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Locomotion in virtual environments predicts
cardiovascular responsiveness to subsequent
stressful challenges
João Rodrigues 1✉, Erik Studer1, Stephan Streuber1, Nathalie Meyer1 & Carmen Sandi 1✉

Individuals differ in their physiological responsiveness to stressful challenges, and stress

potentiates the development of many diseases. Heart rate variability (HRV), a measure of

cardiac vagal break, is emerging as a strong index of physiological stress vulnerability. Thus, it

is important to develop tools that identify predictive markers of individual differences in HRV

responsiveness without exposing subjects to high stress. Here, using machine learning

approaches, we show the strong predictive power of high-dimensional locomotor responses

during novelty exploration to predict HRV responsiveness during stress exposure. Locomotor

responses are collected in two ecologically valid virtual reality scenarios inspired by the

animal literature and stress is elicited and measured in a third threatening virtual scenario.

Our model’s predictions generalize to other stressful challenges and outperforms other stress

prediction instruments, such as anxiety questionnaires. Our study paves the way for the

development of behavioral digital phenotyping tools for early detection of stress-vulnerable

individuals.
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Exposure to psychogenic stressors is associated with the
development of numerous diseases1, including psychopathol-
ogies2–5 and cardiovascular disorders (CVD)6–10. Through

coordinated actions of the autonomic nervous system (ANS) and the
hypothalamic–pituitary–adrenal (HPA) axis under the regulation of
limbic circuits, acute stress responses support organisms’ adaptation
to environmental demands11, but repeated activation of these phy-
siological effectors can be highly detrimental to health12,13. However,
not all individuals are equally vulnerable to the development of
psychopathologies1,14 or CVDs6,10,15 following stress exposure.
Thus, the identification of stress-susceptible individuals is a critical
objective in the establishment of effective disease prevention strate-
gies. Importantly, given that experimental exposure to highly
stressful conditions may be detrimental to health in susceptible
individuals, it is paramount to develop diagnostic tools that can
identify biomarkers predicting variation in stress vulnerability
without the need to expose subjects to strong challenges.

The discovery of noninvasive biomarkers for disease is a main
goal in contemporary biomedicine16. A key emerging question is
whether high-dimensional behavioral data can be used for clinical
diagnosis17,18, particularly in the domain of mental health19–22.
Instead of relying on the use of ratings by clinicians or self-
reports from patients, the goal is to use objective and quantifiable
behavioral data combined with artificial intelligence analyses to
predict disease vulnerability or progression. Passively acquired
daily locomotor data (i.e., not involving manual annotation)
through room sensing technologies or wearables (i.e., digital
phenotyping) have been started to be used to predict disease
progression in elderly populations23–25 or in individuals at risk
for self-reported anxiety, depression or stress (for a review see
ref. 21). However, to our knowledge, no study has demonstrated
the prognostic value of behavioral data as a predictor of stress
vulnerability using objective (i.e., not self-reported) stress
measurements.

Given the heterogeneity of life challenges and conditions
among human subjects, establishing a diagnostic value of real-life
behavioral data from passive digital phenotyping approaches to
predict stress vulnerability is still extremely challenging. As an a
priori step, substantial progress can be made by probing subjects
under experimentally controlled situations, such as immersion in
virtual reality (VR) environments. Immersive VR is increasingly
used in research and clinics because it is effective in eliciting
relevant behavioral, emotional, and physiological responses to
different scenarios26–28, including stressful ones29–31. Rodents’
locomotor responses in mildly arousing exploration tasks can
predict their future vulnerability to stress exposure32–35. Inspired
by these behavioral phenotyping tasks from the rodent literature,
here we aimed to develop immersive virtual environments (IVEs)
to predict physiological stress susceptibility.

To define stress vulnerability, we focused on heart rate varia-
bility (HRV)36–38, a surrogate index of cardiac vagal break that
yields information about flexibility of the ANS39. HRV is a
measure of fluctuations over time in cardiac interbeat intervals
due to the interaction of the two ANS branches: sympathetic
(SNS) and parasympathetic (PNS). In addition, tonic HRV
reflects the degree of flexible control exerted by the prefrontal
cortex over the periphery39. In recent assessments of the litera-
ture, high HRV levels during resting conditions have been
identified as a top biomarker for stress resilience40,41. Conversely,
tonic low HRV values—which are indicative of reduced vagal
cardiac control—are associated with increased risk of developing
psychopathologies36,42, a broad range of CVDs8,43 and, more
generally, all-cause mortality44,45 (see Supplementary Notes for
further details on the mechanisms underlying HRV and the
effectiveness of HRV as a biomarker in stress-related psycho-
pathologies). Stress-related cardiovascular reactivity values

elicited in the laboratory setting have been shown to outperform
the predictive capacity of resting assessments in studying disease
development6,46–48 and also found to be rather stable personal
characteristics that are fairly consistent across time and between
stressors6,49. However, in the long-term, the prognostic value of
stress reactivity studies has proven to be quite modest50–52,
typically based on exposure to short and non-ecologically relevant
laboratory stressors, and relying on a handful of variables.
Although these limitations have been overcome by exposure to
more complex challenges and performing ambulatory cardio-
vascular measurements53,54, these approaches are rather expen-
sive, time-consuming and not easy to standardize for
interindividual comparisons.

In this work, in order to address these issues, we design three
IVEs to which participants are subsequently exposed. The first
two IVEs are inspired by classical behavioral phenotyping tasks
from the rodent literature (i.e., open field and elevated plus
maze), whereas the third IVE engenders persistent threat with the
aim to elicit sustained parasympathetic withdrawal (i.e., low
HRV). We also compute a robust HRV index devoid of con-
tamination from respiration. By applying machine learning
methods, first to a training data set and then to a testing data set,
we show that we can predict participants’ HRV responses to the
third (stressful) scenario from high-dimensional locomotor data
obtained during participants’ exposure to the first two exploratory
IVEs. Importantly, our model is not only validated in a different
cohort but it also generalizes across different stressful situations.

Results
VR scenarios for behavioral and physiological phenotyping.
Participants, equipped with a head-mounted display and wireless
sensors for motion capture and physiology, were asked to explore
three consecutive VR scenarios (see Methods). Our goal was to
obtain high-density behavioral data from the first two pheno-
typing scenarios (scenarios 1 and 2) and then feed these data into
a gradient tree boosting regression model to predict participants’
cardiovascular reactivity when they were subsequently exposed to
the persistently threatening scenario (scenario 3). Thus, scenarios
1 (empty room) and 2 (elevated alley) were designed with eco-
logical validity to reveal variance in participants’ locomotor
responses while they explored mildly arousing conditions,
whereas scenario 3 represented a stressful situation with the aim
to elicit heightened physiological responses.

The two phenotypic scenarios consisted of an empty room
(Fig. 1a) and an elevated alley raised at the level of roofs in a virtual
city (Fig. 1b). Although both mimicked key aspects of tests from the
rodent literature (see below), our goal was to adapt the scenarios to
standard laboratory room dimensions (i.e., 3.5 m × 6m), which
determined that large spaces or redundant aspects of the rodent
tests were simplified to their gist. Specifically, the first scenario
mimicked the open-field test55, and the second scenario the open
arms aversive elements of the elevated plus maze test56 and the
elevated successive alleys test57. High-dimensional behavioral data
were obtained from each participant’s locomotor responses while
exploring scenarios 1 and 2 via the VR headset’s position tracking
(allowing computation of parameters related to positioning in the
virtual space across time, velocity and acceleration for vertical and
horizontal movements and trajectory features; Fig. 1c, d) and a
lower body motion capture suit (allowing computation of gait
variables; Fig 1d, e). In addition, data from both channels allowed
us to compute movement burst features and immobility features. A
detailed list of all behavioral features used to train our model is
included in the Supplementary Information, section “Behavioral
feature description”, Supplementary Tables 1–5, comprising a
complete description of all behavioral parameters. The third
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scenario, a dark maze corridor in which startling stimuli were
occasionally presented (Fig. 2a), was designed to elicit feelings of
persistent threat and, potentially, heightened cardiovascular
responses. As shown in Fig. 2b (see also Supplementary Tables 6,
7 for statistics), participants’ HRV indeed decreased and their heart
rate (HR) increased over time during dark maze exploration,
representing marked parasympathetic withdrawal. This lack of
cardiovascular adaptation during immersion confirmed the effi-
ciency of this virtual scenario in triggering escalating cardiovascular
reactivity. These data support the relevance of this scenario for
studying physiological reactions under stress. The reactivity elicited
in this scenario clearly differed from that elicited by the
phenotyping scenarios, in which participants’ HRV root mean
square of successive differences (RMSSD) and HR responses
progressively habituated during immersion in each VR scenario
(Supplementary Fig. 1 and Supplementary Tables 8–11).

Creation of an integrated HRV index. From the range of car-
diorespiratory markers available [e.g., HR, respiration rate (RR),
HRV], we selected HRV as the predictive biomarker to focus on
in our study given the importance of HRV to predict vulnerability
to disease (see Introduction and Supplementary Information
“Cardiorespiratory variables” for exhaustive details on HRV
measurements). Several formulas have been developed to calcu-
late HRV58, and each formula involves a different degree of
breathing influence59. Therefore, instead of choosing a single
formula for model training, we aimed to produce a generalizable
and more robust measure of HRV-related parasympathetic pre-
valence with the most widely used time-domain formulas for
parasympathetic activity60: the RMSSD, the standard deviation of

the normal-to-normal intervals (SDNN) and the HRV triangular
index (HRVTi). To this end, we computed an integrated HRV
index (iHRV) using these three HRV formulas together with HR
and RR (see Methods and Supplementary Information) obtained
while subjects explored the VR scenarios. Specifically, by applying
principal component analysis (PCA), we identified a principal
component (PC1; hereafter iHRV) that explained most of the
variance in our data. Importantly, iHRV loaded positively on all
HRV formulas used but negatively on HR, indicating an excellent
representation of HRV-related parasympathetic prevalence
(Supplementary Fig. 2). In addition, RR loaded on a principal
component other than PC1, indicating that PC1 was devoid of
contamination from potential differences in participants’
respiration. Therefore, using PC1 as the iHRV for model training
ensured that our model would not be affected by differences in
breathing patterns across subjects or time.

Using machine learning to predict HRV to stress from beha-
vior. To develop a gradient tree boosting regression model to
predict iHRV from behavioral phenotyping data, we first applied
feature selection to 172 behavioral features from scenarios 1 and 2
(i.e., the empty room and the elevated alley, respectively). As a
result, we obtained 18 features (see Table S12). To avoid over-
fitting and to estimate the association between our model’s pre-
dictions and iHRV, we used a train/test analysis design. Data were
split into training/discovery (N= 66 subjects, age: 21.00 ± 1.93
years) and testing/replication (N= 69 subjects, age: 20.19 ± 2.10
years) data sets. Given that trait anxiety (as measured with the
Trait questionnaire from the State-Trait Anxiety Inventory
(STAI-T)) can be associated with HRV61, the training/discovery
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Fig. 1 Virtual reality scenarios designed to reveal behavioral variance in participants’ locomotor responses under nonthreatening conditions.
a Scenario 1: Empty room. Illustrations and example of key features feeding location parameters (e.g., distance to walls, corners, and center area) plotted on
an average exploration heatmap. b Scenario 2: Elevated alley, consisting of successive narrower patches. Illustration and example of key features feeding
location parameters, such as the threshold between patches to determine time to cross or time spent at each patch. c Examples of focused and concentric
trajectories displayed in scenario 1 (adapted from ref. 101). d Example of the gait cycle and its subcomponents stance and swing. e Example of the detection
of bursts of movement. Consecutive gait cycles, starting at the red line, separated by immobility periods.
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set contained participants who presented low (STAI-T < 35) and
moderately high (STAI-T > 45) scores to ensure that we had a
good representation of participants’ iHRV in each of the two data
sets, and to prevent biasing HRV prediction on trait anxiety. The
test/replication set contained participants with moderate (35 >
STAI-T > 45) scores. To fit a linear response function to iHRV,
we used a method based on extreme gradient boosting trees
(XGBoost)62. The hyperparameters of the XGBoost algorithm
were tuned with Bayesian optimization using the Python package
hyperopt63 (for more details on XGBoost and hyperparameter
search, see Supplementary Information).

Following training, our model’s predictions also showed high
correlations with the iHRV values from (i) the training/discovery
data set (r= 0.91, p < 0.001; for a 10-fold validation performance
of the model on the training data set, see Supplementary Fig. 3);
(ii) the test/replication data set (r= 0.54, p < 0.001; Fig. 2c); and
(iii) the training and test data sets together (r= 0.72, p < 0.001;
Fig. 2d). These results confirmed our expectation that rich

behavioral data from individuals’ reactivity to novelty challenges
would predict variation in a physiological measurement of stress
vulnerability, such as vagal-mediated HRV.

Understanding key behavioral features for model prediction.
To understand the impact of each behavioral feature in the
model’s iHRV prediction, we examined the Shapley additive
explanation (SHAP) values64,65 for each individual feature
(Fig. 2e). The most discriminating features included positioning
and gait parameters, with the largest contribution from the for-
mer category, including minimum distance to the corners of the
empty room [Corner dist (er)], vertical acceleration in the elevated
alley [Vert acc (ea)], and ratio between time in the center and
time in the periphery of the empty room. Specifically, the model
predicted a lower iHRV (i.e., a larger parasympathetic withdrawal
value) for subjects who stayed closer to the corners of the empty
room and had higher vertical acceleration in the elevated alley. In
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addition, the model predicted that these subjects would spend less
time in the center of the empty room and on the narrowest ledge
of the elevated alley; they would also show a more focused
exploratory trajectory, less variability in stride speed and fewer
head scans while walking in the empty room.

As expected, the model’s predictions were positively correlated
with HRV computed with the formulas, RMSSD (r= 0.60,
p < 0.001), SDNN (r= 0.48, p < 0.001) and HRVTi (r= 0.34,
p < 0.001), and negatively correlated with HR (r=−0.52,
p < 0.001) (Fig. 3a). Importantly, iHRV did not correlate with
RR (r=−0.11, p= 0.199). This suggests that the computation of
an iHRV for model training was successful in providing a
surrogate measure of HRV for model learning that allows good
generalization.

The correlation between the model’s prediction and iHRV (r=
0.72, p < 0.001) was markedly higher than that of other possible
explanatory variables for parasympathetic influence (Fig. 3b).
Self-reported trait anxiety, state anxiety, and anxiety felt during
scenario 3 were not correlated with iHRV (−0.1< all rs < 0.1, all
ps > 0.386). Time spent in the center of the empty room [Time in
center (er), see Supplementary Information section “Behavioral
feature description”, Table S2] correlated significantly (r= 0.23, p
= 0.008) but with a low coefficient compared with the model’s
prediction.

Model generalization to other stressful challenges. To further
validate our model’s prognostic power and explore whether it
would generalize to other situations, we compared its predictions
with the cardiac response of a generalization set comprising 107
out of the initial 135 participants (age= 20.48 ± 2.19 years) who
were exposed to another stressful challenge in VR for 10 min
(Fig. 4a, b). As iHRV was computed to train and test the model,
the model’s predictions were directly compared with markers of
HRV (the RMSSD) and HR. We found significant correlations
between the predictions and HRV (RMSSD) and HR (r= 0.38, p
< 0.001 and r=−0.40, p < 0.001, respectively; see Fig. 4c, d).
Furthermore, the predictions were also significantly correlated
with HRV (RMSD) and HR measured from pulse data—the pulse
rate variability (r= 2.4, p= 0.016; Fig. 4e) and pulse rate (PR; r=
−0.32, p < 0.001; Fig. 4f) obtained during a sustained anticipatory
anxiety paradigm (elicited by shock anticipation) performed on a
separate day by subjects in the generalization set. See Supple-
mentary Information for further details. Altogether, these results
support the view that the model predictions can generalize to
other stressful challenges and anticipatory anxiety situations.

Discussion
In this study, we demonstrate the strong predictive value of
behavior to forecast individual differences in HRV responsiveness
to stress. Specifically, we show that high-dimensional locomotor
data obtained during novelty exploration can be used to predict
interindividual differences in the parasympathetic index of HRV
(iHRV) during stress exposure. Notably, our model was validated
in a different cohort and generalized across different stressful
situations.

Novelty exploration is one of the most frequently studied
behavioral manifestations in laboratory animals and is a
remarkable way to reveal the complexity of behavior and its links
to psychopathology56,66. Following a reverse-translational
approach, we designed two VR scenarios for human behavioral
phenotyping (the empty room and the elevated alley) inspired by
classical rodent exploration tests; i.e., the open field and the ele-
vated plus maze, respectively. Both rodent tests exploit the tra-
deoff between exploratory tendencies and natural aversion for
open spaces. Although they were originally designed to assess
anxiety-like responses, ambulatory parameters can also provide
information regarding activity and decision-making
processes67,68. Notably, segregation of animals according to
anxiety-like behaviors and novelty reactivity in these tests iden-
tified differential susceptibility to the development of stress-
induced depressive behaviors32,33,35,69.

Of a number of variables collected from each participant’s
locomotor responses, the most discriminating variables con-
tributing to our iHRV predictive model include features (e.g.,
minimum distance to the corners of the empty room, ratio
between time in the center and time in the periphery of the empty
room, and time spent on the narrowest ledge of the elevated alley)
that are classically interpreted as anxiety-like behaviors in
rodents. These features relate to the tradeoff between boldly
exploring all areas, including more anxiogenic ones, versus pre-
dominantly staying in more protected areas. On the high-anxiety
side of the spectrum, these variables (e.g., thigmotactic move-
ments around the perimeter of the empty room or staying on the
starting platform in the elevated alley) define variation in beha-
viors related to establishing a “home base” from which spatial
exploration may occur70. Other variables (e.g., vertical accelera-
tion in the elevated alley, time spent on the starting board in the
elevated alley, and number of head scans while walking in the
empty room) also relate to features defined as anxiety-like
behaviors in rodents67,68. In addition, other discriminating vari-
ables were indicative of decision-making processes (e.g.,
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movement focus in the empty room and variability in the stride
speed in the empty room) and activity (e.g., maximal longitudinal
distance reached in the elevated alley). Although anxiety disorders
are frequently accompanied by alterations in HRV71,72, in our
nonclinical population, none of the trait or state anxiety or threat
anxiety measures predicted iHRV. Self-reported anxiety mea-
surements, as obtained with the STAI inventory, typically explain
a lower percentage of the variance in stress reactivity (see, e.g.,73)
than the one achieved by our machine learning model. Therefore,

the lack of correlation between anxiety measures and our model
predictions supports the view that our model has achieved a high
level of precision in capturing specific physiological reactivity (as
opposed to other non-related behavioral predispositions), further
supporting its specificity in predicting stress-induced iHRV/car-
diovascular responses.

A few studies have used human versions of the open field and
elevated plus maze tests. They were based in real-life
contexts70,74,75, computer-based contexts70 or mixed reality
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combining VR and real world elements76. Although these studies
confirmed the validity of the tests in identifying individual dif-
ferences in anxiety, including clinical cases, their approaches
differ from ours in several ways. First, the goals are different. We
used VR phenotyping tests not to define personality traits or
states as in previous studies, but to gather meaningful locomotor
data to feed a machine learning model that could predict phy-
siological vulnerability to stress. Second, the methods are differ-
ent. As opposed to computer-based approaches with low
immersive capacity or real-life mazes and scenarios that lack
reproducibility power and are time consuming, our VR resource
probes individuals’ novelty reactivity at high efficiency (i.e., the
space requirements for our VR scenarios are of a standard room
size, and the sampling times are short). Third, and most impor-
tantly, the approaches are different. Previous studies have relied
on a restricted number of classical variables, remaining con-
firmatory as to the enhanced prevalence of thigmotactic behavior
and avoidance of open spaces in highly anxious individuals.
However, limited sets of behavioral readouts can result in noisy
and inconsistent outcomes. Instead, high-throughput behavioral
readouts are desirable, as they provide high dimensionality, which
can then be explored by mathematical frameworks to find the key
parameters whose consideration optimizes the identification of
interindividual differences77. In fact, the prognostic capacity of
the the model using information from multiple behavioral fea-
tures outperforms a single behavioral feature such as time spent
in the center of the empty room, which is the prototypical
parameter relating to anxiety in human open-field tests74,75.

Thus, a key advantage of our model is that instead of relying on
individual variables to discriminate behavior, it integrates beha-
vior across a number of highly discriminating variables, each of
them providing a different weight to the decision-making
embedded in the prediction process. Similar approaches have
been successfully applied in recent studies on laboratory animals
to link specific behaviors and traits from high-density locomotor
data to neural substrates77–79.

Most biomarkers of stress vulnerability that research currently
considers rely on biological measurements that frequently involve
invasive approaches, such as blood extraction, or low-throughput
neuroimaging technologies37,80–82 that deter from their sys-
tematic use. Although HRV measures are easier to collect and are
emerging as particularly relevant36–38, establishing when and how
phasic HRV predicts physiological vulnerability to stress requires
standardized and validated conditions. Resting HRV has been
associated with health, but ensuring its reliability requires long
recordings49,58. Importantly, our model’s predictive capacity
outperformed that of individual baseline HRV values obtained in
the empty room.

Although wearable and other digital technologies can provide
valuable real-life cardiovascular data, the interpretation of these

data is not straightforward, particularly owing to the over-
whelming diversity of human experiences and constraints.
Although HRV can be computed from ECG or pulse data, the
reliability of these measures when extracted from wearable device
data is still unconfirmed for brief short non-rest recordings83,84,
which is typically how stress occurs. Meaningfully, short-term
cardiovascular reactivity, including HRV, elicited by emotional
challenges in the laboratory has been shown to provide a fairly
accurate representation of HRV responses to real-life stressors49

and to outperform the predictive capacity of resting assessments
in studying disease development6,46–48. Thus, our approach using
controlled experimental VR conditions represents a major step
forward in identifying key behavioral features. Accordingly, it can
be adapted in the future to develop diagnostic tools for biomarker
discovery and guide implementation in predictive analyses of
physiological stress susceptibility on data from digital technolo-
gies. In addition, our model allows incremental training by
iterative training with new observations, which allows us to
encompass a larger representation of different traits. Further-
more, approaches based on transfer learning can also enable the
adaptation of our model to other target domains such as clinical
settings or even, in a similar fashion to mapping biological rela-
tionships from mouse to human85, to facilitate translational
approaches mapping animal behavioral/physiological interplay to
human models or vice-versa.

On the other hand, as compared with non-VR based laboratory
stress challenges, such as the trier stress test (TSST86) or the
socially evaluated cold pressor test (SECPT87), our IVEs con-
stitute a more standardized procedure allowing for more repro-
ducible and controlled conditions across subjects and
laboratories. In the future, it will be important to benchmark the
capacity of our IVEs to both, trigger physiological responses and
predict stress vulnerability against procedures such as the TSST
or SECPT.

Importantly, our study included only males given that our
prediction linking behavioral and physiological responses to
stress vulnerability was inspired in previous studies involving
male rodents33,88 and, therefore, future work is warranted to
assess the validity of our model to predict iHRV responses in
females. In addition, although our results indicate a potential high
predictive capacity of our model for later psychopathology than
existing tools/questionnaires, it will be important to benchmark it
in both longitudinal studies and clinical populations.

In conclusion, the present study emphasizes the power of
behavior to predict HRV responsiveness to a subsequent stressful
challenge. Thus, in addition to highlighting behavior as a
potential stress vulnerability marker, our study contributes a
relevant approach to develop diagnostic tests based on VR
immersion and machine learning modeling. In the future, our
approach could be implemented to identify stress-susceptible

Fig. 4 Generalization of model prediction of iHRV to other stressful or anxiogenic situations and a generalization subsample. a Schematic of a virtual
reality stress test involving mental arithmetic and challenging contextual navigation. This scenario lasts 10min and is split into 2.5-minute segments (S1–S4).
After segments S1, S2, and S3, participants are presented with a prerecorded voice asking them to perform better. b Physiological (HR, HRV) responses to
the stress induction task. During segment BL, baseline recordings are taken. N= 99 participants examined over five blocks of 2.5min (Bl, S1, S2, S3, and S4).
Data are presented as mean values ±SEM (vertical lines). A repeated measures analysis of variance (rm-ANOVA) was performed for HR and to HRV. Post
hoc tests were performed with two-sided paired t tests, with p values corrected for multiple comparisons (10 comparisons) with the Holm correction.
*p value < 0.05, **p value < 0.01, ***p < 0.001. Exact p values and statistics are presented in Supplementary Information section “Statistics for physiology in
Fig. 4b“, Tables S13–14. c Spearman correlations (two-tailed p= 5.258e-5) between the model predictions for iHRV and HRV for the sample of participants
who underwent the stress task. d Spearman correlation (two-tailed p= 2.523e-5) between the model predictions for iHRV and HR for the sample of
participants who underwent the stress task. e Spearman correlation (two-tailed p= 0.016) between the model predictions for iHRV and pulse rate variability
(PRV) for the sample of participants in the fear anticipation condition. f Spearman correlation (two-tailed p= 9.739e-4) between the predicted value of iHRV
and pulse rate (PR) for the sample of participants in the fear anticipation condition. 95% confidence interval for the regression lines drawn using translucent
bands.
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individuals in longitudinal cohorts using recent advances in
clinical digital phenotyping19,21. Considering how readily loco-
motion features can be extracted from mobile phones89 or in-
home radiofrequency tracking90, we hope our work will pave the
way for new technological implementations aimed at far-reaching
personalized prevention of the negative outcomes of stress.

Methods
Participants. These results are part of a larger study aimed at investigating
behavioral and physiological predictors of aggressive behaviors. Here, in order to
specifically addressed the main question of our study, we only analyzed a subset of
all collected variables, with respect to locomotor features and parasympathetic
responses. One hundred thirty-five (135) male participants between the ages of 18
and 38 (age: 20.58 ± 2.05 years) were recruited. Participants reported that they had
not been diagnosed with psychiatric disorders and did not use psychotropic
medication. The study was approved by the Cantonal Ethics Committee of Vaud,
Switzerland. Participants were asked to refrain from eating or drinking (except
water) one hour before the experiment took place. Informed written consent was
obtained from all participants. Days before the experiment, participants were asked
to complete the Spielberger Trait Anxiety Inventory (STAI-T, form Y91) and other
personality questionnaires. After the experiment participants also completed the
Igroup Presence Questionnaire92. For further information about participants and
recruitment, see Supplementary Information.

For the purposes of model learning and testing, we split these 135 participants
into training/discovery (N= 66 subjects, age: 21.00 ± 1.93 years) and testing/
replication (N= 69 subjects, age: 20.19 ± 2.10 years) data sets. The training/
discovery set contained participants who presented low (STAI-T < 35) and
moderately high (STAI-T > 45) scores. The test/replication set contained
participants with moderate (35 > STAI-T > 45) scores. Furthermore, 107 out of the
135 participants (age: 20.48 ± 2.19 years) additionally participated in a stressful task
and a sustained anticipatory anxiety task; this sample served as the generalization
sample.

Experimental procedure. Participants were asked to explore three different virtual
scenarios for 90 s each (see Figs. 1a, b and 2a), separated by two short transitions.
At the beginning of each trial, participants were instructed to explore the current
scenario, all starting from the same initial position. After participants agreed to
continue, 90 s were left for exploration. At the end of the 90-s period, participants
were instructed to return to the starting point. The subgroup of participants who
participated in the stress task did so after the exploration scenarios, which were also
in VR. Several days prior to the VR tasks, the same subgroup of participants was
invited to perform a sustained anticipatory anxiety paradigm.

Scenario 1: Empty room: In the first trial, the participants started at the edge of
an empty room (Fig. 1a) on top of a small red step, facing one of the walls.
Participants were briefly instructed to explore the empty room. The room’s
dimensions were the same as our room’s physical dimensions; hence, if a
participant touched the virtual walls, he would feel the real walls. After 90 s,
participants were instructed to return to the red step and wait for further
experiments. The scene faded to black until the next scenario was loaded. After a
brief transition, the new scene was a street in a virtual city. After being briefly
instructed not to move away from the red step, the participants began being lifted
towards the elevated alley in Scenario 2.

Scenario 2: Elevated alley: In this trial, participants were exposed to an elevated
virtual alley several meters above the ground in a virtual city. The alley was wider
on the starting side (3.50 m) and became narrower on the opposite side (0.50 m).
At the edges next to the starting point, there were two walls so that participants
were not exposed to the height at the starting point. Participants were asked to
explore the alley, and after 90 s, they were asked to return to the red step. After a
transition, participants were standing on top of the red step; the elevated alley was
no longer present. After participants listened to a brief information statement and
agreed to continue, the step started descending with accelerated movement until it
reached the ground level. The scene faded to black until the next scenario was
loaded.

Scenario 3: Persistent threat: The scene faded into a completely dark room. In
this trial, participants were asked to explore a darkened maze corridor. The hand
controller served a flashlight and as the only source of light in this scenario. Four
human-like static Fig.s were placed in corner areas, and three bursts of white noise
were delivered to the participant’s headphones at t= 20 s, t= 40 s and t= 60 s.
After 90 s, participants were instructed to return to the red step to end the
exploration experiment.

Stress test: This test exposed participants to an uncontrollable social-evaluative
task and timed problem solving with negative feedback in a challenge in VR
(Fig. 4a). The design of this test followed the recommendations presented in ref. 93

for successful stress induction and activation of the HPA axis by posing a threat to
central goals. The task comprised a motivated performance task, relative
uncontrollability of task outcomes, and the presence of social evaluation. Similar to
the Montreal Imaging Stress Test94, participants had to solve quick arithmetic
tasks, and their responses were recorded as correct or incorrect. Incorrect responses
caused a tile on the floor to break and disappear, which could cause a fall if it were

stepped on. If participants fell, they would fall into a new room with full tiles on the
floor. Before the test started, participants had 3 min to read the instructions, which
informed them about the ensuing task and objectives (get as many correct
responses as possible and avoid falling) and indicated that they would be recorded
by video. Two minutes of training preceded the 10-minute session. The test titrated
participants’ performance to be below a supposed “average of the other
participants” (63%) by reducing the response time limit. This supposed average was
shown above the participant’s score, which turned red or green if it was below or
above the hypothetic average, respectively. There was a 5% chance that correct
responses were recorded as incorrect to increase the feeling of uncontrollability. A
prerecorded voice asked the participants to perform better 2.5 and 7.5 min after the
start of the test. Five minutes after the test started, the same prerecorded voice
informed the participants that their performance was not good enough and that the
test would restart.

Baseline physiology was also recorded inside VR in equivalent conditions but
without the stressful elements. Participants were immersed in a nature setting, and
no video recording was mentioned. In addition, for the first 7.5 min, they were
prompted to respond to similar arithmetic tasks as in the stress challenge, but the
tasks were easier and had a longer time limit. During the last 2.5 min, participants
were told they could control the passage of time in the virtual world by pressing the
controller’s trigger. Baselines were taken during this part.

Sustained anticipatory anxiety paradigm: This paradigm was based on a
classical differential delayed fear conditioning paradigm95 during the 2 min of the
habituation phase (see Supplementary Information for further details). Several days
prior to the tasks in VR, participants were invited to our laboratory to participate in
the sustained anticipatory anxiety paradigm. We used Psychlab Contact Precision
Instruments SHK1 to present shocks. Shocks were administered to the top of the
right wrist using 2 Ag/AgCl electrodes (6 mm). Shock intensity was determined
individually during a workup procedure performed before the sustained
anticipatory anxiety paradigm96. Pulse and skin conductance were measured from
participants’ left hand, which was resting on a cushion on the table. Before the start
of the paradigm, participants were informed they would be presented with two
images and that electric shocks would be delivered occasionally. During the first
two minutes (habituation phase), no electric shocks were actually delivered, and
only the images were presented. As participants had been informed that electric
shocks could be delivered, we used this block to induce a sustained anxious state97.
Four subjects were excluded due to missing data in this experiment.

Experimental setup. VR was performed using a commercial VR system developed
by HTC and Valve (HTC Vive). The head-mounted display (HMD) presents
stereoscopic images of the virtual scene to the participant with a resolution of
1080 × 1200 pixels per eye and a refresh rate of 90 Hertz. The tracking relies on two
lighthouse stations sweeping structured light lasers into the testing room. The
HMD uses several sensors (laser position sensors, microelectromechanical sensors,
gyroscope and accelerometer) to reliable infer their position and orientation in 3D
space in real-time and with sub-millimeter precision. The different 3D scenes were
rendered in Unity3D (www.unity3d.com) running on a computer dedicated for VR
and motion capture, equipped with a Core i7 CPU clocked at 4.0 GHz, 16GB of
main memory and a GeForce GTX TITAN X graphics card. 3D scenes were
modeled in Blender (https://www.blender.org) and imported into Unity3D. The
experimental logic was programmed in C# within Unity3D. The app-to-display
latency for the HTC Vive running Unity3D apps in a computer with a similar
configuration to the one used in this experiment has been determined to be on
average 31.33 ms with a standard deviation of 1.41 ms98.

The dimensions of the testing room are 3.50 m (width), 6.00 m (length), and
3.50 m (height). Within this range, participants could move around freely. We
ensured that participants could never see the physical room to increase immersion
and the sense of novelty when exploring the virtual scenarios.

Motion capture was performed using the MVN XSENS Awinda system on
participants’ lower body (pelvis, legs, and feet sensors) and recorded using MVN
Studio Animate Pro. The gait and center of mass displacement were computed
from the motion capture data.

Experiments in VR were performed with a wireless physiology recording system
(Biopac Bionomadix) recording data at a 1000 Hz sampling rate with
AcqKnowledge Data Acquisition and Analysis Software 5.0. We recorded
respiration and electrocardiogram (ECG) data. ECG was decimated to 500 Hz and
breathing to 100 Hz using the MATLAB function decimate with the default FIR
filtering prior to down sampling. For the sustained anticipatory anxiety paradigm,
we recorded pulse and skin conductance with a wired Biopac MP150 unit collected
at 250 Hz with AcqKnowledge Data Acquisition and Analysis Software 5.0.

HR and PR were computed from AcqKnowledge’s default functions. ECG R
peak detection was performed with the Pan Tompkins algorithm. The resulting RR
time series was filtered with a 3-standard-deviation filter and visually inspected for
artifacts. Linear interpolation was used for the identified artifactual beats. HRV
formulas were computed from the resulting RR time series.

RR was computed using the MATLAB function findpeaks after filtering the
respiration signal with a bandpass FIR of 0.17–0.73 Hz. We identified peaks above
at least one standard deviation (robustified) of the filtered respiration time series,
separated by at least 0.8 s and with a minimum width of 0.4 s.
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For the VR exploration scenarios, cardiorespiratory variables were computed
for the entire length of the 90 s intervals of exploration. For the stress task and for
the sustained anticipatory anxiety paradigm, we computed rate and variability
variables for the entire length of the tasks (10 and 2 min, respectively).

HRV analysis. HRV analysis was performed on the filtered R to R time series.
Among the vast number of available HRV formulas, we decided to use the most
widely used time-domain formulas for parasympathetic activity60: RMSSD, SDNN,
and HRVTi. Details concerning these formulas can be found in58. Further infor-
mation regarding HRV can be found in the Supplementary Information.

RMSSD is highly correlated with high frequency power45, another widely used
measure of the parasympathetic (vagal) nervous system58,99, which is known to be
influenced by respiration99. Controlled breathing has been shown to have an effect
on RMSSD compared with uncontrolled breathing100. However, to obtain a more
generalizable parasympathetic metric that was resilient to breathing, we performed
PCA on the HR, HRV (RMSSD, SDNN, and HRVTi) and RR variables and chose
the principal component that loaded onto the HRV and HR variables but not
onto RR.

Behavioral measurements. Behavior was assessed via position tracking and
motion capture. More specifically, with position tracking, we computed several
features regarding where participants positioned themselves in the virtual space,
velocity and acceleration of movement, and other trajectory features obtained
from101. With motion capture, we computed gait variables. A detailed list of all
behavioral features can be obtained in the Supplementary Information.

Feature selection. Feature selection is an important step when building predictive
models. Removing redundant features can simplify the generated model, prevent
overfitting, and enhance the generalization ability. In this study, feature selection
was performed on the training set. Zero variation features were removed, as were
features with a Spearman correlation coefficient below 0.1 with the para-
sympathetic PC during the persistent threat scenario. The resulting features were
separated into three different tables: gait, movement burst and position tracking.
For each table, cross-validated Lasso regularization of the generalized linear model
with MATLAB’s lassoGLM function was used to predict the iHRV during the
persistent threat scenario. The resulting unshrunk variables for each table were
then taken together as the selected feature for statistical model learning.

Extreme gradient boosting trees (XGBoost). XGBoost62 is a new implementa-
tion of the gradient tree boosting technique that has been tested in different data
sets; it achieves high accuracy and requires much less computation time than deep
neural nets102. It is known for obtaining winning solutions in various data com-
petitions. It is authors reported that “among the 29 challenge-winning solutions
published on Kaggle’s blog during 2015, 17 winning solutions used XGBoost.”62.
XGBoost has also been applied to the medical field103–105. Here, we used XGBoost
to predict iHRV during the persistent threat scenario with the set of selected
behavioral features. We used the XGBRegressor function from the Python XGBoost
package to fit our model. There are several adjustable hyperparameters in XGBoost.
In this study, the step size shrinkage (eta), maximum depth of tree (max.depth),
minimum sum of instance weight (min.child.weight), and maximum number of
iterations (nrounds) were optimized with Bayesian optimization106 using the
Python package hyperopt. The performance of our model’s predictions was eval-
uated by correlating the predicted with the true value of the parasympathetic PC on
a holdout sample (not used in model learning). Train and test data sets were loaded
into data frames using the pandas Python package, processed with datacleaner
Python package and model evaluation metrics computed with the Python package
numpy. SHAP values were computed with the Python package shap.

Statistics. Statistical analyses were performed using MATLAB, R, or JASP. All
tests were two-sided and normality of the underlying data distributions was
assumed when parametric tests were used (for example, analysis of variance in
Supplementary Information). For correlations, normality was tested with the
Shapiro–Wilk normality test and Spearman correlations were used, instead of
Pearson, if data were not normal. All correction for multiple comparisons were
performed using the Holm procedure. Correlation confidence intervals are
depicted in the corresponding Figures.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request (note that the data analyzed here is part of a longer undergoing
study with a different aim and not yet published; as soon as the remaining parts of the
data/study are completed, we will make our data available in a public repository). Source
data are provided with this paper.

Code availability
The code used to train and test the classifier in Python will be made available upon
request. Likewise, the feature selection, gait analysis, and HRV implemented in MATLAB
will be made available upon request (note that the data analyzed here is part of a longer
undergoing study with a different aim and not yet published; as soon as the remaining
parts of the data/study are completed, we will make our code available in a public
repository.
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