(31–33) The clinicopathological stud-
ies using anti-CD163 or anti-CD204 antibodies are summa-
rized in Table 2. In malignant lymphoma, glioma, and kidney
cancer, higher CD163 expression on TAMs is associated with
worse clinical prognosis, but no correlation exists between
clinical prognosis and the number of CD204-expressing
TAMs.(10,34–36) In esophageal cancer, a higher number of
CD204-expressing TAMs is associated with poor clinical out-
come, but the number of CD163-positive TAMs is not.(37)

These observations suggest that CD163 and CD204 are not
expressed in completely identical macrophage populations. In
addition, the functional significance of CD163- or CD204-posi-
tive TAMs might be different among sites and histological
types of cancer. We suggest that both CD163 and CD204
should be analyzed to evaluate the polarization of TAMs and

that CD163- and ⁄ or CD204-positive TAMs are considered as
“protumoral” macrophages ⁄TAMs.
In a recent review, based on their location and function,

Qian and Pollard(38) classified TAMs into the following six
types: angiogenic; immunosuppressive; invasive; metastasis-
associated; perivascular; and activated macrophages. Not all of
these macrophage types of TAMs show the phenotype of M2
macrophages. Tumor-associated macrophages with M1 charac-
teristics have also been observed in animal models of glioma
and human pancreatic cancer.(39,40) Although the concept of
“M1 ⁄M2 macrophages” is a convenient hypothesis simply
dividing TAMs into two populations, we should note that
TAMs contain various macrophage populations with a wide
range of polarization statuses stimulated by complex signals in
tumor microenvironment.

Significance of direct cell–cell interactions between TAMs
and tumor cells

As shown in Figure 1, TAMs and tumor cells often directly con-
tact each other, indicating that intimate cell–cell interactions
exist between them. During the initial stages of tumor progres-
sion, monocyte migration factors produced by tumor cells
induce infiltration of monocytes ⁄macrophages, as described
above. The macrophages that have infiltrated the tumor are

Table 2. Correlation between CD163+ or CD204+ tumor-associated

macrophages and clinical prognosis in human malignant tumors

Tumor type Favorable prognosis Poor prognosis

Epithelial Colorectal cancer

(adenocarcinoma)(86)
Kidney cancer

(clear cell type)(34)

Liver cancer (hepatocellular

carcinoma)(87,88)

Liver cancer

(cholangiocellular

carcinoma)(89)

Pancreatic cancer

(invasive ductal

carcinoma)(90,91)

Lung cancer

(adenocarcinoma)(92,93)

Lung cancer (squamous

cell carcinoma)(92,94)

Oral cancer (squamous

cell carcinoma)(95)

Ovarian cancer

(serous adenocarcinoma)(96)

Esophageal cancer

(squamous cell carcinoma)(37)

Non-epithelial Osteosarcoma(97) Leiomyosarcoma(98)

Brain tumor (high-grade

glioma)(10,42)

Malignant melanoma(99,100)

Hematopoietic Diffuse large B-cell

lymphoma(101)

Hodgkin’s lymphoma(101–104)

Follicular lymphoma(105)

Angioimmunoblastic T-cell

lymphoma(35)

Adult T-cell leukemia ⁄
lymphoma(36)

Multiple myeloma(106)

Table 1. High numbers of CD68+ tumor-associated macrophages are

correlated with clinical prognosis in human malignant tumors

Tumor type Favorable prognosis Poor prognosis

Epithelial Gastric cancer

(adenocarcinoma)(68)

Colorectal cancer

(adenocarcinoma)(71)

Prostate cancer

(adenocarcinoma)(73)

Uterine cancer

(endometrioid

adenocarcinoma)(69,70)

Esophageal cancer

(squamous cell

carcinoma)(72)

Liver cancer

(hepatocellular

carcinoma)(74)

Breast cancer

(invasive ductal

carcinoma)(75,76)

Thyroid cancer

(poorly differentiated)(77)

Gastric cancer

(adenocarcinoma,

intestinal type)(78)

Bladder cancer

(urothelial carcinoma)(79)

Non-epithelial Malignant mesothelioma

(sarcomatous)(80)

Malignant melanoma(81)

Neuroblastoma(82)

Ewing’s sarcoma(83)

Hematopoietic Hodgkin’s lymphoma(84)

Follicular lymphoma(85)
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activated by tumor cell-derived molecules, including IL-6,
M-CSF, PGE2, and heat shock protein-27, and differentiate
into protumoral ⁄M2 macrophages.(6,20) Protumoral ⁄M2 TAMs
produce a variety of angiogenic and immunosuppressive fac-
tors, as described above, and create a microenvironment con-
ducive to tumor progression. Signal transducer and activator of
transcription 3 (Stat3) has received recent attention as an
important transcription factor that mediates the interaction
between TAMs and tumor cells.(12) Many angiogenic and
immunosuppressive factors are transcriptionally regulated by
Stat3. Therefore, activation of Stat3 not only plays an impor-
tant role in the differentiation of macrophages into protumoral
⁄M2 macrophages, it is also involved in tumor cell growth,
metastasis, epithelial–mesenchymal transition, and the acquisi-
tion of resistance to anticancer drugs and radiation thera-
pies.(12,41) Direct coculture of tumor cells and macrophages
shows that Stat3 in macrophages is activated and that various
factors secreted by activated macrophages, including EGF, IL-
6, and IL-10, activate Stat3 in tumor cells.(18,42) Activation of
the M-CSF receptor (CD115) and sphingosine-1-phosphate
receptor 1 (S1PR1) on the cell surface is believed to contribute
to the cell–cell interaction mediated by Stat3.(42,43) Membrane-
type M-CSF on the surface of tumor cells serves as a ligand
for CD115, and sphingosine-1-phosphate derived from tumor
cells serves as a ligand for S1PR1. Stimulation of these recep-
tors activates a variety of signal transduction pathways, includ-
ing that of Stat3, causing TAMs to differentiate into the
protumoral ⁄M2 phenotype.(44) The activation of Stat3 through
cell–cell interactions between tumor cells and macrophages
contributes to the formation of the microenvironment necessary
for development of primary and metastatic lesions (Fig. 2).
Recent studies using a murine cancer model showed that

Stat3 is also an important molecule in the maintenance
and anticancer drug responses of cancer stem-like cells
(CSCs).(45–47) The TAM-derived milk fat globule-EGF factor
VIII, which is a glycoprotein belonging to an epidermal
growth factor superfamily, contributes to Stat3 activation in
cooperation with proinflammatory cytokines such as IL-6. And
Stat3 activation is preferentially associated with tumorigenesis
and drug resistance in CSCs.(46) In human colorectal cancer,
overexpression of stem cell markers in tumor cells is reported
to be associated with a high number of TAMs.(48) Further stud-
ies are expected to clarify the details of the relationships
between TAMs and CSCs.

Tumor-associated macrophages and myeloid-derived
suppressor cells

Regarding the functional analysis of TAMs, tumor xenograft
mouse or rat models are more useful than human tumors. The
majority of myeloid cells infiltrating tumor tissues are imma-
ture cells in some types of murine tumors.(49,50) A strong
immunosuppressive response has long been known to be
induced when cancer cells are transplanted into mice. In the
1980s, myeloid cells in the bone marrow of tumor-bearing mice
were shown to inhibit the activation of lymphocytes.(51,52) Sub-
sequently, the same types of cells were shown to exist in the
spleen, and with the advancement of analysis resulting from the
identification of myeloid markers CD11b and Gr1, these cells
were also shown to exist in lymph nodes and tumor tis-
sues.(51,52) Immature myeloid cells are derived from bone mar-
row myeloid cells and exhibit immunosuppressive activity;
therefore, they are referred to as myeloid-derived suppressor
cells (MDSCs).(51,52) Distinct from mature neutrophils and

monocyte ⁄macrophages, MDSCs have recently been divided
into granulocytic MDSCs (CD11b+Ly6CintLy6Ghi), showing
characteristics similar to neutrophils, and monocytic MDSCs
(CD11b+Ly6ChiLy6Gneg), showing characteristics similar to
monocytes ⁄macrophages.(53) Despite the observed differences
among tumor histopathological types, mature macrophages
(TAMs, Gr1�) and MDSCs (Gr1+) appear to coexist in the
tumor tissues of mice. As MDSCs from tumor tissues differen-
tiate into mature macrophages in ex vivo assays, MDSCs are
considered to be the immature phenotype of TAMs.(52,53) How-
ever, which cell type plays a greater role in angiogenesis and
the activation of tumor cells remains unclear.
Systemic immunosuppression is also observed in human

patients with advanced malignant tumors, suggesting the exis-
tence of cells similar in nature to the MDSCs that are found
in mice. A significant increase in the number of CD14+HLA-
DRlow, CD11b+CD14�CD15+, or Lin�HLA-DR�CD33+ cells
is observed in the peripheral blood of patients with malignant
tumors.(49,53) In an ex vivo study using human blood or tumor
samples of melanoma patients, MDSCs were shown to con-
tribute more substantially to immunosuppression than
TAMs.(54) Given that these cell types indicate immunosuppres-
sive activity, they may correspond to the MDSCs that are
found in mice. As differences in gene expression and cell
markers exist between mice and humans, sufficient care must
be taken when attempting to apply the results of mouse stud-
ies to humans.

Dendritic cells in human tumor tissues

Dendritic cells (DCs) serve as other myeloid lineage cells in
the tumor microenvironment, and play a critical role in inte-
grating both innate and adaptive arms of immune responses.
Myeloid DCs (mDCs) and plasmacytoid DCs constitute two
major subsets of the DC population, and are distinguished
from macrophages according to their unique surface marker
expressions. In human DCs, mDCs are further classified as
blood dendritic cell antigen (BDCA)1(CD1c)+CD11b+ and
BDCA3(CD141)+ C-type lectin(CLEC)9+ populations, which
are equivalent to CD11b+CD4+/� and CD8a+ or CD103+ tis-
sue-resident mDCs, respectively.(55,56) The BDCA3+ mDCs are
specialized for cross-presentation of antigens from necrotic
cells, whereas BDCA1+ mDCs have pleiotropic functions to
prime diverse repertories of T cell subsets, in particular, der-
mal and mucosa-associated T cells.(56–58) Human plasmacytoid
DCs are characterized for their expression of BDCA2(CD303)
and CD123 (IL3Ra), and produce large amounts of type-I
interferon in response to viral or self-nucleic acids.(54) As it is
difficult to identify these molecules in paraffin-embedded path-
ological specimens, there are few articles describing DCs in
human tumor samples. However, these phenotypic differences
should help clarify the distinct functions and molecular path-
ways of TAMs and DCs in tumor tissues.

Targeting TAMs: a novel concept of anticancer therapy

As previously explained, TAMs promote tumor progression
through induction of angiogenesis and suppression of antitu-
mor immunity. In particular, in humans, protumoral TAMs
are believed to exhibit characteristics similar to M2 macro-
phages, and are intimately involved in the progression of
malignant tumors. As such, treatment strategies aimed at local
inhibition of macrophage differentiation into the M2 pheno-
type are anticipated to be effective. Signal transduction path-

© 2013 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd
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ways, including nuclear factor (NF)-jB, Stat3, Stat6, c-Myc,
and interferon regulatory factor 4, are involved in differentia-
tion into the M2 phenotype.(44,59–61) Nuclear factor-jB and
Stat3 are also strongly involved in tumor cell growth, and
drugs targeting these molecules are currently being developed.
Among such molecule-specific drugs, synergistic efficacy due
to direct effects on tumor cells, as well as inhibition of the
differentiation of TAMs into the M2 phenotype, is expected.
Among drugs currently in use, some are active against TAMs.
Cyclosporin A and trabectedin not only directly inhibit tumor
cell growth, they also suppress activation of TAMs.(16,62)

Bisphosphonates not only suppress bone resorption by
osteoclasts, they also inhibit the differentiation of TAMs into
the M2 phenotype.(63) The angiogenic inhibitor bevacizumab
(a VEGF-inhibiting antibody) has recently been used to treat
solid tumors such as colorectal adenocarcinoma, and this drug
also exhibits antitumor activity by suppressing TAM migra-
tion.(64,65)

We developed a screening system of chemical compounds
that suppress macrophage polarization toward the M2 pheno-
type. By screening a library of naturally occurring compounds,
we have identified several compounds, including corosolic
acid, that suppress M2 polarization of macrophages.(66) These
compounds suppress Stat3 activation and NF-jB activation
both in macrophages and tumor cells in vitro.(66) However, as

the blocking effect of these compounds on Stat3 and NF-jB
was not adequate in tumor cells, the direct effect on tumor
cells was weaker than that of other anticancer drugs.(66) In an
in vivo study, corosolic acid appeared not to directly suppress
tumor cells, but rather to stimulate the antitumor immunity of
lymphocytes by inhibiting the activation of TAMs and
MDSCs.(67) Corosolic acid was therefore considered to show
antitumor activity by means of indirect effects to myeloid
cells.

Conclusion

With the recent introduction of the concept of macrophage dif-
ferentiation into M1 and M2 macrophages, and clarification of
the function of each of these cell types, the role of TAMs in
malignant tumors is gradually emerging. Specifically, in human
tumors, TAMs that have differentiated into the M2 phenotype
act as “protumoral macrophages” and contribute to the
progression of disease. Based on current basic research, TAMs
that have differentiated into the M2 phenotype are believed to
be intimately involved in angiogenesis, immunosuppression,
and activation of tumor cells. Clarification of the mechanisms
of TAM activation and the process of differentiation into the
protumoral ⁄M2 phenotype is anticipated to lead to new strate-
gies for treating malignant tumors.
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Fig. 2. Schema of the functional role of tumor-
associated macrophages (TAMs). Tumor-associated
macrophages are activated by macrophage colony-
stimulating factor (M-CSF), interleukin (IL)-6, and
other compounds secreted by tumor cells both to
induce angiogenesis by producing angiogenic
factors such as VEGF and platelet-derived growth
factor, and to create immunosuppressive conditions
by producing immunosuppressive factors such as
IL-10 and prostaglandin E2 (PGE2). At the same
time, growth factors that are secreted by TAMs,
such as epidermal growth factor (EGF), directly
promote cancer cell growth, whereas MMP and
other compounds responsible for stroma
remodeling promote tumor cell infiltration and
metastasis. Activation of tumor cells and TAMs
induced by direct cell–cell interactions may
represent an extremely important event in relation
to the development of malignant tumors. bFGF,
basic fibroblast growth factor; CCL, chemokine (C-C
motif) ligand; MDSC, myeloid-derived suppressor
cell; PDGF, platelet-derived growth factor; Stat3,
signal transducer and activator of transcription 3;
TGF-b, transforming growth factor-b; TP, thymidine
phosphorylase; Treg, regulatory T cell; VEGF,
vascular endothelial growth factor.
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