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Abstract

Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used in regenerative
medicine in light of their ability to differentiate along the chondrogenic and osteogenic line-
ages. As a type of traditional Chinese medicine, quercetin has been preliminarily reported
to promote osteogenic differentiation in osteoblasts. In the present study, the effects of
quercetin on the proliferation, viability, cellular morphology, osteogenic differentiation and
angiogenic factor secretion of rat BMSCs (rBMSCs) were examined by MTT assay, fluores-
cence activated cell sorter (FACS) analysis, real-time quantitative PCR (RT-PCR) analysis,
alkaline phosphatase (ALP) activity and calcium deposition assays, and Enzyme-linked im-
munosorbent assay (ELISA). Moreover, whether mitogen-activated protein kinase (MAPK)
signaling pathways were involved in these processes was also explored. The results
showed that quercetin significantly enhanced the cell proliferation, osteogenic differentia-
tion and angiogenic factor secretion of rBMSCs in a dose-dependent manner, with a con-
centration of 2 uM achieving the greatest stimulatory effect. Moreover, the activation of the
extracellular signal-regulated protein kinases (ERK) and p38 pathways was observed in
quercetin-treated rBMSCs. Furthermore, these induction effects could be repressed by ei-
ther the ERK inhibitor PD98059 or the p38 inhibitor SB202190, respectively. These data
indicated that quercetin could promote the proliferation, osteogenic differentiation and an-
giogenic factor secretion of rBMSCs in vitro, partially through the ERK and p38 signaling
pathways.
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Introduction

Mesenchymal stem cells (MSCs) are important members of the stem cells family [1]. MSCs are
ideal stem cells for tissue regeneration due to their excellent capacities for proliferation and dif-
ferentiation. After being induced in vitro or in vivo, MSCs can be differentiated into several
types of tussues such as fat, muscle, bone, cartilage, tendon, ligament, nerve and liver tissue [2,
3]. As a type of MSCs, bone marrow-derived mesenchymal stem cells (BMSCs) are widely used
in studies of bone regeneration due to their properties of multipotency and active proliferation
[4, 5]. More importantly, using appropriate methods, BMSCs can also be induced to secrete an-
giogenic factors, and these factors can then effect on resident vascular endothelial cells to pro-
mote blood vessel formation in vivo. The regeneration of bone defects specifically consists of a
series of complex processes that are regulated by a variety of cytokines and biological signals.
In a bone defect, angiogenesis occurs earlier than osteogenesis; since bone regeneration cannot
successfully occur without a blood supply reaching the bone defect, angiogenesis is important
for bone regeneration in vivo [6-10]. It is reported that angiogenesis is the foundational step in
bone regeneration, specifically in calvarial and limb bone defects [11-13]. It is shown that an-
giogenesis occurs before osteogenesis in the healing of bone defects. In particular, angiogenesis
provides the blood supply, which benefits the subsequent progression of osteogenesis [11]. A
previous study in a rabbit calvarial defect model further revealed that there was intimate spatial
and temporal correlation between newly formed blood vessels and extra skeletal bone forma-
tion [12]. In these two processes, angiogenesis occurs before osteogenesis in bone healing; then,
both angiogenesis and osteogenesis participate in the bone regeneration and promote the ef-
fects of each other [13]. As shown in previous studies, many approaches have been applied to
stimulate angiogenesis in the process of bone healing, including the combination with endothe-
lial cells, the application of vascular growth factors, vascular remodeling by microsurgery and
gene transfection techniques [14-17]. Therefore, the most ideal induction method would si-
multaneously promote the osteogenic differentiation of BMSCs and enhance the expression of
angiogenic factors.

Interestingly, Chinese medicine, which could promote the secretion of osteogenic factors
such as collagen type 1 (COL1), bone morphogenetic protein 2 (BMP-2), osteocalcin (OCN)
and osteopontin (OPN), and the gene expression of BMP-4, runt-related transcription factor 2
(Runx2), OCN and OPN, has been increasingly applied in osteogenic induction research [18-
20]. Quercetin is a type of bioflavonoid; bioflavonoids comprise numerous natural compounds,
such as catechin, quercetin and rutin, among others. Quercetin is abundant in Ginkgo biloba
extracts and in the flowers and leaves of many plants and fruits [21]. As a traditional Chinese
medicine, quercetin has been extensively studied due to its potential pharmacological proper-
ties and beneficial health effects [22, 23], and it was firstly used as a Chinese medicine for the
treatment of scurvy and heart disease [24, 25]. Recent studies have reported that quercetin
could enhance the osteogenic differentiation of adipose-derived stem cells (ASCs) and osteo-
blastic MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells [26-28]. Moreover,
it has been reported that quercetin could stimulate Osterix (Osx), Runx2, BMP-2, OPN, OCN,
COLL1 and ALP gene expression in ASCs [26, 27], and increase bone sialoprotein (BSP) and
OCN gene expression in osteoblastic MC3T3-E1 cells [28]. Based on these previous studies, the
present study intended to evaluate the osteogenic differentiation of BMSCs as well as the ex-
pression of angiogenic factors by these cells in response to treatment with the traditional Chi-
nese medicine quercetin.

It is well known that mitogen-activated protein kinase (MAPK) signaling pathways are in-
volved in cell survival, proliferation and differentiation [29, 30], and comprise the extracellular
signal-regulated protein kinases (ERK), p38 and c-Jun N-terminal kinase (JNK) signaling
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pathways. A previous study has demonstrated that these three signaling pathways are specifi-
cally involved in the osteogenic differentiation of stem cells [31]. It has also been shown that
the ERK signaling pathway can stimulate the osteogenic differentiation of osteoblasts [32] and
that the JNK and p38 signaling pathways can promote the synthesis of extracellular matrix and
calcium salt deposits. Previous studies have additionally shown that the ERK signaling pathway
is involved in the drug effects of quercetin on MG-63 human osteoblasts and human ASCs [26,
33]. However, it remains to be evaluated whether ERK activation is achieved through the effects
of quercetin, which include cell proliferation, osteogenic differentiation and angiogenic factor
expression, on BMSCs. Moreover, it should be confirmed whether the other two signaling
pathways (p38 and JNK) are also involved in these processes.

In the present study, our hypothesis is that quercetin can induce the osteogenic differentia-
tion of BMSCs as well as the expression of angiogenic factors in a dose-dependent manner and
that these effects may be related to MAPK signaling pathways. To assess our hypothesis, quer-
cetin was applied to rBMSCs at different concentrations, and the effects of quercetin on the
proliferation and osteogenic differentiation of rBMSCs as well as the expression of angiogenic
factors, were systematically investigated. Moreover, the mechanisms involved, including the
ERK, JNK and p38 MAPK signaling pathways, were explored.

Materials and Methods
Ethics statement

All animal experiments were approved by the Ethical Committees for Animal Research of
Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medi-
cine (Protocol Number: HKDL[2013]50).

Isolation and culture of  BMSCs

In the present study, rBMSCs were isolated from 4-week-old male SD rats weighing 50 £ 5 g. A
total of 20 rats were used for the in vitro research in the present study. The rats were sacrificed
using an overdose of chloral hydrate, and then both ends of the femurs were cut off at the
metaphyses. The marrow was flushed out with 10 mL Dulbecco’s modified Eagle’s medium
(DMEM; Gibco, USA) supplemented with 10% fetal bovine serum (FBS; Gibco, USA) and anti-
biotics (penicillin 100 U/mL, streptomycin 100 U/mL) using a 22-gauge needle [34]. The pri-
mary cells were then cultured in an incubator at 37°C and 5% CO, for 4 days and the medium
was renewed every 2 days. When 90% confluence was reached, the rBMSCs were washed with
phosphate-buffered saline (PBS) and passaged using 0.25% trypsin/ethylenediaminetetraacetic
acid (trypsin/EDTA). In the present study, the cells from passages 1 to 3 were used for subse-
quent experiments.

Quercetin treatment and MTT assay

Quercetin (Cy5H;00;, CAS No.: 117-39-5, Sigma, USA) was dissolved in dimethylsulfoxide
(DMSO; Sigma, USA) to obtain a 20 mM stock solution, which was then diluted in the medium
to desired concentrations. The MTT assay was used to test the effect of quercetin on cell prolif-
eration. Briefly, the cells were seeded in 96-well plates at a density of 5x10 cells/well and cul-
tured in DMEM (Gibco, USA) supplemented with 10% FBS (Gibco, USA) and antibiotics
(penicillin 100 U/mL, streptomycin 100 U/mL). After being cultured for 24 hours, the cells
were treated with quercetin at different concentrations (0, 1, 2, 5 and 10 uM) and cultured for
12 hours, 1, 4 and 7 days, respectively. At each time point, the cells were washed twice with
PBS, and then 200 uL. DMEM supplemented with 20 pL 5 mg/mL MTT (Amresco, USA)
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solution was added and incubated at 37°C for 4 hours. Subsequently, the medium was replaced
with 200 pL DMSO and vibrated for 10 min to dissolve the MTT formazan crystals. Finally, the
absorbance was measured at 490 nm using an ELx Ultra Microplate Reader (BioTek, USA).
Meanwhile, a standard curve for the MTT assay was generated; the cells were seeded in 96-well
plates at different densities of 5x107, 1x10%, 1.5x10% 2x10* and 2.5x10* cells/well and cultured
in the DMEM medium, respectively, after which the cell number was quantified according to a
cell standard curve [35]. All experiments were performed in triplicate.

Cell viability analysis

The rBMSCs from passage 1 were seeded in 6-well plates at a density of 1x10” cells/well and
cultured in DMEM medium with different concentrations of quercetin at 0, 1, 2, 5 and 10 uM.
Cell viability analysis was then performed at 24 hours. The cells were washed twice in PBS and
dissociated with 0.25% trypsin/EDTA, after which the cells were collected and stained using an
Annexin V-FITC Apoptosis Detection Kit (Beyotime, Shanghai, China) according to the man-
ufacturer’s protocol, and finally analyzed using a fluorescence activated cell sorter (FACS) flow
cytometer (Becton-Dickinson, Franklin Lakes, NJ, USA). All experiments were performed

in triplicate.

ALP staining and quantitative analysis

rBMSCs were seeded in 6-well plates at a density of 1x10° cells/well and cultured in DMEM
with quercetin at different concentrations, as described above. ALP staining was performed at
day 10. Briefly, the cells were treated with BCIP/NBT solution (Beyotime, Shanghai, China) in
the dark, and areas stained purple were regarded as positive [36]. Moreover, at days 4, 7 and
10, ALP activity was quantitated following the manufacturer’s instructions (Beyotime, China).
Briefly, the cells were washed twice with PBS; 400 uL lysis buffer was added and incubated at
37°C for 4 hours, and the samples were then vibrated for 30 min. Next, each sample was respec-
tively mixed with p-nitrophenyl phosphate disodium (p-NPP) and substrate buffer, vibrated
for 10 min and incubated at 37°C for 15 min. The reaction was stopped by the addition of stop
buffer to the reaction mixture. ALP activity was quantified by reading the absorbance at 405
nm (BioTek, USA) and calculated according to a standard products. The total protein content
in aliquots of the same samples was measured by the Bradford method using the Bio-Rad pro-
tein assay kit (Bio-Rad, USA); the absorbance was measured at 630 nm, and protein concentra-
tions were calculated according to a series of BSA (Sigma, USA) standards [37]. ALP activity
was normalized to the total cellular protein concentration. All experiments were performed

in triplicate.

Calcium deposition assay

rBMSCs were seeded in 24-well plates at a density of 2.5x10" cells/well and cultured in both
basal DMEM medium and osteogenic medium with quercetin at different concentrations (0, 1,
2, 5and 10 uM), as previously described. Alizarin red-S (ARS) staining was performed at day
28. Briefly, the cells were washed three times in PBS and fixed in 75% ethanol for 30 min. The
cells were then stained with ARS solution (40 mM, pH 8.8) for 30 min at 37°C. Moreover, calci-
um concentration analysis was performed using a calcium colorimetric assay kit (Sigma, USA)
according to the manufacturer’s instruction, at days 21 and 28. The calcium concentration was
determined using a standard curve and was further normalized to the total cellular protein con-
tent, as described above. All experiments were performed in triplicate.
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Real-time quantitative PCR (RT-PCR) analysis

Total cellular RNA was isolated from cells cultured with different concentrations of quercetin
for 1, 3, 6, 12 and 24 hours, as previously described. At each time point, the cells were washed
twice with PBS, and RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA).
The RNA was first separated into an aqueous phase by adding chloroform and was then pre-
cipitated with isopropanol. The RNA precipitate was rinsed with 70% ethanol and treated with
the RNase inhibitor diethyl pyrocarbonate (DEPC, Sigma) and was finally solubilized in sterile
DEPC water. Complementary DNA (cDNA) was then synthesized using a Prime-Script RT re-
agent kit (Takara Bio, Japan) according to manufacturer’s recommendations. Highly purified
gene-specific primers for Runx2, COL1, BSP, BMP-2, OPN, OCN, VEGF, angiogenin-1
(ANG-1) and the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
were commercially synthesized (Shengong, China). Quantification of the cDNA of bone mark-
er genes was performed with a Bio-Rad My'? single-color real-time PCR system. All experi-
ments were performed in triplicate.

Enzyme-linked immunosorbent assay (ELISA)

To analyze the angiogenic protein expression of cells cultured in DMEM with quercetin at

0 uM (control group) and 2 uM (experimental group) concentrations, the VEGF content was
measured at days 4, 7 and 10. A VEGF ELISA Kit (Bender, USA) was used to measure the
VEGEF content according to the manufacturer’s instructions. The VEGF concentration was spe-
cifically measured using a standard curve and was further normalized to the total cellular pro-
tein content, as described above. All experiments were performed in triplicate.

Western blotting analysis

For western blotting, rBMSCs were seeded in 6-well plates at a density of 1x10° cells/well and
cultured in DMEM with 2 uM quercetin for 0, 30, 60, 90, 120 and 150 min. The cells were then
collected and lysed with a protein extraction reagent containing protease inhibitor cocktail, phos-
phatase inhibitor cocktail and phenylmethanesulfonyl fluoride (PMSF) (Kangchen, China).
Equal amounts of protein samples were separated on duplicate 8% SDS-PAGE gels and trans-
ferred to polyvinylidene difluoride (PVDF) membranes (Millipore, USA). The membranes were
blocked with 5% skim milk and incubated with the appropriate primary antibodies, including
rabbit anti-rat ERK, p38, JNK, phosphorylated-ERK (p-ERK), phosphorylated-p38 (p-p38) and
phosphorylated-JNK (p-JNK) (dilution, 1:1000; CST, USA), and mouse anti-rat actin (dilution,
1:5000; Sigma, USA). The membranes were then washed three times with PBS containing 0.1%
tween-20 detergent and incubated for 2 hours with horseradish peroxidase (HRP)-conjugated
goat anti-rabbit and rabbit anti-mouse secondary antibodies (Beyotime, China). Finally, the pro-
tein bands were visualized using ECL plus reagent (Amersham Pharmacia Biotech, USA) on a
UVItec ALLIANCE 4.7 gel-imaging system. All experiments were performed in triplicate.

ERK and p38 inhibitor treatment analysis

To identify whether ERK and p38 signaling pathways activation was involved in the observed
stimulation of osteogenic differentiation as well as the expression of angiogenic factors by quer-
cetin, quercetin-treated rBMSCs (2 uM) were cultured in the DMEM medium containing ei-
ther the ERK signaling pathway inhibitor PD98059 (CST, USA) or the p38 signaling pathway
inhibitor SB202190 (CST, USA) at a final concentration of 10 uM, respectively. Meanwhile,
quercetin-treated rBMSCs cultured without ERK and p38 inhibitors were used as the control
group. After being cultured for 150 min, protein was extracted from each group, and western
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blotting for actin, ERK, p-ERK, p-38 and p-p38 protein levels was performed. Additionally, the
gray value of each band was measured using ImageLab software version 4.1 (Bio-Rad). Equal
loading of sample controls were used, and the linear range of each protein and the saturation
point of the gel for each particular protein was determined. The quantitative assay was then
performed according to the linear range [38]. More importantly, the ALP staining at 10 days
and real-time PCR analysis for Runx2, Col I, BSP, BMP-2, OPN, OCN, VEGF and ANG-1 ex-
pression at 24 hours were respectively performed as previously described. All experiments were
performed in triplicate.

Statistical analysis

All measurements were presented as the mean + SD. Differences between groups were analyzed
by one-way analysis of variance based on the results of the normal distribution and equal vari-
ance assumption test [39]. The statistical analyses were conducted using SAS 8.0 software (SAS
Inc., USA). A difference was considered statistically significant at a p-value < 0.05 (** p < 0.05).

Results
MTT and cell viability analysis

The MTT assay was performed to compare the proliferation of rBMSCs after being cultured

in DMEM medium with different concentrations of quercetin for 12 hours, 1, 4 and 7 days

(Fig 1A). Clearly, the cell number increased with increasing culture time, and there were no sig-
nificant differences between the groups after 12 hours of culture. However, the cell prolifera-
tion of the rBMSCs significantly increased in the quercetin-treated groups compared with the
respective 0 uM groups at days 1, 4 and 7. Moreover, a significant difference was also observed
between the 2 uM group and the other quercetin groups at days 1,4 and 7 (p < 0.05). Addi-
tionally, to explore whether the quercetin treatment induced any cell death, the cell viability
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Fig 1. The MTT assay and the cell viability assay. (A) The effect of quercetin at different concentrations (0,
1,2, 5 and 10 uM) on the proliferation of rBMSCs; (B) The cell viability assay analysed by FACS flow
cytometer, the lower-left corner represented as the normal living cells, while the upper-left, lower-right and
upper-right corners represented as the detection error, early apoptotic cells, necrotic and late apoptotic cells,
respectively; (C) Quantitative analysis of the percentage of normal living cells of rBMSCs cultured with
quercetin at different concentrations (0, 1, 2, 5 and 10 uM) at 24 hours, the 0 pM group was treated as the
control group (0). *p < 0.05 indicates the quercetin-treated groups vs the control group; 4p < 0.05 indicates
the 2 pM group vs the other quercetin groups.

doi:10.1371/journal.pone.0129605.g001
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analysis was performed after 24 hours. As shown in Fig 1B, the lower-left corner represents the
normal living cells, and the upper-left, lower-right and upper-right corners represent detection
error, early apoptotic cells, necrotic and late apoptotic cells, respectively. However, no signifi-
cant differences were observed between the groups (Fig 1C and S2 Fig). Moreover, the cell via-
bility was also measured by trypan blue staining at 24 hours. And the result showed that there
were no significant differences observed between the groups (S1 Fig). The cellular morphology
was detected at 6 and 24 hours by the actin assay. It can be seen that there were no obvious
morphological differences between the groups (S3 Fig).

ALP activity and calcium deposition assays

The ALP activity of rBMSCs cultured with different concentrations of quercetin was examined.
As shown in Fig 2A, ALP staining in the 2 uM, 5 uM and 10 uM quercetin-treated groups were
more intense than that in the 0 pM group at day 10. The results of quantitative analysis re-
vealed that the ALP activity in all groups apparently increased over time throughout the assay
period and that the ALP activity was highest value at day 10 for the cells cultured with 2 yM
quercetin possessed with a statistically significant difference (p < 0.05, Fig 2B). For ARS stain-
ing, as shown in Fig 3A and 3B, staining in the quercetin-treated groups, especially in the 2 uM
group, was more intense than in the 0 uM group both in DMEM medium and osteogenic medi-
um at day 28. In addition, the results of the calcium concentration analysis showed that the cal-
cium concentration in quercetin-treated groups, especially in the 2 pM group, was significantly
higher than that in the 0 pM group both in DMEM medium and osteogenic medium (p < 0.05,
Fig 3C and 3D).

RT-PCR for osteogenic and angiogenic genes

Runx2, COL1, BSP, BMP-2, OPN, OCN, VEGF and ANG-1 gene expression was examined by
RT-PCR after rBMSCs were cultured in DMEM with different concentrations of quercetin (0,
1,2,5 and 10 uM) for 1, 3, 6, 12 and 24 hours (Fig 4). The expression of Runx2 in the querce-
tin-treated groups peaked at 3 hours; the increasing trend slowed down at 6 and 12 hours. Ad-
ditionally, the expression of COLI in the quercetin-treated groups was higher than that in the
0 uM group at each time point and was highest at 24 hours. Meanwhile, the expression of BSP
in the quercetin-treated groups was significantly increased before 24 hours compared with that
in the 0 uM group. The expression of BMP-2 in the quercetin-treated groups was higher than
that in the 0 uM group at 3, 6 and 24 hours, whereas the expression of OPN in the quercetin-
treated groups was remarkably higher than that in the 0 uM group at 1, 3 and 6 hours and
peaked at 6 hours. Moreover, the expression of OCN in the quercetin-treated groups was
significantly increased after 1 hour compared with that in the 0 pM group and peaked at

12 hours. Interestingly, the expression of VEGF in the quercetin-treated groups was remark-
ably increased at 3 and 24 hours compared with that in the 0 uM group. Moreover, the expres-
sion of ANG-1 in the quercetin-treated groups was significantly higher than that in the 0 pM
group at 1, 3, 12 and 24 hours. Importantly, this stimulatory effect was achieved in a dose-de-
pendent manner, whereas the concentration of 2 M achieved the highest stimulatory effect.
Moreover, a PT-PCR analysis was performed at 1 week and the results showed that 2 uM quer-
cetin group can significantly stimulate the expression of Runx2, BMP-2, OPN, OCN and
VEGF than the other groups (p < 0.05, S4 Fig). Therefore, the concentration of 2 uM was cho-
sen as the optimum drug concentration for the following studies.
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Fig 2. The ALP activity analysis. (A) ALP staining of rBMSCs cultured in DMEM with quercetin at different concentrations (0, 1, 2, 5 and 10 pyM) for 10 days;
(B) Quantitative analysis of ALP activity of rBMSCs cultured in DMEM with quercetin at different concentrations (0, 1, 2, 5 and 10 uM) for 4, 7 and 10 days.
*p < 0.05 indicates quercetin-treated groups vs the control group; “p < 0.05 indicates the 2 uM group vs the other quercetin groups.

doi:10.1371/journal.pone.0129605.g002

VEGF protein content

The amount of VEGF protein released from rBMSCs cultured in DMEM with 0 uM and 2 uM
quercetin was measured by ELISA on days 4, 7 and 10. The results showed that the quercetin
significantly increased the VEGF protein level on days 4 and 10 (p < 0.05, Fig 5).

Western blotting analysis of MAPK signaling pathways

Western blotting analysis was performed to measure the protein levels of p-ERK, p-p38, p-
JNK, ERK, p38, JNK and actin in the total protein extracted from rBMSCs treated with 2 uM
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o
@ : PLOS | ONE Quercetin and Bone Marrow-Derived Mesenchymal Stem Cells

I 0 M
C I D -;"ﬁ
B 1 pM 2y
0.35 2 uM 0.35+ B 5 M %A
—~ N 5pM YA ? 1 N 10 pM
g .E 0301 g £ 030
o— o 8 oA
3 =
= =
£: E
3 8 8 &
= Q = 3
e )
@ B =Y ]
£ E g E
= = =
- E o E
= = =
< o0 = &b
© E O £
N’ N’

21 28 21 28
Culture time (days) Culture time (days)
Fig 3. The calcium deposition analysis. (A-B) ARS staining of rBMSCs cultured in DMEM medium (A) and osteogenic medium (B) with quercetin at
different concentrations (0, 1, 2, 5 and 10 pM) for 28 days; (C-D) Calcium concentration analysis of rBMSCs cultured in DMEM medium (C) and osteogenic

medium (D) with quercetin at different concentrations (0, 1, 2, 5 and 10 uM) for 21 and 28 days. *p < 0.05 indicates the quercetin-treated groups vs the control
group; 4p < 0.05 indicates the 2 uM group vs the other quercetin groups.

doi:10.1371/journal.pone.0129605.9003

quercetin for 0, 30, 60, 90, 120 and 150 min. As shown in Fig 6, quercetin could activate the
ERK and p38 signaling pathways, and remarkable phosphorylation of ERK and p38 was ob-
served at 120 min; however, no significant activation of the JNK signaling pathway was
observed.

Inhibition of the ERK and p38 signaling pathways

To assess the roles of the ERK and p38 signaling pathways in the process of the stimulatory ef-
fect of quercetin, the ERK signaling pathway inhibitor PD98059 (10 pM) and the p38 signaling
pathway inhibitor SB202190 (10 uM) were used on the cells treated with quercetin. The result
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VEGF content
(ng/mL/mg total protein)

0 M
B 2 pM

Fig 4. Osteogenic and angiogenic gene expression analysis. The osteogenic and angiogenic genes
expression of rBMSCs cultured in DMEM (0 pM) and quercetin-treated groups (1, 2, 5 and 10 uyM) for 1, 3, 6,
12, 24 hours. (A) Runx2; (B) COL1; (C) BSP; (D) BMP-2; (E) OPN; (F) OCN; (G) VEGF; (H) ANG-1. *p < 0.05
indicates the quercetin-treated groups vs the control group; “p < 0.05 indicates the 2 uM group vs the other
quercetin groups.

doi:10.1371/journal.pone.0129605.g004

showed that phosphorylation of ERK and p38 was depressed by the inhibitors of PD98059 and
SB202190, correspondingly; moreover, the inhibitor SB202190 could also inhibit phosphoryla-
tion of ERK signaling pathway in the present study (Fig 7A and 7B). Moreover, Runx2, COLLI,
BSP, BMP-2, OPN, OCN, VEGF and ANG-1 gene expression in quercetin-treated cells cul-
tured with PD98059 or SB202190 was also significantly repressed compared with that of cells
treated with quercetin alone (Fig 7C). Furthermore, ALP staining was also obviously weakened
under treatment with PD98059 and SB202190 (Fig 7D). Analysis of these results demonstrated
that the ERK and p38 signaling pathways played an important role in the process of enhanced
effect of quercetin on rBMSCs.

Discussion

BMSC:s have been widely used for bone regeneration for a long time [36]. Sources of BMSCs
are widespread, and these cells are easy to obtain and can undergo multipotential

7 10
Culture time (days)

Fig 5. VEGF protein content test by ELISA assay. The protein level of VEGF in the DMEM medium group (0 uM, control group) and quercetin-treated
group with the optimum concentration (2 uM) at days 4, 7 and 10. *p < 0.05 indicates the 2 pM quercetin-treated group vs the control group.

doi:10.1371/journal.pone.0129605.9005
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Fig 6. Analysis of phosphorylation level of ERK, p38 and JNK in quercetin-treated rBMSCs by western blotting. (A) Western blotting for the protein
levels of ERK, p38 and JNK signaling pathways in the cells cultured with 2 uM quercetin for 0, 30, 60, 90, 120 and 150 min; (B) The ratios of p-ERK/ERK, p-

p38/p38 and p-JNK/JNK were calculated based on the relative band densities, respectively. *p < 0.05 indicates the quercetin-treated groups vs the 0 min
group; “p < 0.05 indicates the 120 min group vs the other groups.

doi:10.1371/journal.pone.0129605.9006

differentiation [40]. Thus, BMSCs are one of the most commonly used types of seed cells for
bone tissue engineering. Under certain conditions, BMSCs can differentiate into osteogenic
cells and stably express an osteoblastic phenotype; moreover, their osteogenic activities can
continue after implantation [41]. Due to the limited availability of human MSC tissue sources,
rat MSCs were chosen in the present study; however, the use of these cells limits the clinical rel-
evance of the results, which means the findings should be validated by using human primary
MSCs in our future work on quercetin.

Interestingly, using a specific certain induction method, BMSCs could secrete angiogenic
factors, which facilitate the function of angiogenesis. It is well known that angiogenesis is im-
portant for subsequent bone regeneration in vivo. Previous studies have shown that the surviv-
al of seed cells in vivo relies on the blood supplying of oxygen and nutrients and that a lack of
oxygen and nutrition can cause the rapid necrosis or apoptosis of cells within 3 days [42].
Therefore, the present study aimed to identify an ideal induction method to promote the osteo-
genic differentiation of BMSCs and the secretion of angiogenic factors by these cells.

As a traditional Chinese medicine, quercetin is commonly used to treat scurvy and heart
disease [24, 25]. Moreover, recent studies have shown that quercetin can promote osteogenic
differentiation [29]. According to previous studies, quercetin could obviously promote the os-
teogenic differentiation of human ASCs at a concentration of 2 uM, whereas a concentration of
5 uM was optimal for osteoblast-like cells [26, 27]. These findings indicate that the optimal
quercetin concentration may be cell type dependent. Therefore, based on previous studies, the
concentrations of 1, 2, 5 and 10 uM were selected in the present study. Analysis of the in vitro
results suggested that quercetin could enhance the osteogenic differentiation of rBMSCs as well
as the expression of angiogenic factors in a dose-dependent manner and that a concentration
of 2 uM could achieve the greatest stimulatory effect.
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Fig 7. Signaling pathways inhibition analysis. (A) Western blotting for the protein levels of the ERK and p38 signaling pathways in cells in the 2 yM
quercetin-treated group (Quer), the inhibitor PD98059 group and inhibitor SB202190 group at 150 min; (B) The ratios of p-ERK/ERK and p-p38/p38 were
calculated based on the relative linear ranges, respectively; (C) RT-gPCR analysis of osteogenic and angiogenic genes at 24 hours after the rBMSCs were
cultured with 2 yM quercetin and the ERK signaling pathway inhibitor PD98059 (10 uM), or the p38 signaling pathway inhibitor SB202190 (10 pM),
respectively; (D) ALP staining of quercetin-treated rBMSCs cultured with the ERK signaling pathway inhibitor PD98059 (10 uM) or the p38 signaling pathway
inhibitor SB202190 (10 pM) at day 10. The cells cultured in 2 uM quercetin without inhibitors were set as the control group, which is labeled as “Quer”.

*p < 0.05 indicates the inhibitor PD98059 or the inhibitor SB202190 group vs the quercetin group.

doi:10.1371/journal.pone.0129605.9007

Previous studies showed that quercetin could stimulate the osteogenic differentiation of
ASCs and osteoblastic cells but that there was no positive effect on cell proliferation [26-28]. In
the present study, the effect of quercetin on the proliferation and osteogenic differentiation of
BMSCs was comprehensively studied. In contrast to previous studies, our results indicated that
quercetin could enhance the proliferation of rBMSCs at days 1, 4 and 7 in a dose-dependent
manner, whereas a concentration of 2 uM could achieve the greatest effect; furthermore, quer-
cetin did not affect cell viability or cellular morphology. Following quercetin treatment, ALP
activity and calcium deposition assays and osteogenic gene expression analysis were per-
formed. ALP, an early marker of osteogenic differentiation, is positively correlated with cell dif-
ferentiation and maturation [43, 44], whereas calcium deposition is a later marker of
osteogenic differentiation [45]. It is well known that Runx2 and COL1 are considered as early
markers of osteogenic differentiation [46], whereas BSP, BMP-2 and OCN are middle and late
markers [47-49]. OPN appears during early proliferation and later differentiation [50, 51]. It
has been reported that Runx2 is involved in the regulation of gene expression during the pro-
cess of osteogenic differentiation, which plays an important role in the maturation and stabili-
zation of osteoblasts [52]. COL1 provides a basic framework for mineralized inorganic material
deposition and plays a decisive role in the biomechanical strength properties of bone tissue
[53]. BSP plays a key role in the initiation processes of bone matrix mineralization and miner-
alized cell adhesion matrix formation [54]. Moreover, BMP-2 can promote the proliferation
and osteogenic differentiation of BMSCs and can also inhibit the differentiation of BMSCs into
other cell types, such as adipose and skeletal muscle cells [55, 56]. As a bone matrix component,
OCN is one of the main indicators of the phase of osteoblast differentiation involving minerali-
zation, whereas OPN is related to the phase of osteoblasts maturation between adhesion prior
to mineralization and matrix synthesis [57, 58]. In the present study, as an early marker of oste-
ogenic differentiation, the expression of Runx2 in the 2 uM group increased at 1 hour and
peaked at 3 hours; this increase in expression of Runx2 then slowed down at 6 and 12 hours. In
accordance with reports indicating that Runx2 can stimulate OPN, OCN and BSP gene expres-
sion [59], OPN, OCN and BSP gene expression in the 2 uM group peaked at 6 and 12 hours, re-
spectively, in the present study. Moreover, it has also been suggested that the enhanced gene
expression of these osteogenic genes could consequently increase Runx2 gene expression [60].
In the present study, Runx2 gene expression in the 2 uM group was significantly different from
that in the other groups at 24 hours, possibly due to the stimulatory effects of OPN, OCN and
BSP. However, in the present study, quercetin could enhance ALP activity and the above osteo-
genic genes, especially the middle and late markers (BSP, BMP-2, OPN and OCN), in a dose-
dependent manner; this stimulatory effect was most obvious at the concentration of 2 pM.
These results indicated that quercetin could not only promote the proliferation of rBMSCs but
also enhance osteogenic differentiation at various stages, especially at the middle and late
stages; additionally, the concentration of 2 uM was found to be the optimum concentration.
However, previous studies have shown that the cellular morphology is one of aspects, which
can influence the osteogenic differentiation of MSCs [61-63]; the other studies also showed
that some transcription factors (TFs) and Chinese medicine, such as zinc fingers and
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homeoboxes 3 (ZHX3), Runx2 and Tinospora cordifolia, could promote the osteogenic differ-
entiation of MSCs by regulating the gene expression and secretion of osteogenic markers with-
out significant effect on the cellular morphology [64-66]. Present study also showed that
quercetin could stimulate the osteogenic differentiation of rBMSCs by promoting the gene
expression and secretion of osteogenic markers without obvious effect on the cellular
morphology.

Most previous studies regarding quercetin have focused on osteogenic differentiation; how-
ever, the effect of quercetin on the expression of angiogenic factors was not evaluated [26, 27].
The present study also analyzed the effect of quercetin on the expression of angiogenic factors
by BMSCs. As a key angiogenic factor, VEGF can simultaneously promote osteogenesis and
angiogenesis [67, 68], and can specifically affect vascular endothelial cells by inducing cell pro-
liferation, migration and angiogenesis [69, 70]. As a paracrine angiogenic factor, VEGF could
also increase the permeability of small veins and venules and promote the accumulation of cy-
toplasmic calcium, as well as induce angiogenesis [71]. A previous study also showed that
VEGEF could stimulate the proliferation and osteogenesis of BMSCs and indirectly promote the
proliferation and differentiation of osteoblasts by stimulating endothelial cells to secrete
osteoanabolic growth factors [72-74]. Acting as another important angiogenic factor, ANG-1
can stimulate angiogenesis by reducing the VEGF-mediated vascular permeability to a certain
extent [75]. Additionally, ANG-1 can promote the differentiation, bone matrix deposition and
mineralization of osteoblasts [76]. Although previous studies showed that quercetin could in-
hibit the angiogenic gene expression of tumor cells [77, 78], in the present study, the results of
RT-PCR and ELISA analyses showed higher VEGF gene and protein levels in rBMSCs treated
with quercetin. Moreover, the results of RT-PCR showed that quercetin could stimulate the
gene expression of ANG-1. All of these data indicate that quercetin could enhance angiogenic
factor expression of rBMSCs, which could in turn promote angiogenesis and osteogenesis
in vivo.

However, previous research has mostly focused on the secretion of angiogenic factors by
undifferentiated bone marrow derived MSCs such as mesenchymal progenitor cells, marrow-
derived stromal cells and multipotent stromal cells [79-81]; moreover, recent studies reported
that the osteogenically differentiated MSCs that cultured in osteogenic induction medium
could lead cells antiangiogenic and reduce the secretion of angiogenic factors like VEGF and
platelet-derived growth factor-AA (PDGF-AA) [82, 83]. However, many studies reported that
some growth factors such as BMP-2 [84, 85], BMP-9 [86], epidermal growth factor (EGF) [87],
growth and differentiation factor-5 (GDF-5) [88] and basic fibroblast growth factor (bFGF)
[84, 89, 90], could promote osteogenic differentiation of MSCs as well as secretion of angiogen-
ic factors by inducing both osteogenic and angiogenic signaling pathways without osteogenic
induction medium. In the present study, it has been firstly observed that as a kind of Chinese
medicine, quercetin could not only promote osteogenic differentiation of rBMSCs, but also en-
hance the secretion of angiogenic factors in a dose-dependent manner, while the concentration
of 2 uM could achieve the greatest effect. Recent studies also reported that quercetin could

stimulate the induction and functions of immune cells and enhance the functions of the im-
mune system [91, 92]. However, whether quercetin can affect the immunogenic status of
BMSC:s has remained largely unknown. Indeed, the immunogenicity of MSCs is the one of the
important topics in bone regeneration and will be assessed in our future studies.

Previous studies showed that quercetin could promote the osteogenic differentiation of
MG-63 human osteoblasts through the ERK signaling pathway [26, 33]; however, it has re-
mained largely unknown whether the p38 and JNK signaling pathways, the other two impor-
tant pathways in MAPK signaling, are involved in this process. It is well known that the ERK,
p38 and JNK pathways are crucial for the regulation of cell proliferation, osteoblast
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differentiation and skeletal development [93, 94]. In particular, the ERK signaling pathway can
be activated in cells throughout the developmental phase, which can promote immediate early
gene expression, reinforce matrix mineralization and promote osteogenic differentiation [95].
The p38 signaling pathway plays an important role in cell growth, survival and differentiation
[96]. The JNK signaling pathway has been reported to potentially enhance OCN mRNA level
and to be involved in BMP-2-induced osteoblastic cell differentiation [97, 98]. Our present
findings showed that quercetin could activate the ERK and p38 signaling pathways, resulting in
higher p-ERK and p-p38 protein levels at 120 min. However, quercetin did not lead to signifi-
cant activation of the JNK signaling pathway. Furthermore, to demonstrate whether the stimu-
latory effect of quercetin on the proliferation and differentiation of rBMSCs is dependent on
the ERK and p38 signaling pathways, the specific ERK and p38 inhibitors PD98059 and
SB202190 were applied to quercetin-treated rBMSCs, respectively. The results showed that
pretreatment with PD98059 and SB202190 blocked quercetin-induced ERK and p38 phos-
phorylation, respectively. Moreover, quercetin-stimulated ALP activity and the expression of
osteogenic genes (Runx2, COL1, BSP, BMP-2, OPN and OCN) and angiogenic genes (VEGF
and ANG-1) could be repressed by either PD98059, or SB202190, respectively. Moreover, the
inhibitor SB202190 could also inhibit phosphorylation of the ERK signaling pathway in the
present study. Previous study also reported that the p38 inhibitor was found to abrogate TNF-
alpha-induced ERK phosphorylation in human proximal tubular epithelial cells [99]. It has
been suggested that there are several points shared between the ERK and the p38 signaling
pathways, leading to cross-talk between these two pathways [100, 101]. Therefore, p38 may
also regulate ERK phosphorylation in the context of the effects of quercetin, although this con-
cept requires further evaluation in our future studies. All of these data indicated that quercetin
stimulated the proliferation, osteogenic differentiation and angiogenic factor expression of
rBMSCs, partially through the ERK and p38 signaling pathways.

In conclusion, quercetin could promote the cell proliferation, osteogenic differentiation and
angiogenic factor expression of rBMSCs in a dose-dependent manner, and a concentration of
2 uM quercetin achieved the greatest stimulatory effect. Furthermore, the ERK and the p38 sig-
naling pathways might play an important role in this process. It is suggested that quercetin
may represent a drug that can be potentially applied for bone regeneration.

Supporting Information

S1 Fig. Typan blue staining for cell viability. The effect of quercetin at different concentra-
tions (0, 1, 2, 5 and 10 uM) on the cell viability of rBMSCs at 24 hours. The 0 uM group was
treated as the control group (0).

(TTF)

S2 Fig. FACS flow cytometer for cell apoptosis. Quantitative analysis of the percentages of
early apoptotic cells (A) and necrotic/late apoptotic cells (B) of rBMSCs cultured with querce-
tin at different concentrations (0, 1, 2, 5 and 10 uM) at 24 hours. The 0 pM group was treated
as the control group (0).

(TIF)

$3 Fig. Cellular morphology. The cellular morphology detected by actin cytoskeletal staining
showing at 6 and 24 hours.
(TIF)

$4 Fig. Gene expression of rBMSCs treated with different concentrations of quercetin at
day 7. The osteogenic and angiogenic genes expression of BMSCs cultured in DMEM medium
with quercetin at different concentrations (0, 1, 2, 5 and 10 uM) for 7 days. *p < 0.05 indicates
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the quercetin-treated groups vs the control group (0 uM); 4p < 0.05 indicates the 2 uM group
vs the other quercetin groups.

(TIF)

S§1 Table. Primer sequences for real-time quantitative RT-PCR.
(DOC)
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