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Abstract: Previously, we have reported that the intake of oyster extract (OE), prepared from Pacific
oysters (Crassostrea gigas), can attenuate symptoms of dextran sulfate sodium (DSS)-induced acute
experimental colitis in mice. Herein, we aimed to evaluate whether OE intake ameliorates chronic
experimental colitis induced by repeated DSS administration in mice. Male C57BL/6J (4-week-old)
mice were fed either the standard diet AIN93G (control diet) or the control diet containing 5.0%
(w/w) OE (OE diet). After 21 days of diet feeding, chronic experimental colitis was induced by three
cycles of 2.0% (w/w) DSS solution administration (5 days), followed by distilled water (5 days). Mice
fed OE alleviated the shortened colonic length, increased the relative weight of the spleen, colonic
histopathological score (regeneration), and blood in the stool score compared with mice fed control
diet. A tendency to improve the α-diversity of fecal microbiota, which was exacerbated by colitis, was
observed in mice fed OE. Correlation analysis suggested that the anti-colitis effect of OE intake could
be related to the valeric acid content and relative abundances of Ruminococcus and Enterococcus in the
feces. In conclusion, OE could ameliorate DSS-induced chronic experimental colitis by improving the
gut environment, including the microbiota community and SCFA composition.

Keywords: oyster extract; Pacific oysters; Crassostrea gigas; chronic experimental colitis; microbiota;
short-chain fatty acid

1. Introduction

Oysters are among the most widely distributed marine species worldwide. For exam-
ple, Pacific oysters (Crassostrea gigas) and rock oysters (Crassostrea nippona) can be found
in Japan. Oysters are consumed in several countries, either raw, grilled, broiled, steamed,
or fried. Oysters have long been called the “milk of the sea”, owing to their rich content
of polysaccharides, proteins, vitamins, and minerals [1]. Importantly, oysters have high
potential as functional foods, given their high nutritional value and health benefits. Health-
promoting components in oysters include polysaccharides, taurine, polypeptides, and
polyphenols, which can be concentrated using various extraction methods [2]. Previous
studies have reported that the intake of oyster extract (OE) can afford numerous health ben-
efits, such as antioxidant [3], antimicrobial [4], antitumor [5], antiplatelet aggregation [6],
and antihyperglycemic effects [7]. We have previously reported the health-promoting func-
tions of OE prepared from C. gigas, mainly composed of polysaccharides, taurine, proteins,
amino acids, and zinc, which inhibits the initiator action of carcinogens [8], reduces the
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hepatic cholesterol content [9], and accelerates the recovery of cell function in proximal
tubular epithelial cells following nephrotoxicity [10]. Therefore, OE prepared from C. gigas
has received considerable attention as a potential functional food.

The gut environment, including the microbiota community and bacterial metabolites,
is potently influenced by host conditions and, in turn, impacts the host metabolism, immu-
nity, and endocrine functions [11]. The gut environment is influenced by food components,
particularly fiber, resistant starch, and resistant protein [12]. In contrast, we have reported
that dietary OE can affect the gut microbiota community and bacterial metabolites such as
short-chain fatty acids (SCFA) in rodent models [13,14]. On examining the effect of OE intake
on inflammatory bowel disease (IBD), a well-known underlying cause of gut environment
deterioration, OE, could alleviate symptoms of acute experimental colitis in a dextran
sulfate sodium (DSS)-induced mouse model, partly by improving the gut environment, in-
cluding the microbiota community (composition and diversity) and SCFA composition [15].
However, human IBD is a chronic symptom of this relapsing and remitting state, and an
acute experimental colitis mouse model does not comprehensively simulate human IBD.
Accordingly, a more appropriate method has been developed to establish chronic experi-
mental colitis in mice by administering DSS repeatedly, which would more closely mimic
human IBD symptoms [16,17]. Therefore, it would be beneficial to evaluate OE in both
chronic and acute experimental colitis models to comprehensively clarify the anti-colitis
effects. Herein, we examined the effects of OE prepared from C. gigas intake on colitis
symptoms, fecal microbiota, and SCFA composition in a chronic experimental colitis mouse
model induced by repeated DSS administration.

2. Materials and Methods
2.1. Preparation and Nutrients Composition of OE

The preparation of OE from C. gigas, as well as its nutrient composition, have been
described in our previous report [15].

2.2. Approval for Animal Experiments

The experimental animal protocol was reviewed and approved by the Animal Ethics
Committee of Kansai University (approval no. 1918, 11 May 2019). The humane endpoint
was set as body weight (BW) reduction of 20% or more when compared with BW at initiating
DSS administration.

2.3. Animal Diet and Care

Table S1 presents the composition of the experimental diet based on AIN-93G [18], with
equal amounts of carbohydrate (645 g/kg), protein (200 g/kg), fat (70 g/kg), and sodium
chloride (4.12 g/kg). As reported in our previous studies [9,14,15], the OE concentration
in the experimental diet was set at 5.0% (w/w). Mice were housed in individual breeding
cages (cat. KN-60105-T; Natsume Seisakusho Co., Ltd., Tokyo, Japan) and maintained in
air-conditioned rooms with free access to water and the experimental diets.

2.4. Animal Experiment

Herein, we employed male C57BL/6J mice (4-week-old) purchased from Japan SLC,
Inc. (Hamamatsu, Japan). Mice were brought to the breeding room at Kansai University
and then acclimated for seven days while receiving the control diet. Experimental mice
were divided into three groups with similar mean BW and standard deviation (control
[n = 6], control + DSS [n = 8], and OE + DSS [n = 8] groups). The control and control + DSS
groups were fed the control diet, whereas the OE + DSS group received the OE diet. Food
and water intake and BW were measured every two days.

Chronic experimental colitis was induced according to the schedule presented in
Figure S1, based on a previous report [17]. After three weeks of the experimental diet feed-
ing, DSS was administered to induce chronic experimental colitis. Mice were administered
a 2.0% (w/w) DSS (MP Biomedicals, Irvine, CA, USA) solution for 5 days, followed by
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distilled water for 5 days (washout period); this cycle was repeated three times. The disease
activity index (DAI) scores [19] were assessed every two days at 10:00 AM for a 30-day
period, from day 0. No mice warranted the application of humane endpoints.

On day 30, feces remaining in each mouse cage were collected. Under non-fasting
conditions, blood collection (9:00–12:00) was performed in isoflurane-anesthetized mice,
and euthanasia was induced by excessive isoflurane inhalation. Serum was obtained by
centrifugation (2000× g for 15 min). The spleen, liver, kidneys, perirenal white adipose
tissue, small intestine, cecum, and colon were excised and then weighed. The colon length
was also measured. The distal colon was washed with cold saline to remove any colon
contents and stored in Gene Keeper RNA & DNA stabilization solution (cat. 319-08901;
Nippon Gene Co., Ltd., Tokyo, Japan) and 10% formalin solution for Tissue Fixation
(Fujifilm Wako Pure Chemicals, Osaka, Japan), respectively. Hematoxylin and eosin (HE)-
stained distal colon specimens were prepared and scored for inflammation, crypt damage,
regeneration, and extent, as previously reported [15,20].

2.5. Analysis of Serum Biochemical Parameters

Serum biochemical parameters (total protein, albumin, aspartate aminotransferase, ala-
nine aminotransferase, creatine phosphokinase, lactate dehydrogenase, urea nitrogen, creati-
nine, triglyceride, total cholesterol, high-density lipoprotein cholesterol, and phospholipids)
were measured using a commercial service (Japan Medical Laboratory, Kaizuka, Japan).

2.6. Analysis of Gene Expression

Expression levels of tumor necrosis factor (Tnf ) α, interleukin (Il) 1β, and Il6 in the
mucosa of the distal colon were measured by quantitative PCR, as described in our previous
report [21].

2.7. Analysis of Fecal SCFA Compositions

Fecal SCFA composition was measured using a gas chromatography-flame ionization
detector (GC-2014, Shimadzu Co., Kyoto, Japan), as described in our previous report [22].

2.8. Analysis of 16S rRNA Amplicon Sequence

Six fecal samples from all animals in the control group, control + DSS, and OE + DSS
groups, respectively, were randomly selected, and total DNA was extracted using ISOSPIN
Fecal DNA (cat. 315-08621; Nippon Gene Co., Ltd.). The microbiota community (com-
position and diversity) were analyzed by 16S rRNA amplicon sequencing using a next-
generation sequencer Ion PGMTM workflow (Thermo Fisher Scientific Inc., Waltham, MA,
USA) following our previous report [15]. β-Diversity and linear discriminant analysis
(LDA) effect size (LEfSe) [23] were visualized using ClustVis (https://biit.cs.ut.ee/clustvis/
(accessed on 12 April 2022) and Galaxy (http://huttenhower.sph.harvard.edu/galaxy/
(accessed on 13 April 2022).

2.9. Statistical Analysis of Data

Data are presented as the mean values and standard errors of the mean. We examined
statistically significant differences between the control and control + DSS groups and
between the control + DSS and OE + DSS groups. Parametric and nonparametric data
were subjected to one-way analysis of variance followed by the Holm–Sidak multiple
comparison test and Kruskal–Wallis test followed by the uncorrected Dunn test for sta-
tistical difference, respectively. This study did not compare the control and OE + DSS
group. This is because there are two factors (DSS administration and OE intake) between
the groups, and comparing these two groups would not reveal the factor responsible for
the difference. A p-value < 0.01, p-value < 0.05, and 0.05 ≤ p-value < 0.10 were considered
statistically significant and statistical tendency, respectively. Data analyses were conducted
using GraphPad Prism software (version 7.0d; GraphPad Software, San Diego, CA, USA)
on an iMac (Mid 2014, Apple Inc., Cupertino, CA, USA).

https://biit.cs.ut.ee/clustvis/
http://huttenhower.sph.harvard.edu/galaxy/
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3. Results
3.1. Growth Parameters, Change of BW, Colon Length, and Organs Weight

The examined groups exhibited no significant differences in food and water intake
during the experimental period and DSS solution intake during the DSS administration
period (Table S2). Figure 1 presents the indicators of chronic experimental colitis severity
(changes in BW, colon length, and relative weight of the spleen). Following DSS adminis-
tration (the control + DSS and OE + DSS groups), BW decreased on day 6, subsequently
increasing steadily. There was no change in BW between the DSS administration groups.
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Figure 1. Indicators of chronic experimental colitis severity induced by dextran sulfate sodium
(DSS). (A) Changes in body weight (BW). (B) Representative colon images. (C,D) Colon length
and relative spleen weight in mice at day 30 after DSS administration. Results are presented as the
mean ± standard error of the mean (n = 6 for the control group and n = 8 for groups the control +
DSS and oyster extract (OE) + DSS groups). ** p < 0.01 and # p < 0.05.

Shortened colon length and increased relative spleen weight were used as biological
markers of DSS-induced colitis severity [24]. DSS administration altered these two markers
in the direction of worsening colitis, and OE intake significantly alleviated these DSS-
exacerbated markers (Figure 1C,D). In contrast, DSS administration influenced the relative
weight of the liver, small intestine, cecum, and colon, but not that of the kidney and
perirenal white adipose tissue (Figure S2). The relative organ weights did not significantly
differ between the control + DSS and OE + DSS groups.

3.2. Change in DAI Scores

Figure 2 presents changes in BW loss, blood in the stool, stool consistency, and DAI
scores. The DSS administration groups displayed increased blood in the stool, stool
consistency, and DAI scores from day 2 (Figure 2B–D). In addition, the area under the curve
(AUC) of BW loss, stool consistency, blood in the stool, and DAI scores were significantly
higher in the control + DSS group than in the control group (Figure 2E–H). The OE + DSS
group had a significantly lower blood in the stool score than the control + DSS group on
day 16 (Figure 1B). However, the AUC of the OE + DSS group did not significantly differ
from that of the control + DSS group (Figure 2E–H).

3.3. Serum Biochemical Parameters

No significant differences in serum biochemical parameters (total protein, albumin,
alanine aminotransferase, creatine phosphokinase, lactate dehydrogenase, urea nitrogen,
creatinine, triglyceride, phospholipids, total cholesterol, and high-density lipoprotein
cholesterol) were detected between examined groups (Table S3).
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Figure 2. Disease activity index (DAI) scores. (A–D) Changes in body weight (BW) loss, blood in the
stool, stool consistency, and DAI score during dextran sulfate sodium (DSS) administration. DAI score
is the sum of BW loss, blood in the stool, and stool consistency scores. (E–H) Area under the curve
(AUC) of BW loss, blood in the stool, stool consistency, and DAI score during DSS administration.
Results are presented as the mean ± standard error of the mean (n = 6 for the control group and
n = 8 for groups the control + DSS and oyster extract (OE) + DSS groups). * p < 0.05, ** p < 0.01, and
# p < 0.05.

3.4. Histopathological Damage in the Colonic Tissue

Figure 3 presents the histopathological grading of colonic tissue specimens. DSS
administration increased histopathological damage (inflammation, crypt damage, regen-
eration, and extent) in colonic tissues (Figure 3B–E). Compared with the control + DSS
group, the OE + DSS group exhibited significantly reduced regeneration scores (p = 0.03,
Figure 3D).

3.5. Gene Expression Levels in the Colonic Mucosa

Figure 4 presents the mRNA expression levels of Tnfα, Il1β, and Il6. DSS adminis-
tration significantly increased Tnfα expression (Figure 4A). In contrast, expression levels
of Il1β, Il6, and Tnfα in the OE + DSS group did not significantly differ from those in the
control + DSS group.
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Figure 3. Histopathological grading of colonic tissue. (A) Representative histopathological sections
(scale bar = 250 µm [10×]). (B–E) Histopathological grading scores of inflammation, crypt damage,
regeneration, and extent in colonic tissues at day 30 after dextran sulfate sodium (DSS) administration.
Results are presented as the mean ± standard error of the mean (n = 6 for the control group and
n = 8 for groups the control + DSS and oyster extract (OE) + DSS groups). ** p < 0.01 and # p < 0.05.
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Figure 4. Expression levels of inflammation-related genes in colonic mucosa. (A–C) Expression levels
of tumor necrosis factor (Tnf) α, interleukin (Il) 1β, and Il6 in the colonic mucosa at day 30 after
dextran sulfate sodium (DSS) administration. Results are presented as the mean ± standard error
of the mean (n = 6 for the control group and n = 8 for groups the control + DSS and oyster extract
(OE) + DSS groups). * p < 0.05.
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3.6. Fecal SCFA Contents and Compositions

Figure 5 represents the fecal SCFA content and composition. DSS administration signif-
icantly increased the total SCFA and individual SCFA contents (acetic acid, propionic acid,
isobutyric acid, butyric acid, and isovaleric acid) in the feces (Figure 5A,B), accompanied
by a significant decrease in the relative fecal content of valeric acid (Figure 5C). The fecal
acetic acid content tended to be lower in the OE + DSS group than in the control + DSS
group (p = 0.07, Figure 5A).
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Figure 5. Fecal short-chain fatty acids (SCFA) compositions. (A,B) Fecal individual and total SCFA
contents. (C) Fecal relative content of SCFA. Results are presented as the mean ± standard error of
the mean (n = 6 for the control group and n = 8 for groups the control + dextran sulfate sodium (DSS)
and oyster extract (OE) + DSS groups). * p < 0.05, ** p < 0.01, and # p < 0.05.

3.7. Diversity and Composition of Fecal Microbiota

Figure 6 shows the structure and composition of fecal microbiota. After processing by
Ion Reporter (Thermo Fisher Scientific Inc.), the number of total reads (the control group:
179,787 ± 18,479, the control + DSS group: 187,456 ± 20,677, and the OE + DSS group:
161,965 ± 26,451) and valid reads (the control group: 110,369 ± 17,423, the control + DSS
group: 118,994 ± 17,998, and the OE + DSS group: 105,498 ± 20,893) did not significantly
differ between examined groups. The Chao-1 index showed no significant differences
between groups (Figure 6A). In contrast, OE intake restored the Simpson index, which
was reduced by DSS administration (Figure 6B). Moreover, DSS administration altered the
principal component analysis of bacterial communities (Figure 6C).
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Figure 6. Microbiota community (structure and composition). (A) Chao-1 index. (B) Simpson
index. (C) Principal component analysis of the bacterial genus community. (D,E,G–K) Relative
abundance of each bacteria. (F) Firmicutes/Bacteroidetes (F/B) ratio. Results are presented as the
mean ± standard error of the mean (n = 6 for all groups). * p < 0.05, ** p < 0.01, # p < 0.05, and ## p <
0.01. DSS, dextran sulfate sodium; OE, oyster extract.

Histograms of the relative abundances of bacterial phyla and genera in fecal speci-
mens are presented in Figure S3. At the phylum level, the control + DSS group showed
an increased relative abundance of Proteobacteria when compared with the control group
(Figure 6D), whereas OE intake significantly increased the relative abundance of Bac-
teroidetes when compared with the control +DSS group (Figure 6E). At the genus level,
DSS administration decreased the relative abundances of Bifidobacterium, [Ruminococcus],
and Ruminococcus (Figure 6H–J), and increased the relative abundance of Enterococcus
(Figure 6K). Compared with the control + DSS group, the OE + DSS group showed a signif-
icantly increased relative abundance of Ruminococcus (Figure 6G), tended to increase the
relative abundance of Bacteroides (Figure 6J), and tended to decrease the relative abundance
of Enterococcus (Figure 6K).

Figure 7 presents the LDA histogram scores and the LEfSe cladogram. Among the
examined groups, we identified 29 distinct taxa (from phylum to genus levels). Actinobac-
teria, Bacteroidetes, and Firmicutes phylotypes were markedly abundant in the control,
control + DSS, and OE + DSS groups at the phylum level, respectively.



Foods 2022, 11, 2032 9 of 15

Foods 2022, 11, x FOR PEER REVIEW 9 of 15 
 

 

the relative abundance of Bacteroides (Figure 6J), and tended to decrease the relative abun-

dance of Enterococcus (Figure 6K). 

Figure 7 presents the LDA histogram scores and the LEfSe cladogram. Among the 

examined groups, we identified 29 distinct taxa (from phylum to genus levels). Actino-

bacteria, Bacteroidetes, and Firmicutes phylotypes were markedly abundant in the con-

trol, control + DSS, and OE + DSS groups at the phylum level, respectively. 

 

Figure 7. Comparisons of fecal microbiota using the linear discriminant analysis effect size analysis. 

(A) Results. (B) Cladogram. Parameters: linear discriminant analysis scores log10 > 3 and p < 0.05. 

DSS, dextran sulfate sodium; OE, oyster extract. 

Figure 7. Comparisons of fecal microbiota using the linear discriminant analysis effect size analysis.
(A) Results. (B) Cladogram. Parameters: linear discriminant analysis scores log10 > 3 and p < 0.05.
DSS, dextran sulfate sodium; OE, oyster extract.

4. Discussion

To determine the potential of OE in treating symptoms of chronic experimental colitis,
we examined the effects of OE on colitis symptoms, gut microbiota community, and SCFA
in an experimental mouse model of chronic colitis induced by three repeated cycles of DSS
administration. In the histopathological evaluation of the colon (Figure 3A), we observed
mononuclear plasma cell infiltration [17] and locally thickened mucosa [16], characteristics
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of chronic experimental colitis mouse models. Repeated DSS administration phenotypically
demonstrated that a chronic experimental colitis mouse model was successfully established
in the present study. Compared with the control + DSS group, OE intake (the OE + DSS
group) could alleviate colonic length shortening, as well as increase in the relative spleen
weight, colonic histopathological scores (regeneration), and blood in the stool scores on day
16 (a DAI evaluation item). Previously, we reported that OE intake has an ameliorative effect
on acute experimental colitis induced by DSS administration [15]. These indicate that OE
intake ameliorates acute and chronic experimental colitis induced by DSS administration.

On the other hand, OE intake did not affect the expression of inflammation-related
genes in colonic mucosa (Figure 4), one of the indicators of the severity of colitis symptoms.
The mechanism by which DSS induces colitis is unknown but may be the result of damage
to the epithelial monolayer lining the colon and diffusion of inflammatory gut contents
(e.g., bacteria and their products) into the underlying tissue [25]. OE intake may not be
effective in preventing the diffusion of inflammatory gut contents into the underlying
tissues. On the other hand, relative spleen weight, an indirect indicator of the severity of
colitis symptoms, was significantly reduced by OE intake (Figure 1D). Since considerable
amounts of DSS penetrated from the gut is found in the spleen during the chronic phase of
DSS-induced colitis [26], it is believed that the immune response elicited by DSS increases
spleen weight. OE intake maintained gut barrier function and inhibited DSS penetration,
which led to the suppression of spleen weight gain. To clarify the effect of OE intake on the
maintenance of gut barrier function, it is necessary to examine the expression of gut tight
junction proteins such as claudin, occludin, and zonula occluden, and the translocation
of fluorescein isothiocyanate-labeled dextran into the blood. In addition, OE intake was
associated with lower regeneration score in colonic tissue (Figure 3D). Growth factors,
including intestinal epithelial cell-specific insulin-like growth factor 1 [27] and epidermal
growth factor [28], are known to promote epithelial cell regeneration. Recent studies
reported that the activation of transmembrane G protein-coupled receptor 5 (TGR5) by
bile acids can promote regeneration of the intestinal epithelium, which helps restore the
gut mucosal barrier following some disruption [29]. Taurine, which is also contained in
OE, has been reported to alter the ileum bile acid composition [30], and this alteration may
activate TGR5 and promote epithelial cell regeneration. To elucidate the mechanism by
which OE intake improves gut epithelial cell regeneration, the effects on growth factor and
TGR5 in the gut need to be examined.

Although the pathogenesis of IBD is complex, alterations in the gut microbiota commu-
nity and metabolites are among the most crucial findings related to IBD pathogenesis [31,32].
In particular, we aimed to examine the effects of OE on fecal microbiota and SCFA in a
chronic experimental colitis mouse model. Major gut SCFA, including acetic acid, propionic
acid, and butyric acid, are produced by gut bacteria-mediated fermentation of indigestible
polysaccharides and proteins, and they play a crucial role in maintaining the intestinal
environment [33]. In a previous study, the SCFA content in the colon and feces of mice with
colitis-induced by DSS was found to be reduced [34], whereas the fecal content of major
SCFA and their total content in the control + DSS group were elevated when compared with
the control group (Figure 5A,B). Previous reports have shown that patients with IBD exhibit
decreased colonic SCFA absorption and metabolism [35,36]. Moreover, acetic acid has been
used to induce colitis in a mouse model [37]. A strong correlation has been noted between
indicators of chronic experimental colitis severity and the fecal SCFA content (Figure S4A,B).
We presented similar results in our previous study [15]. Therefore, the elevated fecal acetic
acid and total SCFA contents in mice with chronic experimental colitis may be related to
colon dysfunction. Compared with the control + DSS group, the fecal acetic acid and total
SCFA content tended to decrease (Figure 5A,B). The OE-induced decrease in fecal SCFA
content indicates a reduction in chronic experimental colitis severity, potentially attributed
to colonic SCFA absorption by reducing the regeneration score (Figure 3D) and extension
of colon length (Figure 1C).
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Compared with the control group, the control + DSS group showed a decreased rel-
ative valeric acid content in fecal specimens, while OE intake increased the fecal content
and relative content of valeric acid (Figure 5A,C). Previous studies have reported that
nicotinamide, a form of vitamin B, restored the reduction in valeric acid in the large in-
testinal contents of mice with DSS-induced chronic colitis [38]. Unlike other major SCFA,
the physiological role of valeric acid in the colonic environment is poorly understood.
Although limited studies are available, valeric acid reportedly has beneficial effects on
the development of colitis by promoting intestinal epithelial cell proliferation [39] and
inhibiting histone deacetylases [40]. Moreover, there was a strong correlation between the
relative fecal content of valeric acid and the relative abundance of Turicibacter (Figures S5
and S6). A recent study has reported that, among Turicibacter species, Turicibacter bilis can
produce valeric acid while Turicibacter sanguinis cannot [41]. In the present study, the 16S
rRNA amplicon sequence could identify some species; for Turicibacter, identification was
only possible up to the genus level. When OE was administered to an acute experimental
colitis mouse model, no significant changes in fecal valeric acid content were observed [15].
However, the increase in fecal valeric acid content following OE intake was at least par-
tially responsible for the anti-colitis effect, and Turicibacter may be involved in valeric
acid production.

Patients with IBD [42] and experimental colitis mouse models [16] have shown re-
duced α-diversity in the gut microbiota community. The Chao-1 and Simpson indices
indicate the estimate of the total community and a combination of richness and even-
ness, respectively [43]. DSS administration decreased the Simpson index, whereas OE
intake tended to increase the Simpson index when compared with the control + DSS group
(p = 0.06, Figure 6B). Furthermore, OE intake could slightly restore the structure of the
fecal microbiota to that observed in normal mice (control group) (Figure 6C). Other food
components, including radish sprout [44] and shrimp peptide [45], have also been reported
to improve gut bacterial diversity reduced by DSS administration. Thus, OE intake may
improve α- and β-diversity, exacerbated by DSS administration.

Moreover, an increase in the relative abundance of Verrucomicrobia and Proteobacteria
has been reported in experimental colitis mouse models [46] and patients with IBD [47].
DSS administration enriched Proteobacteria (Figure 7) and increased their relative abun-
dance (Figure 6D). However, the relative abundance of Proteobacteria in the OE + DSS
group was unaltered when compared with that in the control + DSS group. Verrucomicro-
bia could not be detected in the 16S rRNA amplicon sequences employed in the present
study. The OE + DSS group exhibited a lower Firmicutes/Bacteroidetes (F/B) ratio, which
is used as an indicator of intestinal inflammation, owing to the higher relative abundance
of Bacteroidetes than the control + DSS group (Figure 6E,F). This result is consistent with
our previous study [15]. The F/B ratio was reportedly increased in a DSS-induced exper-
imental colitis mouse model [48]; however, the F/B ratio was unaltered with or without
DSS administration in the present study. However, whether the OE-mediated decrease
in the F/B ratio suppresses the development of DSS-induced chronic experimental colitis
remains unknown.

In the present study, the relative abundances of Bifidobacterium, [Ruminococcus] and
Ruminococcus were reduced in chronic experimental colitis (Figure 6H–J). These alterations
support data from previous studies examining dysbiosis in a DSS-induced experimental
colitis mouse model [49,50]. It has been reported that the relative abundance of Bifidobac-
terium, which was decreased by DSS administration, increased in mice fed conjugated
linoleic acid [51], but OE intake did not increase the relative abundance of Bifidobacterium.
The relative abundance of Ruminococcus was higher in the OE + DSS group than in the con-
trol + DSS group (Figure 6J). In addition, there was a strong correlation between the relative
abundance of Ruminococcus and the indicators of chronic experimental colitis (Figure S7).
Ruminococcus is a Gram-positive bacterium that contributes significantly to butyric acid
production in the colon by utilizing fiber and resistant starch [52]. However, OE intake
did not alter the fecal content or relative content of butyric acid (Figure 5A,C). Conversely,
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Enterococcus can induce pathological processes in IBD [53], and Enterococcus-generated
gelatinase can destroy the intestinal epithelium by activating protease-activated recep-
tor 2 [54]. Moreover, Enterococcus richness is positively associated with IBD severity in
young patients [55]. DSS administration increased the relative abundance of Enterococcus
(Figure 6K), whereas OE intake tended to reduce the relative abundance of Enterococcus
when compared with the control + DSS group (p = 0.07, Figure 6K). In this study, no ev-
idence was obtained to show how Ruminococcus and Enterococcus are associated in the
DSS-induced chronic experimental colitis mouse model. Of these results, the reduction of
relative Enterococcus abundance is consistent with our previous study [15]. However, OE
intake-mediated alterations in Ruminococcus and Enterococcus may play a crucial role in
ameliorating chronic experimental colitis.

The active components of OE that exert anti-colitis effects remain elusive. Glycogen is
a major component of OE (32.5 g/100 g). A previous study has shown that enzymatically
synthesized glycogen functions like resistant starch [56]. We have observed that glyco-
gen present in OE is resistant to digestive enzymes in a gastrointestinal digestion model
(T. Ishida, H. Matsui, Y. Matsuda, R. Hosomi, K. Fukunaga, and M. Yoshida, unpublished
data). It has been reported that glycogen intake markedly increased SCFA production
and improved the microbiota in the cecum [56]. Therefore, glycogen, which is rich in
OE, is thought to be the main component that exerted the anti-colitis effect of OE intake.
In contrast, OE is rich in taurine (5.5 g/100 g), which can reportedly prevent DSS-induced
colitis [57], and zinc (37.7 mg/100 g), which is reportedly associated with IBD [58]. We
speculate that the anti-colitis effect mediated by OE intake may not be attributed to a single
component but rather to the combined effects of several components.

5. Conclusions

Herein, we demonstrated that OE intake ameliorates the symptoms of chronic ex-
perimental colitis induced by repeated administration of DSS, in part by improving the
gut microbiota community and fecal SCFA composition. Therefore, OE intake could be
used in supplements and functional food materials to prevent and improve colitis. The
observed results warrant further clinical studies to establish OE intake as a dietary strategy
to improve the colonic environment.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/foods11142032/s1, Figure S1: Schematic diagram illustrating the
induction of chronic experimental colitis symptoms; Figure S2: Relative weights of organs, Figure S3:
Relative abundance of fecal bacterial phyla and genera; Figure S4: Heatmap with Spearman’s
correlation coefficient between indicators of chronic experimental colitis severity and fecal short-
chain fatty acids (SCFA); Figure S5: Heatmap with Spearman’s correlation coefficient between the
relative content of each short-chain fatty acids (SCFA) and bacteria in feces; Figure S6: Relationship
between the relative fecal content of valeric acid and relative abundance of Turicibacter; Figure S7:
Heatmap with Spearman’s correlation coefficient between the indicators of chronic experimental
colitis severity and relative abundance of bacteria in feces; Table S1: Experimental diet composition;
Table S2: Growth parameters; Table S3: Serum biochemical parameters.
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