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� We investigate the independent
competing failure process of a RC
system in an uncertain random
environment.

� Continuous degradation of the system
is subject to an uncertain fractional
process.

� External shocks obey a random
distribution given by real data.

� Two shock models that lead to hard
failure are considered.

� Analytical express the system
reliability and perform numerical
simulations.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 7 November 2020
Revised 21 March 2021
Accepted 16 April 2021
Available online 27 April 2021

Keywords:
Uncertainty theory
Fractional differential equation
Reliability analysis
Chance theory
Degradation process
External shock
a b s t r a c t

Introduction: According to the competing failure theorem, the fractional-order Resistor Capacitance (RC)
circuit system suffers not only from internal degradation but also from external shocks. However, due to
the general differences of each failure type in the data availability and cognitive uncertainty, a better
model is needed to describe the degradation process within the system. Also, a new reliability analysis
method is needed for the circuit system under internal degradation and external shocks.
Objectives: To demonstrate this problem, this paper proposes a novel class of Caputo-type uncertain ran-
dom fractional-order model that focuses on the reliability analysis of a fractional-order RC circuit system.
Methods: First, an uncertain Liu process is used to describe the internal degradation of soft faults and a
stochastic process is used to describe the external random shocks of hard faults. Secondly, taking into
account the correlation and competition among the fault types, an extreme shock model and a cumula-
tive shock model are constructed, and chance theory is introduced to further explore the fault mecha-
nisms, from which the corresponding reliability indices are derived. Finally, the predictor–corrector
method is applied and numerical examples are given.
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Results: This paper presents a reliability analysis of a fractional-order RC circuit system with internal fail-
ure obeying an uncertain process and external failure obeying a stochastic process, and gives the calcu-
lation of the reliability indexes for different cases and the corresponding numerical simulations.
Conclusion: A new competing failure model for a fractional-order RC circuit system is presented and ana-
lyzed for reliability, which is proved to be of practical importance by numerical simulations.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Reliability is one of the vital essential features of a system to
perform the required functions. System reliability can be affected
by a variety of factors that can be categorized as internal (wear,
corrosion, fatigue, etc.) and external mutations (impact, stress,
etc.). Uncertain internal shocks, also known as soft failure, can lead
to degradation of the system’s performance, which introduces the
risk of system damage. On the other hand, A sudden system col-
lapse caused by random external shocks is called a hard failure.
As the service life increases, the system can fail due to competition
between internal degradation (soft faults) and external shocks
(hard faults), which can even lead to safety incidents and economic
losses. As a result, the failure process has received close attention
from those who want to optimize system reliability. As the service
life increases, systems can fail due to a combination of internal
degradation (soft failures) and external shocks (hard failures),
which may even lead to safety incidents and economic losses,
the failure process thus has received close attention from those
who want to optimize system reliability.

The controversy and difficulty of reliability research lie in the
description of system failure processes. In 2009, Frosting and Ken-
zin [1] used Markov processes to describe the effects of the exter-
nal environment and Poisson processes to describe the degradation
of the cumulative effects and constructed a model of system main-
tenance. The same year, Lehmann [2] argued that the system fail-
ure is an abrupt stochastic Poisson process and thus built a
degradation threshold shock model. In 2010, Wang [3] divided
the degradation failure process of a system into three modes and
considered a reliability assessment model based on the aging
structure. Next year, Jiang [4] translated the effect of external
shocks on degradation items into lower failure thresholds and pro-
posed a reliability model based on the associated degradation and
shocks. Raifiee et al. [5] built a generalized mixed-shock model
based on repairable degraded equipment in 2015. Qiu and Cui [6]
considered the degradation process of extreme shocks and gave
the corresponding reliability formulae in 2018.

On the one hand, with its superior ability to describe complex
phenomena, systems and dynamic processes, fractional-order cal-
culus has become a powerful modeling tool. The concept of
fractional-order calculus was introduced almost simultaneously
with the concept of ordinary-order calculus [7]. However, the lack
of an intuitively clear physical significance of fractional-order cal-
culus has kept the study of it in the theoretical mathematical field
for a long time. It was not until the 1970s that Mandelbrot[8] intro-
duced fractal theory, pointing out the widespread existence of frac-
tional dimension in nature and in science, that is, having self-
similarity. He also pointed out that there is a close connection
between fractional-order Brownian motion and fractional-order
calculus. Since then, scholars have come to realize the unique
advantages of fractional-order calculus in describing self-
similarity, memory properties and genetic phenomena [9]. In elec-
trical engineering, capacitance and resistance defined in traditional
circuit theory are ideal components with no losses, which contra-
dicts the non-conservative characteristics of actual devices. Schol-
ars usually choose to characterize losses by connecting resistors in
16
series or parallel. However, this approach only holds under certain
conditions and thus fails to provide an accurate description of the
characteristics of the circuit system. By analogy with electrical and
mechanical models, Westerlund [10] proposed a fractional-order
differential relationship between the voltage flowing through a
capacitor and its terminals, a conclusion that was then proved by
experiments on more than 10,000 capacitors. Later, Westerlund
and Ekstam [11] demonstrated the memory properties of dielectric
materials from a quantum mechanical perspective, emphasizing
the importance of describing circuit systems using fractional-
order calculus. Since then, fractional-order components have come
to researchers’ attention in the field of electrical engineering. Based
on memory-resistive elements and memory systems, Petras and
Chen [12] discussed fractional-order memory-capacitor systems,
and fractional-order memory-inductor systems. Francisco et al.
[13] presented a fractional-order differential equation for RC cir-
cuits using the Caputo definition, introduces parameters into the
equation that characterize the fractional structure of the circuit
and investigates the effect of the fractional-order parameters on
the circuit characteristics. Guia et al.[14] gave Time-domain solu-
tion and Frequency-domain solution for fractional-order RC cir-
cuits. For more details on fractional-order circuit systems in
practice, see [15–17].

In addition to the description of the global relevance, the mod-
elling of fractional-order circuits faces a lack of data on non-
determinants. The traditional models are usually based on stochas-
tic theory, dealing with the large amounts of historical data with
statistical methods to describe the variation of parameters. How-
ever, due to the lack of financial, material, and technical resources
there is difficulty in obtaining sufficient historical data for analysis.
Therefore, some scholars turn to experts in the field for sugges-
tions. When describing competitive failure processes in complex
systems, experienced experts can offer advice closer to the real sit-
uation than the results obtained by statistical methods. From this
perspective, Liu [18] pioneered the dynamic system uncertainty
analysis method based on his novel uncertainty theory, a model
with almost no failure data. Liu [19] proposed the uncertainty the-
ory related to the degree of belief of the expert for cases that there
is not enough data to obtain the frequency distribution of event
occurrences. Liu [20] also proposed the definition of uncertainty
process that differs from random processes used in probability the-
ory. In 2013, Zeng et al. [21] proposed reliability indicators that can
assess product reliability through uncertainty theory. Zeng et al.
[22] also gave a numerical evaluation method based on the mini-
mal cut set to calculate the reliability index of the uncertain sys-
tem. Furthermore, for complex systems with a mixture of
uncertainty and randomness, Liu [23,24] introduced the concept
of uncertain random variables, which can be broadly understood
as measurable functions from the probability space to the set of
uncertain variables. Yao and Gao [25] proposed a law of large num-
bers for uncertain random variables, which stated that the mean of
an uncertain random variable converges on an uncertain variable
in the distribution. Zhou et al. [26] proposed the uncertain random
multi-objective programming, a type of uncertain stochastic opti-
misation for decision systems. In 2016, Wen and Kang [27]
extended the analytical approach to system reliability by adopting
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chance theory. Zhang et al. [28] searched for a more rational
approach to reliability analysis in the field of engineering and pro-
posed the concept of confidence reliability. Liu et al. [29] per-
formed reliability analysis on uncertain stochastic systems with
independent degradation processes and shocks. Gao and Yao [30]
supplemented some basic important formulas on which reliability
analysis depends. Liu et al. [31] analyzed the reliability of systems
subjected to uncertain random shocks and independent degrada-
tion processes. Zhu [32] ulteriorly combined uncertainty theory
and fractional-order differential equations to introduce the con-
cept of uncertain fractional-order differential equations (UFDEs)
and define two types of UFDEs: the Riemann–Liouville type and
the Caputo type. Subsequently, according to Lipschitz continuous
and linear growth condition, Zhu [33] proved the uniqueness of
the solution of UFDEs. Then, Lu [34] proposed a-path to obtain
methods for solving the numerical solutions of UFDEs. More and
more scholars cast their light on the extension and application of
UFDEs, and some remarkable results have been achieved. Jin and
Zhu [35] were the first to study the extremes of Caputo-type UFDE
solutions, and thus explored their application to American option
pricing. In addition, Jin and Zhu [36] discussed the time integral
problem of UFDEs solutions and addressed the problem of pricing
zero-coupon bonds. Jin and Zhu [37] also presented first-hitting
time theorems for UFDEs, which had an application for the frac-
tional risk index in 2020.

However, to the best of our knowledge, there is a gap in the
analysis of competing failure model based on uncertain random
fractional-order systems. With this consideration in mind, in this
paper, we will discuss a reliability model that internally obeys an
uncertain degradation process and externally obeys two different
kinds of random shocks.

The other parts are arranged as follows: in Section 2, some nec-
essary theories and conclusions required for reliability research are
proposed. Section 3 explores the laws, characteristics and failure
mechanisms of system degradation failure and sudden failure
respectively. Section 4 further analyzes the competitive failure
process, which is subject to the extreme shock model or cumula-
tive shock model, and the corresponding reliability index are
derived. In Section 5, the change of reliability index is studied by
numerical examples. Finally, the results of the above studies are
summarized in Section 6.

2. Preliminary

This section mainly introduces the related definitions and
results of UFDEs, first hitting time, and chance theory, which lays
a sufficient theoretical foundation for the follow-up research on
the reliability analysis of complex systems under indeterministic
environments.
2.1. Uncertain analysis

Uncertain theory, which was proposed by Liu [19] in 2007, has
been widely used in uncertain analysis due to its excellent practi-
cability in dealing with uncertain information and cognitive
uncertainty.

Definition 1 (Liu [19]). Uncertainty measure. Represent the
triplet (Y;L;M) as an uncertain space, Y is a non-empty set, and
L is the r-algebra over it. The uncertainty measure M is a set
function from L � Y;L;Mð Þ to the set of real numbers, which
satisfies the axioms of normality, duality and subadditivity as
follows.
17
1) For the universal set Y, there exists M Yf g ¼ 1;
2) For any event Ki, there exists M Kif g þM Kc

i

� � ¼ 1;
3) For countable event columns K1;K2; � � �, there exists
M
[1
i¼1

Ki

( )
6
X1
i¼1

M Kif g:

Subsequently, in 2009, Liu [38] supplemented the product
axioms to study uncertainty measures on product spaces, that is,
4) For arbitrarily selected Kk 2 Lk, there exists
M
Y1
k¼1

Kk

( )
¼

1̂

k¼1

M Lkf g;

where L1 � L2 � L3 � � � � is the product r-algebra for
k ¼ 1;2;3; � � � , and Kk is any event in Lk.
Definition 2 (Liu[39]). Uncertain process. An uncertain process is
a function Xt cð Þ from L � Y;L;Mð Þ to the set of real numbers such
that Xt 2 Bf g is an event for any Borel set B, in which T is a totally
ordered set. Furthermore, Ct is a Liu canonical process which satis-
fies that:

1) C0 ¼ 0 and almost all sample paths are Lipschitz continuous;
2) Ct has stationary and independent increments;
3) every increment Csþt � Cs is a normal uncertain variable

with expected value 0 and variance t2.

2.2. UFDE with the Caputo type

Uncertain fractional-order differential equations of the Rie-
mann–Liouville and Caputo types have been proposed before.
Since Ford and Simpson [40], as well as Diethelm et al. [41] indi-
cated that the fractional-order derivative in Caputo sense has more
advantages than Riemann–Liouville sense for modelling the real
dynamic process, we choose only UFDEs of Caputo type for discus-
sion in this paper. Without considering other cases, we assume
that the real number p satisfies the condition that
0 < n� 1 < p 6 n.

Definition 3 (Zhu [32]). UFDEs. Let F and G be two given functions,
Ct is a canonical Liu process, and Xt is an uncertain process, then
the Caputo type uncertain fractional differential equations go

cDpXt ¼ F t;Xtð Þ þ G t;Xtð Þ dCt
dt

Xt kð Þ jt¼0 ¼ xk; k ¼ 0;1; � � � ;n� 1;

(
ð1Þ

where Xt denotes the solution of the UFDE derived by Lu and Zhu
[34],

Xt ¼
Xn�1

k¼0

xktk

C kþ 1ð Þ þ
1

C pð Þ
Z 1

0
t � sð Þp�1F s;Xsð Þdsþ 1

C pð Þ

�
Z t

0
G s;Xsð Þ t � sð Þp�1dCs; ð2Þ

where C pð Þ ¼ R1
0 tp�1 exp �tð Þdt is the gamma function.

Particularly, both functions F t;Xtð Þ and G t;Xtð Þ are continuous
functions that satisfy the Lipschitz condition and the linear growth
condition. In other words, on the interval 0;1½ �, the solution Xt of
the UFDE exists exclusively.

Definition 4 (Lu and Zhu [42]). Let 0 < a < 1, the solution Xt of the
corresponding UFDE would have an a-path Xa

t as long as Xt satisfies
the below fractional differential equation.
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cDpXa
t ¼ F t;Xa

t

� �þ G t;Xa
t

� ��� ��U�1 að Þ
Xt kð Þ jt¼0 ¼ xk; k ¼ 0;1; � � � ;n� 1:

(
ð3Þ

where the inverse uncertain distribution (IUD) U�1 að Þ ¼
ffiffi
3

p
p ln a

1�a.
Theorem 1 (Lu and Zhu [42]). Xt and Xa
t are solutions of UFDEs and

FDEs, respectively. Then,the relationship between Xt and Xa
t is that

M Xt 6 Xa
t ;8t 2 0; T½ �� � ¼ a;

M Xt > Xa
t ;8t 2 0; T½ �� � ¼ 1� a:

(
ð4Þ

Let w�1
s að Þ denote the IUD of Xt then w�1

s að Þ ¼ Xa
t .
2.3. First-hitting time

Even for a highly reliable and long-lived system, once a shock
causes damage that exceeds the system threshold, the normal
operation of the system will be disturbed, resulting in a failure.
The system lifetime, which is the first-hitting time (FHT) when
the threshold is reached, was proposed by Liu.

Definition 5 (Liu [38]). First-hitting time. Assuming that changes
to the system state Xt obey an uncertain process with a failure
threshold z, then the life of the system can be expressed as

sz ¼ inf t P 0jXt ¼ zf g: ð5Þ
Subsequently, Jin and Zhu [35] further investigated the extreme

value theorem and they [43] also investigated the FHT for solutions
of UFDEs via a-path method, and confirmed that the FHT when Xt

reached the threshold satisfied the IUD as follows.
Theorem 2 (Jin and Zhu [43]). For the UFDE (1), when J Xtð Þ
increases strictly, the FHT sz that J Xtð Þ hits the threshold z takes
the uncertainty distribution

U sð Þ ¼
1� inf a 2 0;1ð Þjsup

06t6s
J Xa

t

� �
P z

� 	
; ifz > J x0ð Þ;

sup a 2 0;1ð Þj inf
06t6s

J Xa
t

� �
6 z

� 	
; ifz < J x0ð Þ:

8>>><
>>>:

ð6Þ

When J Xtð Þ decreases strictly, the FHT sz that J Xtð Þ hits the threshold
z takes the uncertainty distribution

U sð Þ ¼
sup a 2 0;1ð Þjsup

06t6s
J Xa

t

� �
P z

� 	
; ifz > J x0ð Þ;

1� inf a 2 0;1ð Þj inf
06t6s

J Xa
t

� �
6 z

� 	
; ifz < J x0ð Þ:

8>>><
>>>:

ð7Þ
2.4. Chance theory

Chance theory, proposed by Liu [24] in 2013, has been widely
used in the modeling of complex systems for its superiority in
the comprehensive interpretation of uncertainty and randomness.

Definition 6 (Liu [24]). Chance measure. (X;Å; Pr) represents the
probability space and (Y;L;M) denotes the uncertain space,
Respectively. Let Y;L;Mð Þ � X;Å; Pr

� �
be a chance space and

H 2 L � Å be an uncertain random event. In that way, the chance
measure Ch of H is defined as

Ch Hf g ¼
Z 1

0
Pr x 2 XjM c 2 Yj c;xð Þ 2 Hf g P rf gdr; ð8Þ

where c is an uncertain variable and x is a random variable. More-
over, for any K 2 L and A 2 Å, there exists
18
Ch K� Af g ¼ M Kf g � Pr Af g: ð9Þ
It is worth adding that the chance measure Ch is a monotonically
increasing function of H, similar to the uncertainty measure with
self-duality and subadditivity.
Definition 7 (Liu [24]). Uncertain random variable. Define the
measurable function n as an uncertain random variable from the
chance space Y;L;Mð Þ � X;Å; Pr

� �
to the real number set, then for

any Borel set B; n ¼ Bf g is an event.
3. Analysis for RC circuit system failure

Generally, RC circuit failure is a combination of two indepen-
dent failure process, namely soft failure and hard failure. That
means, either of such failure results in system failure. Among them,
soft failure due to internal continuous degradation process carries
out the whole system lifetime, such as the ageing of wires, the
wear of insulating layers and the fatigue of metal components.
Hard failure due to external random failure process is persistent
or transient, such as the instantaneous burning of the protective
fuse and the continuous heating induced by equipment overload.
In this section, the rules, characteristics, and failure mechanisms
of each failure are discussed separately.

3.1. Soft failure

Soft failure is a gradual failure of equipment caused by internal
degradation. Since the emergence of soft failure has a certain
degree of uncertainty and instability, accurate monitoring and data
acquisition with current technology are still unattainable. Hence,
human empirical judgment is still the commonly adopted and rec-
ognized method in engineering applications.Considering the lack
of data and cognitive uncertainty, an uncertain fraction differential
equation is introduced to describe the degradation process for the
RC circuit system, that is,

RCdXs þ Xsds ¼ xdsþ rdCs; ð10Þ
where R is the resistance, C is the capacitance, Xs represents the
internal degradation process, x is the input voltage, and r > 0 is
the diffusion coefficient respectively. Cs is a Liu process satisfying
Lipschitz continuous and linear growth conditions.However, com-
pared with the ordinary differential Eq. (10), fractional-order calcu-
lus, thanks to its special genetic and memory properties, can show
higher superiority in describing the essential properties and
dynamic behaviour of physical processes. Hence, the degradation
process of soft failure can be further derived as

cDpXs ¼ � Xs
RC þ x

RC þ r
RC

dCs
ds ;

X kð Þ 0ð Þ ¼ xk; k ¼ 0;1; . . . ;n� 1:

8><
>: ð11Þ

According to the failure mechanism, only when the degradation
processes reach a pre-given threshold z soft failure can occur. Let
the corresponding first-hitting time be

s ¼ t > 0jXs ¼ zf g;
from which the uncertainty measure that soft failure does not
induce the system collapse by time t can be derived as M s > tf g.

Theorem 3. Assuming that the degradation process which can
occur soft failure is Xs, the threshold is z, and the degradation
process is subject to the UFDEs (11). Denote s as the first-hitting
time of the degradation reaches the threshold. Then, the uncer-
tainty measure of no soft failure by time t is that
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F tð Þ ¼ inf a 2 0;1ð Þjsup
06s6t

Xa
s P z

� 	
: ð12Þ

Proof: Since the belief degree of the uncertain event M Xs < zf g
equals toM s > tf g, the uncertainty measure of the systemwith no
failure is defined as

F tð Þ ¼ M Xs < zf g ¼ M s > tf g; ð13Þ
where X0 < z. Meanwhile, it has been mentioned in Definition 4
that the solution of Eq. (11) has a corresponding a-path Xa

s .
Owing to the FHT has the uncertain inverse distribution men-

tioned in Theorem 2, we can obtain that

F tð Þ ¼ inf a 2 0;1ð Þjsup
06s6t

J Xa
s

� �
P z

� 	
: ð14Þ

Theorem 3 is proved. h

3.2. Hard failure

Hard failure is a failure process of equipment caused by external
random shocks. Generally, the traditional description of sudden
failure process takes the life data of the system as a premise. Sup-
pose Yk is the size of the k-th external shock, denoting the influ-
ence of the k-th shock on the system and are i.i.d random
variables. N tð Þ counts the number of external shocks that have
occurred by time t, thus subjects to a typical Poisson process,
which is often used to count random independent events.

According to failure mechanism, only when the external shock’s
magnitude Yk reaches the sudden failure threshold D, hard failure
immediately shows dominant characteristics, and then interfere
with the normal operation of the system. Only the system hard
failures induced by extreme or cumulative shocks are discussed
here, from which the probability measure that hard failure do
not occur can be derived as follows.

3.2.1. Extreme shock model
Suppose that an RC circuit system is subject to extreme shocks,

whose collapse risk stems from a single shock strength Yk exceed-
ing the sudden failure threshold D. In this case, the probability
measure that hard failure of the system does not occur by time t
is that

Pr
\N tð Þ

k¼0

Yk < Dð Þ
( )

: ð15Þ
3.2.2. Cumulative shock model
Different from the extreme model, considering the failure

mechanism of the system subjected to cumulative shocks, once
the cumulative shock strength Yk exceeds the sudden failure
threshold D, the system cannot maintain the normal operation.
In this case, the probability measure of the system of no hard fail-
ure by time t can be expressed as

Pr
XN tð Þ

k¼0

Yk < D

( )
: ð16Þ
4. Reliability index for RC circuit system

Due to the uncertainty and stochastic nature of complex sys-
tems, this section uses chance theory to analyze the failure mech-
anisms of RC circuit systems. Based on the analysis of the internal
degradation process, the extreme shocks and cumulative shocks
are further considered, and the corresponding reliability index is
also derived in this section, respectively.
19
4.1. Competing failure process involving the extreme shocks

The system is assumed to be subjected not only to internal
degradation processes but also to extreme external shocks that fol-
low UFDEs and random failure processes, respectively. Any fault
with priority reaching the threshold can induce system failure.
Then, combined with the chance measure, the reliability index of
the system can be expressed as follows.

Theorem 4. The criteria for the RC system are the degradation
failure threshold z and the fatal failure threshold D. Denote Xt as
the internal degradation process, which is subject to the UFDE (11).
Yk is the shock strength, which is subjected to a random failure
process. N tð Þ is a Poisson process having intensity k and / is the
probability distribution of the shock load Yk. Then, the reliability
index of the system whose collapse may be caused by internal
degradation and external extreme shocks by time t is that

Rel ¼ F tð Þ e�kt þ
X1
k¼1

ktð Þk
k!

e�kt � /k Dð Þ
 ! !

: ð17Þ

Proof: Firstly, adopt chance measures to determine the reliabil-
ity of the system, then it can be easily obtained that

Rel ¼ Ch sup
06s6t

Xa
s 6 z;

\N tð Þ

k¼1

Yk < Dð Þ
( )

: ð18Þ

According to Definition 6, Eq. (18) can be furthered as follows,

Ch sup
06s6t

Xa
s 6 z;

\N tð Þ

k¼1

Yk < Dð Þ
( )

ð19Þ

¼ Ch s > t;
\N tð Þ

k¼0

Yk < Dð Þ
( )

¼ M s > tf g � Pr
\N tð Þ

k¼0

Yk < Dð Þ
( )

:

Meanwhile, as mentioned in the Theorem 3, the uncertain measure
M s > tf g has the uncertain inverse distribution that
F tð Þ ¼ 1� U tð Þ, where U tð Þ indicates the uncertainty distribution
of s for internal degradation Xs.

Secondly, since the events Pr
TN tð Þ

k¼0
Yk < Dð Þ

( )
is equivalent to

Pr
[1
k¼0

N tð Þ ¼ kð Þ \
\k
i¼1

Yi < Dð Þ
( )( )

: ð20Þ

Then, its corresponding measure can be further transformed into

Pr
\N tð Þ

k¼0

Yk < Dð Þ
( )

¼ Pr
[1
k¼0

N tð Þ ¼ kð Þ \
\k
i¼1

Yi < Dð Þ
( )( )

¼ Pr N tð Þ ¼ 0f g þ Pr
[1
k¼1

N tð Þ ¼ kð Þ \
\k
i¼1

Yi < Dð Þ
( )( )

¼ e�kt þ
X1
k¼1

ktð Þk
k! e�kt

Yk
i¼1

Pr Yi < Dð Þ
 !

¼ e�kt þ
X1
k¼1

ktð Þk
k! e�kt � /k Dð Þ


 �
:

ð21Þ

Hence, we can safely derive that the reliability index of system
whose failure due to internal degradation and external extreme
shock by time t satisfy
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Rel ¼ M s > tf g � Pr
\N tð Þ

k¼0

Yk < Dð Þ
( )

¼ F tð Þ e�kt þ
X1
k¼1

ktð Þk
k! e�kt � /k Dð Þ


 � !
:

ð22Þ

The proof is completed. h

4.2. Competing failure process involving the cumulative shocks

Similarly, suppose that the RC circuit system not only suffers
from the internal degradation but also the external cumulative
shock. Any fault with priority reaching the threshold can induce
system failure. Hence, combined with the chance measure, the reli-
ability index of the RC circuit system can be expressed as follows.

Theorem 5. The criteria for RC system are the degradation failure
threshold z and the fatal failure threshold D. Denote Xs as the
cumulative degradation, which is subject to the UFDE (11). Yk as
the loss caused by the k-th shock, which is subjected to a random
failure process. N tð Þ is a Poisson process having intensity k and / is
the probability distribution of the shock load Yk. Then, the
reliability index of the system whose failure due to internal
degradation and external cumulative shock by time t is

Rel ¼ F
�

tð Þ
�
e�kt þ

X1
k¼1

�
ktð Þk
k!

e�kt
XD
h¼0

�X
xn

� � �
X
x2

X
x1

/ x1ð Þ/ x2Þð

� � �/ xnð Þ/ h� x1 � x2 � � � � � xnð Þ





: ð23Þ
Lemma 1 (Multiple convolution theorem). Let Y1;Y2; � � � ;Yn be n
mutually independent random variables with probability densities

of f Yi
xið Þ i ¼ 1;2; � � � ;nð Þ, then the probability density of g ¼Pk

i¼1Yi is

f g hð Þ ¼ f Y1
� f Y2

� . . .� f Yn

¼ Pþ1

xn¼�1
� � � Pþ1

x2¼�1

Pþ1

x1¼�1
f Y1

x1ð Þf Y2
x2ð Þ

� � � f Yn
xnð Þf Yi

h� x1 � x2 � � � � � xnð Þ:
Proof: Firstly, with the chance measure adopted to determine

the reliability of the system, it can be easily obtained that

Rel ¼ Ch sup
06s6t

Xa
s 6 z;

XN tð Þ

k¼1

Yk < D

( )
: ð24Þ

According to Definition 6, Eq. (24) can be furthered as follows,

Ch sup
06s6t

Xa
s 6 z;

XN tð Þ

k¼1

Yk < D

( )

¼ Ch s > t;
XN tð Þ

k¼0

Yk < D

( )

¼ M s > tf g � Pr
XN tð Þ

k¼0

Yk < D

( )
:

ð25Þ

Meanwhile, as mentioned in the Theorem 3, the uncertain measure
M s > tf g has the uncertain inverse distribution that
F tð Þ ¼ 1� U tð Þ, where U tð Þ indicates the uncertainty distribution
of s for internal degradation Xs.

Secondly, since the events Pr
PN tð Þ

k¼0Yk < D
n o

is equivalent to

Pr
[1
k¼0

N tð Þ ¼ kð Þ \
Xk
i¼1

Yi < D

( )( )
:
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Then, its corresponding measure can be further transformed into

Pr
XN tð Þ

k¼0

Yk < D

( )

¼ Pr
[1
k¼0

N tð Þ ¼ kð Þ \
Xk
i¼1

Yi < D

( )( )

¼ Pr N tð Þ ¼ 0f g þ Pr
[1
k¼1

N tð Þ ¼ kð Þ \
Xk
i¼1

Yi < D

( )( )

¼ e�kt þ
X1
k¼1

ktð Þk
k! e�ktPr

Xk
i¼1

Yi < D

 ! !
:

ð27Þ

According to the Lemma 1, the measure of event Pr
Pk

i¼1Yi < D

 �

is

derived as

Pr
Pk
i¼1

Yi < D
� 


¼ PD
h¼0

f g zð Þ

¼ PD
h¼0

Pþ1

xn¼�1
� � � Pþ1

x2¼�1

Pþ1

x1¼�1
f Y1

x1ð Þf Y2
x2ð Þ � � � f Yn

xnð Þf Yi

 

h� x1 � x2 � � � � � xnð Þ



¼ PD
h¼0

Pþ1

xn¼�1
� � � Pþ1

x2¼�1

Pþ1

x1¼�1
/ x1ð Þ/ x2ð Þ � � �/ xnð Þ

 

/

�
h� x1 � x2 � � � � � xn




:

Hence, we can safely derive that the reliability index of the system
whose failure due to internal cumulative degradation and external
cumulative shock by time t satisfy

Rel

¼ M s > tf g � Pr
XN tð Þ

k¼0

YkD

( )
ð28Þ

¼ F
�

tð Þ e�kt þ
X1
k¼1

ktð Þk
k!

e�kt
XD
h¼0

X
xn

� � �
X
x2

X
x1

/ x1ð Þ/ x2ð Þ � � �
   

/ xnð Þ/ h� x1 � x2 � � � � � xnð ÞÞÞÞ: ð29Þ
The proof is completed. h

Lemma 2 (Central limit theorem). Let Y1; Y2; � � � ;Yk be a randomly
selected sample from population, whose distribution is unknown,
but whose average and variance are namely given as l and r (finite
and not zero). Therefore, when the sample size k is sufficiently
large we have

Y1 þ Y2 þ � � � þ Yk � klffiffiffi
n

p
r

� N 0;1ð Þ: ð30Þ
Remark 1. When k is large enough, we can more easily get the

stochastic distribution of
Pk

i¼1Yi according to Lemma 2. Therefore
it can be obtained that

Xk
i¼1

Yi � N nl;nr2
� �

: ð31Þ

Make

U xð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2pn

p
r

Z x

�1
e�

x�nlð Þ2
2nr2 dx

the distribution function of
Pk

i¼1Yi, which means that
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Pr
Xk
i¼1

Yi < D

 !
¼ U Dð Þ:

Hence,

Pr
XN tð Þ

k¼0

Yk < D

( )
¼ e�kt þ

X1
k¼1

ktð Þk
k! e�ktU Dð Þ


 �
; ð32Þ

Which means when k is sufficiently large, Rel for the fractional-
order RC circuit system is that

Rel ¼ Ch sup
06s6t

J Xa
s

� �
6 z;

\N tð Þ

k¼1

Yk < Dð Þ
( )

¼ F tð ÞPr
\N tð Þ

k¼1

Yk < Dð Þ
( )

¼ F tð Þ e�kt þ
X1
k¼1

ktð Þk
k! e�ktU Dð Þ


 �( )
:

ð33Þ
5. Numerical simulation

In this section, in order to verify the validity of the uncertain
random fractional-order model with Caputo type, the fault data
of the RC circuit system is selected to analyze the influence of its
various parameters on the reliability index. Assume that the inter-
nal degradation Xt follows the UFDE, and the external random
shock Yk follows an empirical distribution function which is fitted
according to the real data of the failure system in the past year pro-
vided by State grid Nanjing maintenance branch. Then, two kinds
of numerical simulations are discussed in this section.

5.1. Ordinary-order simulation

Specifically, when derivative order p ¼ 1, the fractional-order
state-equation degenerates into an ordinary-order RC circuit
equation,

RCdXs þ Xsdt ¼ wdsþ rdCs;X0 ¼ x0; ð34Þ
Obviously, Xa

s;x associated to the UDE (34) is obtained as follows

Xa
s;x ¼ x� x0ð Þ þ rU�1 að Þ


 �
1� exp �s=RCð Þð Þ þ x0: ð35Þ

Note that, in this particular case, we can obtain an exact analytical
solution for the distribution function for sz, which will be expanded
upon in more detail below.

Theorem 6. Under p ¼ 1, for z > 0, the first hitting time s at which
Xs reaches z has a distribution function

U tð Þ ¼ 1þ exp
pffiffiffi
3

p
r

z� x0
1� exp t

RC

� ��xþ x0

 ! ! !�1

: ð36Þ

Proof: To get the analytical formula for the distribution func-
tion of the first-hitting time s when J Xsð Þ reaches z, it is required
to pick out a that satisfies sup

06s6t
Xa

s P z.

Let 0;1ð Þ ¼ I1
S
I2, where

I1 ¼ a 2 0;1ð Þj �xþ x0 � rU�1 að Þ P 0
n o

;

I2 ¼ a 2 0;1ð Þj �xþ x0 � rU�1 að Þ < 0
n o

:
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It is obvious that 0:5;1ð Þ � I2. Thus I2 –£. When a 2 I1,

inf
06s6t

J Xa
s

� � ¼ J Xa
0

� � ¼ x0 P z;

Hence, according to Theorem 2,

a0 ¼ inf a 2 0;1ð Þjsup
06s6t

Xa
s P z

� 	

¼ inf a 2 I2j x� x0 þ rU�1 að Þ

 �

1� exp t
RC

� �� �þ x0 P z
n o

¼ inf aj ln a
1�a P

pffiffi
3

p
r

z�x0
1�exp t

RCð Þ �xþ x0

� 
� 	

¼
exp pffiffi

3
p

r
z�x0

1�exp t
RCð Þ�xþx0

� 
� 


1þexp pffiffi
3

p
r

z�x0
1�exp t

RCð Þ�xþx0

� 
� 
 :

ð37Þ

U tð Þ ¼ 1� a0

¼ 1� inf a 2 0;1ð Þjsup
06s6t

J Xa
s

� �
P z

� 	

¼ 1þ exp pffiffi
3

p
r

z�x0
1�exp t

RCð Þ �xþ x0

� 
� 
� 
�1

:

ð38Þ

The proof is completed. h

5.1.1. Competing failure process involving the extreme shocks

Theorem 7. For ordinary-order circuit systems (34) under
external extreme shocks, the reliability index by time t can be
expressed as

Rel ¼ 1� 1þ exp
pffiffiffi
3

p
r

z� x0
1� exp t

RC

� ��xþ x0

 ! ! !�1
2
4

3
5

e�kt þ
X1
k¼1

ktð Þk
k!

e�kt � /k Dð Þ
 ! !

: ð39Þ

Proof: According to Theorem 4, we have

Rel ¼ F tð Þ e�kt þ
X1
k¼1

ktð Þk
k!

e�kt � /k Dð Þ
 ! !

: ð40Þ

Then by Theorem 6,

U tð Þ ¼ 1þ exp
pffiffiffi
3

p
r

z� x0
1� exp t

RC

� ��xþ x0

 ! ! !�1

;

substituting which into the F tð Þ in Eq. (40). The reliability index (39)
can be easily obtained. The theorem is proved. h

Based on this analytic formula, we give a numerical example of
ordinary-order failure process under extreme shocks to measure
its reliability.

Example 1. Assume an uncertain ordinary-order RC circuit model
(34) faced with extreme shocks has current voltage x0 ¼ 2,
resistance R ¼ 1, capacitance C ¼ 2, input voltage x ¼ 6. Further-
more, the log-diffusion r ¼ 1 and the derivative order p ¼ 1. For
soft failure, consider the pre-given level z ¼ 4. According to the real
data of the failure system in the past year provided by State grid
Nanjing maintenance branch, the real N tð Þ counting shocks obeys a
Poisson distribution with parameter k ¼ 1:5699 and the critical
point of the external shock to be D ¼ 9.
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Fig. 1 shows that the variation of reliability index Rel with dif-
ferential parameters is still in line with the law summarized in
Example 3 that the reliability of the system is positively correlated
with the operating time t and negatively correlated with the failure
threshold z. When z is in the interval 3:5;5:5ð Þ, the growth rate of
the reliability index Rel is significantly larger, which means that the
reliability is more sensitive to z in this region, that is, the right z in
this interval is decisive for the the final reliability of the system.

We move on to the ordinary-order cumulative shock circuit
model below.

5.1.2. Competing failure process involving the cumulative shocks

Theorem 8. For ordinary-order circuit systems (34) under cumu-
lative shocks, the reliability index by time t can be expressed as
Rel ¼ 1� 1þ exp pffiffi
3

p
r

z�x0
1�exp t

RCð Þ �xþ x0

� 
� 
� 
�1
" #

e�kt þP1
k¼1

ktð Þk
k! e�kt

PD
h¼0

P
xn

� � �P
x2

P
x1

/ x1ð Þ/ x2ð Þ � � �
   

/ xnð Þ/ h� x1 � x2 � � � � � xnð Þ





:

ð41Þ

Proof: According to Theorem 5, we have

Rel ¼ F
�

tð Þ e�kt þP1
k¼1

ktð Þk
k! e�kt PD

h¼0

P
xn

� � �P
x2

P
x1

/ x1ð Þ/ x2ð Þ
   

� � �/ xnð Þ/ h� x1 � x2 � � � � � xnð Þ





: ð42Þ

Then by Theorem 6,

U tð Þ ¼ 1þ exp
pffiffiffi
3

p
r

z� x0
1� exp t

RC

� ��xþ x0

 ! ! !�1

;

substituting which into the F tð Þ in Eq. (42). The reliability index (41)
can be easily obtained. The theorem is proved. h
Fig. 1. Reliability index for systems u
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Based on this analytic formula, we give a numerical example of
ordinary-order failure process under cumulative shocks to mea-
sure its reliability.

Example 2. Assume an uncertain fractional-order RC circuit model
(34) faced with cumulative shocks features current input voltage
x0 ¼ 2, resistance R ¼ 1, capacitance C ¼ 2, voltage x ¼ 6. Further-
more, the log-diffusion r ¼ 1 and the derivative order p ¼ 1. For
soft failure, consider the pre-given level z ¼ 5. According to the real
data of the failure system in the past year provided by State grid
Nanjing maintenance branch, the real N tð Þ counting shocks obeys a
Poisson distribution with parameter k ¼ 1:5699 and the critical
point of the external shock to be D ¼ 9.

The data shown in Fig. 2 shows that the variation of reliability
index with differential parameters is still in line with the law sum-
marized in Example 4, i.e. the reliability of the system is positively
correlated with the operating time t and negatively correlated with
the failure threshold z.

When z is in the interval 4;4:5ð Þ, the growth rate of the reliabil-
ity index Rel is significantly larger, which means that the reliability
is more sensitive to z in this region, that is, the right z in this inter-
val is decisive for the final reliability of the system.

Remark 2. It is interesting to note that, as can be seen in Figs. 2(b)
and 1(b), when all other parameters are the same and the
reliability index Rel is smoothed out at z ¼ 7, a system that faces
the threat of extreme failure (where Rel ends in 0:6344) is more
reliable than one that suffers a cumulative failure(where Rel ends
in 0:5553), which indicates that a system under extreme failure
without cumulative failure is superior to a system under cumula-
tive failure without extreme failure.
5.2. Fraction-order simulation

For the more general fractional-order circuit case (11), we will
obtain numerical expression of the reliability index through the
predicator–corrector algorithm, which has been confirmed by Jin
et al. [35] that it has been a useful as well as effective scheme to
solve FDEs. Again, we start with the failure process under extreme
shocks.
nder extreme shocks with p ¼ 1.



Fig. 2. Reliability index for systems under cumulative shocks with p ¼ 1.
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5.2.1. Competing failure process involving the extreme shocks

Example 3. Assume an uncertain fractional-order RC circuit model
(11) faced with extreme shocks has initial voltage x0 ¼ 2, resis-
tance R ¼ 1, capacitance C ¼ 2, voltage x ¼ 6. Furthermore, the
log-diffusion r ¼ 1 and the derivative order p ¼ 0:5. For soft
failure, consider the pre-given level z ¼ 4. According to the real
data of the failure system in the past year provided by State grid
Nanjing maintenance branch, the real N tð Þ counting shocks obeys a
Poisson distribution with parameter k ¼ 1:5699 and the critical
point of the external shock to be D ¼ 9.

We can get that

Xa
s ¼

Xn�1

k¼0

xk � skE0:5;kþ1 � s0:5

2

� 

þ 3þ 1

2
U�1 að Þ

� 

s0:5E0:5;1:5 � s0:5

2

� 

:

Then, according to Theorem 4, the reliability index is that

Rel ¼ inf a 2 0;1ð Þjsup
06s6t

Xn�1

k¼0

xk � skE0:5;kþ1 � s0:5
2


 �( 

þ 3þ 1
2U

�1 að Þ

 �

s0:5E0:5;1:5 � s0:5
2
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P 4

o�

� e�1:5699t þ
X1
k¼1

1:5699tð Þk
k! e�1:5699t � /k Dð Þ


 � !
:

ð43Þ

Analyze the reliability index corresponding to different parameters.
According to the numerical analysis results of Fig. 3, the reliability
of the system is positively correlated with the running time t and
negatively correlated with the failure threshold z. The reasons are
as follows: the increase of running time means that the cumulative
degradation within the system is increasing, which in turn reducing
the system reliability; the increase of the failure threshold means
that the ability of the system to withstand internal and external
shocks increases, which in turn improving the system reliability.
When z is in the interval 3:5;4:5ð Þ, the growth rate of the reliability
index Rel is significantly larger, which means that the reliability is
more sensitive to z in this region, that is, the right z in this interval
is decisive for the final reliability of the system.

Remark 3. It is easy to see that when p ¼ 0:5, the system begins
with Rel ¼ 0:59 at t ¼ 0, which is lower than Rel ¼ 0:8 in the case of
23
p ¼ 1. This is because the first-order model is ideal than the real
situation. Therefore, it is more reasonable to use a fractional-order
model to guide the operation and maintenance of the system.

Then, discuss the reliability index corresponding to different
order p. According to the results of the data provided by the Table 1,
it is not difficult to find that the reliability index of the system suf-
fering from extreme shocks and cumulative degradation is nega-
tively related to the change of order p.

Remark 4. Easily seen, the reliability index Rel drops a bit at p ¼ 1,
which is consistent with the fractional calculus theory.

Next is the case of failure process under cumulative shocks.

5.2.2. Competing failure process involving the cumulative shocks

Example 4. Assume an uncertain fractional-order RC circuit model
(11) faced with cumulative shocks has initial voltage x0 ¼ 2,
resistance R ¼ 1, capacitance C ¼ 2, voltage x ¼ 6. Furthermore,
the log-diffusion r ¼ 1 and the derivative order p ¼ 0:5. For soft
failure, consider the pre-given level z ¼ 5. According to the real
data of the failure system in the past year provided by State grid
Nanjing maintenance branch, the real N tð Þ counting shocks obeys a
Poisson distribution with parameter k ¼ 1:5699 and the critical
point of the external shock to be D ¼ 9.

We can get that

Xa
s ¼

Xn�1

k¼0

xk � skE0:5;kþ1 � s0:5

2

� 

þ 3þ 1

2
U�1 að Þ

� 

s0:5E0:5;1:5 � s0:5

2

� 

:

Then, according to Theorem 5, the reliability index is that

Rel ¼ inf a 2 0;1ð Þj sup
06s6t

Xn�1

k¼0

xk � skE0:5;kþ1 � s0:5

2
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2
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: ð44Þ



Fig. 3. Reliability index for systems under extreme shocks with p ¼ 0:5.

Table 1
Reliability index with different p for systems under extreme shocks.

p 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Rel 0.8169 0.7919 0.7669 0.7169 0.6669 0.2667 0.2167 0.1751 0.1500 0.1250

Fig. 4. Reliability index for systems under cumulative shocks with p ¼ 0:5.
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Analyze the reliability index corresponding to different parameters.
According to the numerical analysis results of Fig. 4, the reliability
of the system is positively correlated with the operating time t
and negatively correlated with the failure threshold z. The reasons
are as follows: the increase of operating time means that the cumu-
lative degradation caused by internal and external shocks of the
system is increasing, which in turn reducing the system reliability;
Table 2
Reliability index with different p for systems under cumulative shocks.

p 0.6 0.7 0.8 0.9 1 1.1
Rel 0.7363 0.7137 0.6912 0.6461 0.6009 0.2400

24
the increase of the failure threshold means that the ability of the
system to withstand internal and external shocks increases, which
in turn improving the system reliability.

When z is in the interval 3;5ð Þ, the growth rate of the reliability
index Rel is significantly larger, which means that the reliability is
more sensitive to z in this region, that is, the right z in this interval
is decisive for the final reliability of the system.
1.2 1.3 1.4 1.5
0.1950 0.1578 0.1352 0.1125
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Remark 5. It is interesting to note that, as can be seen in Figs. 4(b)
and 3(b), when all other parameters are the same and the
reliability index Rel is smoothed out at z ¼ 6, a system that faces
the threat of extreme failure (where Rel ends in 0:6312) is more
reliable than one that suffers a cumulative failure(where Rel ends
in 0:5574), which indicates that a system under extreme failure
without cumulative failure is superior to a system under cumula-
tive failure without extreme failure.

Then, discuss the reliability index corresponding to different
order p. According to the results of the data provided by the Table 2,
it is not difficult to find that the reliability index of the system suf-
fering from cumulative shocks and degradation is negatively
related to the change of order p.

Remark 6. Easily seen, the reliability index Rel drops a bit at p ¼ 1,
which is consistent with the fractional calculus theory.
6. Conclusion

The traditional uncertain physical models are limited to the
ordinary derivative, whereas in real dynamic process, the state
variable is not only rely on the current state but also on the past
state. Uncertain fractional-order differential equations (UFDEs)
have non-locality features to reflect memory and hereditary char-
acteristics for the state variable changes, thus is more suitable to
model the real uncertain process. This paper mainly seeked a fea-
sible reliability analysis method, introduced the chance theory,
deeply analyzed the mechanism of RC circuit competition failure
process, and established a novel type of uncertain random
fractional-order model with Caputo type. Related theories and
characteristics of reliability modelling were summarized, and its
applicability under different engineering backgrounds was studied.
Two types of failure types were discussed, namely sudden failure
and degradation failure, under the premise of a given failure
threshold, the corresponding life distribution and failure mecha-
nism were explored. Numerical expression of the reliability index
using the predicator–corrector scheme and corresponding mono-
tonicity were discussed. The research content of this paper only
considers the establishment of the reliability model and neglects
the formulation of maintenance strategy. However, the mainte-
nance strategy can have high research value in the actual engineer-
ing application, so the maintenance time, maintenance cost and
other issues can be further explored in the following research.
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