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Abstract

Progression of Parkinson’s disease (PD) is highly variable, indicating that differences between slow and rapid
progression forms could provide valuable information for improved early detection and management. Unfortunately,
this represents a complex problem due to the heterogeneous nature of humans in regards to demographic
characteristics, genetics, diet, environmental exposures and health behaviors. In this pilot study, we employed high
resolution mass spectrometry-based metabolic profiling to investigate the metabolic signatures of slow versus rapidly
progressing PD present in human serum. Archival serum samples from PD patients obtained within 3 years of
disease onset were analyzed via dual chromatography-high resolution mass spectrometry, with data extraction by
xMSanalyzer and used to predict rapid or slow motor progression of these patients during follow-up. Statistical
analyses, such as false discovery rate analysis and partial least squares discriminant analysis, yielded a list of
statistically significant metabolic features and further investigation revealed potential biomarkers. In particular, N8-
acetyl spermidine was found to be significantly elevated in the rapid progressors compared to both control subjects
and slow progressors. Our exploratory data indicate that a fast motor progression disease phenotype can be
distinguished early in disease using high resolution mass spectrometry-based metabolic profiling and that altered
polyamine metabolism may be a predictive marker of rapidly progressing PD.
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Introduction

Parkinson’s disease (PD) is a complex, multisystem disorder
of unknown etiology that presents a broad array of symptoms
and pathological features affecting organs throughout the body
[1]. PD is commonly described as a progressive
neurodegenerative condition caused by the preferential loss of
dopaminergic neurons present in the substantia nigra pars
compacta; however, other brain regions, like the locus
coeruleus, are also affected [2]. Motor symptoms include
bradykinesia, rigidity and postural instability. Depression,
constipation, loss of the sense of smell and sleep disturbances
are included in the spectrum of non-motor symptoms reported
by PD patients [3].

The heterogeneity of PD symptoms suggests that different
disease subgroups exist and that these subgroups may
possess distinct etiological processes [4]. Due to this
heterogeneous nature, the quest for reliable biomarkers that
can predict disease onset, progression and/or outcome is
ongoing. To date, the most well defined PD biomarkers involve
neuroimaging techniques that determine the extent of
nigrostriatal degeneration [5]. Biochemical biomarkers that
reflect PD pathogenesis are greatly needed due to the fact that
degeneration of the dopamine producing neurons is an
irreversible process; therefore, biomarkers may aid in early
detection and more effective disease management. These
biomarkers need to be detectible in accessible samples, such
as blood, saliva and cerebral spinal fluid [5]. In an effort to
discover viable biomarkers, researchers have begun to employ
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‘omics’ approaches in combination with bioinformatics and
biostatistical methods to aid in the discovery of these very
important biomarkers present in complex biological samples.

The term ‘metabolomics’ can be defined as the study of
global profiles of all metabolites in a given sample [6]. These
metabolites can include endogenous intermediary metabolites,
pharmaceutical metabolites, environmental chemicals, and
chemicals arising from gut microflora. Many different platforms
can be utilized to study metabolomics. Techniques like proton
nuclear magnetic resonance (NMR), magnetic resonance
spectroscopy (MRS), high performance liquid chromatography
(HPLC) with electrochemical detection, and mass spectrometry
(MS) are commonly used. Unfortunately, while metabolomics is
the endpoint of the “omics cascade” and is closest to
phenotype, there is no single platform that can currently
analyze all metabolites [7]. Our “top-down” method of metabolic
profiling [8] is aimed at examining the spectrum of metabolites
and environmental chemicals present in biological samples. By
using high resolution and high mass accuracy mass
spectrometry, one can predict the elemental composition to
match more than 90% of the most common intermediary
metabolites, such as those involved in amino acid metabolism
and the TCA cycle [9,10].

The purpose of this pilot study was to utilize high resolution
mass spectrometry-based metabolic profiling to identify
biomarkers that distinguish between slow and rapid motor
symptom progression in PD patients using serum samples
collected prior to the observed progression phenotype. Our
method detected over 7,700 distinct ions (m/z) and further
analyses yielded a list of high quality ions, 1,672 m/z with a
coefficient of variation (%CV) of less than or equal to 10%. In
an attempt to discover potential biomarkers that distinguish
slower from more rapidly progressing motor symptoms of PD,
false discovery rate analyses along with other multivariate
statistical approaches were performed, which resulted in lists of
potential biomarkers. Finally, it was found that N8-
acetylspermidine was increased in rapid progressors compared
to either slow progressors or control participants, indicating a
potential biomarker associated with rate of motor symptom
progression in PD.

Materials and Methods

This study was approved by the human subjects committee
of the University of California, Los Angeles (UCLA). Subjects
participated after written informed consent was obtained which
followed a discussion of the consent documents with subjects
or legal guardians if participants deemed incapable of
consenting.

Study population
The serum samples analyzed were a subset of participants

from a case-control study that enrolled PD patients and
population-based controls between 2001 and 2007 in Central
California and followed cases until 2011, death or loss to
follow-up. Recruitment methods [11], case definition
criteria[12], and case follow-up [13] have been described in
detail elsewhere. Briefly, of 1,167 PD patients initially invited,

604 did not meet eligibility criteria, 90 were not examined, 104
were examined by our movement disorder specialists but did
not meet published criteria for idiopathic PD [14] and 6
provided only incomplete data. We attempted follow-up
examinations for the remaining 363 idiopathic PD patients, but
at first re-contact 83 (22.9%) patients were deceased, 25
(6.9%) withdrew, 9 (2.5%) could not be found, and 4 (1.1%)
were too ill to participate. Altogether, 242 (66.6%) cases were
successfully re-contacted but 6 patients could not be evaluated
for motor progression and 3 patients were reclassified as not
having idiopathic PD. Of 233 idiopathic patients re-examined,
55 were seen once and 178 (76.4%) were seen twice during
follow-up. All patients completed interviews for demographic
and risk factor data at baseline and during follow-up.

For the metabolomics analyses presented we selected 80 of
146 Caucasian PD patients with a serum sample and follow-up
examinations in the following manner: 23 males and 16
females from among rapid progressors (defined as having an
average annual change in UPDRS motor score in the top
quartile of the distribution) and 23 males and 18 females from
among slow progressors (defined as having an average annual
change in UPDRS motor score below the top quartile). We also
selected 20 control sera from among 126 sera from
Caucasians available from the 341 population controls enrolled
(control selection procedures see 11). Prior to sample
collection, patients were not required to fast, but were required
to abstain from taking their PD medications the morning of the
exam. Exams and sample collections were conducted typically
between 8 am and 12 pm. Blood samples were collected in red
top tubes and were filled completely. The blood was allowed to
clot for at least 30 min, but no longer than 60 min. The samples
were then centrifuged at maximum speed (2200-2500 RPM) for
15 min. The tube stopper was then carefully removed and the
serum was pipetted into a transport vial. These samples were
kept on ice during transit to UCLA and upon receipt were
transferred into a -80°C freezer. These samples were stored at
-80°C until they were shipped to Emory University on dry ice.
We attempted to match the three groups of subjects (slow and
rapid progressors and controls) as best possible by age (+/- 5
years), gender (male, female), smoking status (never, former,
current) and ambient pesticide exposure based on a previously
published geographic information system-based computer
model [11] (<8, >=8 different pesticides).

Assessment of PD Motor Symptom Progression
Study movement disorder specialists performed Unified

Parkinson’s Disease Rating Scale (UPDRS) [15] exams at
clinics or residences if the patient was unable to travel. Patients
were examined off PD medications (i.e. overnight medication
withdrawal prior to exam) whenever possible (82% of patients
were off medication for baseline exam, 80% for follow-up
exams). A list of medications taken by study participants can
be found in Table S1. When we were unable to conduct an off
exam, we used the on exam to estimate the off exam score for
a patient by adding to the patient’s on exam score the
difference of the whole study population’s mean off- and mean
on-scores. At each exam 6% of patients were unable to
perform some motor UPDRS items (e.g. patient was unable to
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walk due to a missing lower limb); in these cases we either
assumed no change from baseline to follow-up for patients with
available baseline data or used the population mean for
patients with neither baseline nor follow-up values for an item,
a conservative approach that may bias our estimates towards
the null.

Annual rate of change in UPDRS motor score was calculated
as the difference of the last follow-up and the baseline motor
scores divided by the interval of time (in years) between
exams. Subjects were classified as rapid progressors if their
average annual change in motor score was in the top quartile
of the distribution of scores. In the full study population, the
mean annual change in motor UPDRS score was 2.53
(sd=2.65; range 0-24.6); 59 subjects were classified as rapid
progressors (mean change = 5.89, sd=2.90, range 3.85-24.6)
and 174 were classified as slow progressors (mean change =
1.39, sd=1.20, range 0-3.83). In the 80 subjects contributing to
this analysis, the mean annual change in motor UPDRS score
was 3.65 (sd=3.42, range 0-24.6); 39 subjects were classified
as rapid progressors (mean change=5.95, sd=3.48, range
3.85-24.6) and 41 subjects were classified as slow progressors
(mean change=1.45, 1.20, range 0-3.57).

High Resolution Mass Spectrometry-based Metabolic
Profiling

To prepare samples for mass spectral analyses, 50 μL of
serum was added to 100 μL of acetonitrile and 2.5 μL of a
mixture of 14 stable isotope standards. After mixing and
incubation at 4°C for 30 min, precipitated proteins were
pelleted via centrifugation for 10 min at max RPM on a
microcentrifuge at 4°C. Supernatants were transferred to
autosampler vials and analyzed using an autosampler at 4°C.
Samples were analyzed in triplicate by liquid chromatography-
Fourier transform mass spectrometry (Accela- LTQ Velos
Orbitrap; m/z range from 85-850) with 10 μl injection volume
using a dual chromatography setup (anion exchange and C18)
and a formic acid/acetonitrile gradient as described by[8].
Electrospray ionization was used in the positive ion mode. Data
were extracted using xMSanalyzer [16] as m/z features, where
an m/z feature is defined by m/z (mass-to-charge ratio), RT
(retention time) and ion intensity (integrated ion intensity for the
peak). Putative identification of metabolites was made using
the Madison Metabolomics Consortium Database (MMCD) [17]
and Metlin Mass Spectrometry Database [18]. Metabolite
identities were confirmed via tandem mass spectrometry
(MS/MS) and matching fragmentation patterns to those of
known standards when possible.

Quantification of N8-acetyl spermidine
Quantification of N8-Acetylspermidine (N8-ASP) within the

samples was accomplished via a single concentration
response factor determined from the average intensity of the
N8-ASP protonated adduct [M+H]+ within NIST SRM 1950,
which was included during analysis of the samples, and its
corresponding N8-ASP concentration. The level within each
sample was then determined by multiplying the reference
standard response factor (2.13 x 10-5) by the average intensity
determined from the technical duplicates for each individual

sample. This technique enabled the absolute quantification of
N8-ASP within each sample without sample cohort re-analysis,
and only required determination of n8-ASP within the pooled
reference sample. The N8-ASP concentration within NIST SRM
1950 was quantified by reverse-phase LC with detection via a
high resolution Orbitrap mass spectrometer (Q-Exactive,
Thermo Scientific, San Diego CA) operated in both full scan
and selective ion monitoring mode (SIM) following positive
electrospray ionization. Sample preparation, ionization
parameters, C-18 column and gradient method were the same
as described previously. The Orbitrap mass analyzer was
operated at a resolution of 35,000, with the AGC, injection time
and isolation window set to 105 ions, 80 ms and 1 m/z,
respectively. Quantification was based on the protonated
adduct (188.1757 m/z) +/- 10 ppm mass accuracy, and
retention time was confirmed via N8-ASP reference standards
( ≥ 98%, Sigma Aldrich, St. Louis MO) and MS/MS.
Determination of N8-ASP concentration in the NIST reference
plasma was accomplished by external calibration via a blank
corrected response factor calculated from a matrix matched
standard containing 5 nM N8-ASP plus the endogenous level.
Based on triplicate analysis of the NIST SRM 1950, the 5 nM
reference standard and blank standard matrix, the
concentration of N8-ASP within NIST SRM 1950 was
determined to be 10.1 ± 0.3 nM.

Metabolomics Data analysis
Bioinformatics and biostatistical analyses included two-

sample t-test followed by false discovery rate (FDR) correction,
principal component analysis (PCA) and orthogonal signal
correction-partial least squares discriminant analysis (OPLS-
DA) with principal component loading statistics (PCLS). A two-
sample t-test followed by multiple hypothesis test correction
using the Benjamini and Hochberg false discovery rate (FDR)
method was used to determine metabolites that differed
between the groups [19]. We use raw p values in a Manhattan
plot (-log10 p vs metabolic feature) to visualize the calculated
significance for individual metabolites according to the
progression of parkinsonism and identify the FDR at q=0.2 with
a horizontal line.

OPLS-DA is a multivariate supervised analysis to display and
identify differences between groups. The analysis produces a
score plot showing the separation of the groups based on the
content of the loading discriminatory metabolites. After
autoscaling the data, an orthogonal signal correction removes
variation not correlated to classification. PCLS was performed
in conjunction with OPLS-DA to identify metabolites that
contribute in a groupwise manner to discriminate samples.
PCLS uses statistical principles to select the top 5% of
metabolites accounting for 95% group identity.

Topological comparison of the metabolic networks in slow
PD and rapid PD conditions was performed using the Weighted
Gene co-expression Network Analysis (WGCNA) package in R
[19–21]. WGCNA uses hierarchical clustering coupled with
topological overlap dissimilarity measures to detect biologically
meaningful modules [20]. In network analysis, a module is
defined as a subset of nodes that form a sub-network within a
network, and these modules are likely to correspond to
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biological processes and pathways. Spectral data from the
slow PD condition samples was used as reference for defining
the metabolic modules. These modules were then mapped to
the rapid PD samples. The first principal component of each
module, eigengene, is used to summarize the ion intensity/
expression pattern of the metabolites in that module. The
modulePreservation function implemented in the WGCNA R
package was used to assess the preservation of modules
between slow PD and rapid PD.

Results

Subject characteristics
The subjects in this pilot study were from a cohort of PD

patients and healthy controls living in the Central Valley region
of California. Demographic and phenotypic characteristics of
the included subset are described in Table 1. Because of the
matching performed in the design of this study, we observe no
statistical differences between controls, slow or fast
progressors of the pilot subset for these characteristics. The
samples selected were not statistically different from the
complete study population of longitudinally followed PD
patients (Table S2) on distribution of sex, age, education,
smoking status, or family history of PD.

PD patients were divided into two motor progression
subgroups determined by the average annual increase in
UPDRS motor score. A five-point per year change in the motor
UPDRS has been reported for early, untreated PD patients in

Table 1. Study population characteristics.

Characteristic
Control [n = 20]
[no. (%)]

Slow [n = 41] [no.
(%)]

Rapid [n = 39]
[no. (%)]

Sex    
Male 10 (50.0) 23 (56.1) 23 (59.0)
Female 10 (50.0) 18 (43.9) 16 (41.0)
Age (years)a    
< 60 3 (15.0) 6 (14.6) 5 (12.8)
≥ 60 17 (85.0) 35 (85.4) 34 (87.2)
Average 69.7 68.7 68.9
Range 47 - 84 50 - 87 46 - 83
Education (years)    
0 to < 12 1 (5.0) 3 (7.3) 3 (7.7)
= 12 3 (15.0) 10 (24.4) 15 (38.5)
> 12 16 (80.0) 28 (68.3) 21 (53.8)
Smoking status    
Never smoker 10 (50.0) 26 (63.4) 19 (48.7)
Former smoker 10 (50.0) 15 (36.6) 19 (48.7)
Current smoker 0 (0.0) 0 (0.0) 1 (2.6)
Family history of PDb    
None 17 (85.0) 34 (82.9) 35 (89.7)
1 or more members 3 (15.0) 7 (17.1) 4 (10.3)

Note: all subjects are non-hispanic, Caucasians
a Age at diagnosis for PD cases and age at interview for controls
b Self-reported first-degree relative with PD

doi: 10.1371/journal.pone.0077629.t001

placebo arms of clinical trials [22] and is considered a clinically
relevant change when assessing improvement due to
treatment [23]; our “rapid” progressors on average experienced
an annual rate in motor symptom decline of 5.95 points (range
3.85 - 25.6), while the slow progressors mean change in
symptoms was only 1.45 points (range 0 - 3.57).

We have previously demonstrated that subjects lost to
follow-up due to death were older and had a higher baseline
UPDRS score than subjects followed and that subjects lost to
follow-up due to other reason were no different on risk factors
from slow progressors [13]

Comparisons of PD patients and controls
Extraction of mass spectral data resulted in a list of 11,433

m/z, where 7,718 m/z were detected in 100% of the sample
runs. To determine whether a statistically significant metabolic
difference existed between control and PD patients, the 7,718
m/z that were detected in all samples were analyzed by false
discovery rate analysis (FDR). FDR analysis resulted in a list of
259 m/z that were significantly different between controls and
PD cases (Table S3). It should be noted that only 17% of these
m/z had a match (M+H, M+Na) in the Metlin database. The
ions co-eluted with Na+ and K+ ions and searches in the Metlin
database also showed matches to predicted high-resolution
m/z of Na+ and K+ forms of several phytochemicals. Because of
the large number of possible isomeric structures and a lack of
available standards, these were not pursued. Additionally, 15
m/z matched to therapeutic drugs and nutritional supplements
commonly used by PD patients. Because of their wide use,
there was no way to evaluate the contributions of these
compounds to alterations in the metabolic profile. Principal
component analysis (PCA), an unsupervised, multivariate
statistical procedure, was conducted to determine whether
metabolic differences between controls and PD patients could
be detected; however, this technique did not result in
separation of the two groups (data not shown).

A supervised, multivariate technique, orthogonal partial least
squares-discriminant analysis (OPLS-DA), was also used to
analyze the data. Figure 1A clearly shows that the data from
control and PD patients can be separated into two distinct
groups, thereby classifying the data from 100 subjects
according to disease status. We also employed an additional
multivariate statistical approach termed principal component
loading statistics (PCLS) to select metabolites that contributed
to this group behavior observed using OPLS-DA. This
approach provides a complement to FDR and it utilizes loading
vectors from OPLS-DA to directly link to a correlation analysis
for group separation (Lee et al, manuscript in preparation). 154
m/z were found by PCLS to distinguish controls from PD
patients (Figure 1B). This list was annotated using the Metlin
database (Table S4) and it was found that 76% of these
metabolites (117 of 154) were unknowns, meaning that they
did not have an M+H or M+Na match in the database. Of the
remaining 37 metabolites, some putative identifications of
interest included the flame retardant PBDE-99, various
tripeptides, phytochemicals and potential drug metabolites.
Because of our interest in elucidating specific phenotypic
differences between the metabolic profiles of slow progressors
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and rapid progressors, we chose to further evaluate these two
disease subtypes and not compare them to the small group of
healthy controls.

Rapid versus slow progression
The PD patients were classified into slow- and rapid-

progressing phenotypes according to annual increase in
UPDRS motor score.

Analysis of global changes in metabolic profiles between the
slow and rapid progressors yielded a list of 35 m/z that were
found to differ between the two groups. A Manhattan plot of all
m/z with a %CV of less than or equal to 10% (1,672 m/z)
displays the number of metabolites above the threshold of
significance (q=0.2)(Figure 2A). Putative identification of these
metabolites can be found in Table S5. 49% of these
metabolites did not have a database match (M+H or M+Na)
and all of the significant metabolites exhibited higher ion
intensity in the rapid progressors compared to slow
progressors. OPLS-DA was also conducted and resulted in a
separation of slow and rapid progressors (Figure 2B). PCLS
showed that 152 m/z contributed to the separation between
slow and rapidly progressing PD (Figure 2C). Of these 152
m/z, 81 (53%) did not possess a match to common adducts (M
+H or M+Na) in the Metlin database (Table S6). Those m/z that
did have a database match were putatively identified and these
matches included, acetylspermidine, 3,4-dihydroxyphenyl
acetaldehyde (DOPAL) and various amino acid metabolites,
lipids, phytochemicals, tripeptides and potential pharmaceutical
metabolites.

Topological differences between slow and rapid conditions
were evaluated using the module preservation function of
WGCNA as described in Methods (Figure 3). 52 modules of

metabolites were identified using the slow PD data as a
reference set. The preservation of these modules was then
evaluated using the rapid PD data as the test set. Heatmaps of
the cross-correlation of the modules in each condition, slow PD
and rapid PD, are shown in Figure 3A and 3B, respectively.
Most of the network connections between the two conditions
were preserved although there were few differences as shown
in the heatmap of pairwise preservation scores and the bar
plots of the preservation score per module, Figure 3C and 3D,
respectively.

The results from FDR, PCLS, and module preservation
analysis suggest that the differences between the two sub-
conditions of PD are likely to occur because of small
perturbations in the metabolic network structure caused by
differential expression of few key metabolites. Of the 12 m/z
that were common between the FDR and PCLS analyses
(Figure S1), m/z 188.175 was selected for further study
because it was matched (Metlin and MMCD) to an
endogenously produced metabolite and was not derived from a
pharmaceutical product or phytochemical. Tandem mass
spectral analysis of m/z 188.175 and investigation of similar
mass spectra present in the NIST 11 NIST/EPA/NIH Mass
Spectral Library (Scientific Instrument Services, Ringoes, NJ)
lead to the conclusion that this metabolite was N8-
acetylspermidine. The average ion intensity for N8-acetyl
spermidine was plotted for all samples (Figure 4A) and
grouped as control, slow and rapid progressors. Utilizing
commercially available N8-acetylspermidine as a standard the
serum concentrations of this polyamine were quantified (Figure
4B). Rapid progressors had a mean serum concentration of
14.7 nM while the mean concentration in slow progressors and
healthy controls was 12.3 nM and 10.9 nM respectively.

Figure 1.  Separation of control and PD using OPLS-DA.  OPLS-DA results comparing metabolites from control (black, closed
circles) and PD patients (red, open squares) (A). Discriminatory analysis of control and PD patient metabolic data (B). The green
dots represent metabolites with 95% correlation to the first two principal components. The gold circles denote the top 1% of these
metabolites (154 m/z) that most closely associate with control or PD.
doi: 10.1371/journal.pone.0077629.g001
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Figure 2.  Significant metabolites and separation of slow
and rapid PD phenotypes.  A manhattan plot (A) shows a
number of metabolites that break the threshold of significance
(dotted line) when comparing slow vs. rapid PD progression.
OPLS-DA results comparing metabolites from slow (blue) and
rapid (red) progressors (B). Discriminatory analysis of control,
slow and rapid progressor metabolic data (C). The green dots
represent metabolites with 95% correlation to the first two
principal components. The gold circles denote the top 1% of
these metabolites (152 m/z) that most closely associate with
slow or rapidly progressing PD.
doi: 10.1371/journal.pone.0077629.g002

Because N8-acetylspermidine was found to be significant
between slow and rapid progressors via both FDR and PCLS
analyses, we also conducted a Pearson correlation analysis to
determine what metabolites are highly correlated with this
result. Using a correlation of ± 0.3 as a threshold, we
generated a list of 163 m/z (p=0.023) that were highly
correlated with N8-acetylspermidine (m/z 188.175) (Table S7).
This list consisted of 158 m/z that were positively correlated
and 5 negatively correlated m/z. Of these metabolites, 42%
were considered to be unknowns due to the inability to match
M+H and M+Na adducts in the Metlin database. Putative
identification of the highly correlated metabolites included
adrenochrome, 3-O-methyldopa, bilirubin, various lipids,
acylcarnitines and tripeptides.

Discussion

High resolution mass spectrometry-based metabolic profiling
and biostatistical approaches can be employed to gain further
insight into a disease process and to identify potential
biomarkers. The purpose of this pilot investigation was to
demonstrate that differences in the serum metabolome of PD
patients could distinguish slowly and rapidly progressing forms
of PD. The PD patients studied here were similar in distribution
of risk factors to the population of PD patients followed
longitudinally, and are more likely to be representative of the
general population of PD patients that survives 2-5 years
beyond their initial physician diagnosis than a clinic-based or
clinical trial-based study population.

About 20% of our study population was not examined in the
“off” state. Non- withdrawal, as well as incomplete wash-out of
PD medication, is an ever-present consideration even with the
overnight medication withdrawal we employed, but longer
withdrawal would not be safe or ethical for moderately
advanced patients in an observational research setting. 
Assuming that PD medications indeed alleviate motor
symptoms, both incomplete wash-out as well as non-
withdrawal of medication would lower the motor score
observed in patients during our exam and possibly misclassify
some fast progressors as slow progressors; even so, we
detected differences in metabolic profiles between the fast and
slow progressors. Additionally, it may be predicted that
medications will alter the metabolome; however, this assumes
that PD medications’ nature, doses, and dosing schedules
influence progression of PD which is not the current
consensus. Finally, all of the effects of different medications on
the metabolome using a single metabolomic platform could be
impossible to detect; therefore, we employed a discovery-
based, top-down approach that can easily be adapted to the
clinical setting for rapid analysis and diagnosis.

When comparing the serum metabolic profile of controls and
PD patients, our results show subtle differences between the
PD metabolome and that of healthy controls. The majority of
these ions did not have database matches; however, the high-
resolution m/z values matched several phytochemicals, raising
the possibility that unidentified dietary factors could be present
that protect against disease development. A previous study
utilizing GC-MS to investigate differences in the serum and
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urine of PD patients compared to controls also reported only a
“subtle” metabolic disturbance in the PD patients [24]. The
module preservation matrix presented here also indicates small
or subtle alterations in the metabolic profile of those with slow
or rapid progression PD. Humans are variable in their
behaviors and genetic backgrounds so that larger sample sizes
and/or sub-classification of populations may be required to
clearly define metabolic patterns. Our targeted statistical
approach, OPLS-DA, suggests that metabolites can provide a
groupwise separation of PD and control using metabolites

consistent with known involvement of oxidative stress,
mitochondrial dysfunction and perturbed tyrosine metabolism in
PD despite being limited to a relatively small number of
included subjects.

Additional metabolomic studies have been conducted in an
attempt to identify biomarkers that may distinguish normal
controls from PD patients. Two studies investigating metabolic
signatures of idiopathic PD [25] and LRRK2-related PD [26]
both reported reduced plasma levels of uric acid. Our results
did not corroborate this result in that the ion that matched to

Figure 3.  Preservation matrix reveals subtle metabolic differences in slow vs.  rapid PD.
Summary plot of consensus eigengene networks and their differential analysis comparing slow versus rapid progression PD. The
eigengene networks in the two sets, slow (A) and rapid (B) are shown as heatmaps. In the heatmaps, red denotes high adjacency
(positive correlation) and green denotes low adjacency (negative correlation). The Preservation heatmap (C) shows the preservation
network, defined as one minus the absolute difference of the eigengene networks in the two data sets. The barplot (D) shows the
mean preservation of adjacency for each of the eigengenes to all other eigengenes; in other words, the barplot depicts the column
means of the preservation heatmap.
doi: 10.1371/journal.pone.0077629.g003
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uric acid in the MMCD and Metlin databases [m/z 169.0.347 (M
+H)] did not differ between PD and controls or between slow
and rapid progressors. This result may be due to the differing
methods of sample preparation, sample analysis, extraction of
mass spectral data and/or characteristics of the study cohort.
Future large scale metabolomics studies will attempt to
address this discrepancy as well as confirm the results
described here.

FDR analyses yielded a list of 35 m/z that differed between
the two subgroups of PD, slow and rapid progression, and
included a polyamine metabolite. N8-acetylspermidine was
also found to be one of the significant metabolites that
differentiate these two subgroups using PCLS analysis.
Polyamines (PA) are an important and ubiquitous group of
molecules that includes putrescine, spermidine, and spermine.
PA modulate cell growth, proliferation and, due to their positive
charge, can interact with DNA and RNA. These interactions
can, in turn, alter protein and nucleic acid synthesis, and gene
expression [27]. The main sources of PA include dietary intake,
cellular synthesis and microbial synthesis in the gut [28]. Figure
5 presents a schematic describing PA metabolism. PA
acetylation is an important mechanism by which the cell can
modulate PA levels and function [29]. Spermidine contains two
sites that can be acetylated, N1 and N8. Acetylation at the N1
position is involved in the interconversion between spermidine

Figure 4.  Distinguishing metabolite, N8-acetylspermidine,
is increased in rapid PD.  Ion intensity results for the
metabolite with m/z of 188.175 (A). Quantification of serum N8-
acetylspermidine (m/z 188.175) for control, slow and rapid PD
(B). The mean concentration of this metabolite was found to
differ significantly between Control and rapid progressors (one-
way ANOVA, Tukey post test, *P<0.0.5).
doi: 10.1371/journal.pone.0077629.g004

and putriscine. N8 acetylation is reported to occur by a nuclear
acetyl transferase that is suspected to be involved in
epigenomic processes. N8-acetylation of spermidine results in
the removal of spermidine from the nucleus and excretion from
the cell and eventually the body; an increase in excretion is a
mechanism by which the cell can control the intracellular PA
concentration [27,30]. It is hypothesized that this nuclear-to-
extracellular translocation could be involved in the regulation of
cell growth by affecting histone acetylation and having an
antiapoptotic effect [30]. Alterations in PA metabolism have
been implicated in the mechanism of neuronal degeneration
[31] and elevated N8-acetylspermidine levels have been
detected in the cerebral spinal fluid samples of PD patients
compared to controls suggesting that PA metabolites may
provide valid biomarkers for the disease [32]. Another
metabolomic study [24] reported an increased level of a
“biogenic amine” in the urine of PD patients; however, the
identity of this amine was not described. As mentioned
previously, N8-acetylspermidine is an excretion product;
increases in PA excretion are associated with injury, including
traumatic brain injury, as well as neuroinflammation and
neuronal cell death [31,33,34]. Additionally, N8-
acetylspermidine was shown to increase dopamine production
in PC12 cells [35]. The increase in circulating N8-
acetylspermidine seen in fast progressing PD cases compared
to slower progressing cases early in disease may represent a
cellular response to neuroinflammation or may be an attempt to
increase dopamine production in existing neurons.

In vitro studies have shown that spermidine can interact with
α-synuclein (α-syn), thereby enhancing α-syn misfolding and
aggregation [36]. It has also been shown that α-syn genetic
variants can predict fast motor symptom progression in patients
with idiopathic PD [13]. In addition to the potential effects on
neuroinflammation or dopamine metabolism, the enhanced
elimination of spermidine in the N8-acetyl form observed in the
rapidly progressing patients may represent a protective
response exhibited by neurons in an attempt to alleviate or
prevent α-syn misfolding and aggregation. This particular
mechanism requires confirmation in an in vivo model.

Although speculative, altered PA metabolism may be linked
to changes indicating lower lysine and altered acylcarnitine
metabolism observed in the PCLS analysis comparing slow
and rapid progression and in the list of m/z correlated with N8-
acetylspermidine. Lysine is a precursor for carnitine, which is
required for fatty acid transport into mitochondria for
metabolism. Mitochondrial dysfunction has been associated
with PD, and several studies of chronic and age-related
diseases show altered acylcarnitine metabolism.

Our pilot study demonstrates that high resolution mass
spectrometry-based metabolic profiling can distinguish slow
progressing PD from rapid and suggests alterations in PA
metabolism early in disease may be related to rate of motor
symptom progression. Additional studies with larger cohorts will
be needed to independently test these concepts. It should be
acknowledged that a large percentage of the ions detected
corresponded to metabolites that were not present in the
current metabolomics databases. Conducting metabolome-
wide association studies (MWAS) may also provide additional

Metabolomics of Slow and Rapid PD

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e77629



insight regarding a disease mechanism, even for the
metabolites that were not putatively identified [37]. For
example, further correlation analyses can reveal previously
unknown associations between known and unknown
metabolites and metabolic processes. Additionally, metabolic
tracer studies are needed to determine whether observed
changes in metabolite abundance are related to a metabolic
switch in use of PA precursors, enhanced nuclear metabolism
of PA or impaired metabolic clearance of PA. Such knowledge
could provide a foundation for strategies to identify patients at
risk of rapid motor progression and interventions to delay or
slow progression in all PD patients.

Supporting Information

Table S1.  List of Parkinson’s disease medications taken
by study participants.
(XLSX)

Table S2.  Additional demographic characteristics of the
study population.
(XLSX)

Table S3.  m/z found to be statistically significant between
control and all PD patients using FDR (q=0.2).

Figure 5.  Scehemtic of polyamine metabolism.  1. ornithine decarboxylase; 2. spermidine synthetase; 3. spermine synthetase;
4. spermidine/spermine acetyl transferase; 5. polyamine oxidase; 6. N8-acetylspermidine acetyl transferase. This schematic was
adapted from Moinard et al. (2005).
doi: 10.1371/journal.pone.0077629.g005

Metabolomics of Slow and Rapid PD

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e77629



(XLSX)

Table S4.  m/z found by PCLS to distinguish control from
all PD patients.
(XLSX)

Table S5.  m/z found to be statistically significant between
slow and rapid progressors by FDR (q=0.2).
(XLSX)

Table S6.  m/z found by PCLS to distinguish slow from
rapid progressors.
(XLSX)

Table S7.  m/z highly correlated to N8-acetylspermidine.

(XLSX)

Figure S1.  Venn diagram displaying the overlap between
FDR and PCLS analyses comparing slow and rapid
progressors.
(TIF)
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