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Abstract: Background: Fine particulate matters with aerodynamic diameters smaller than
2.5 micrometers (PM2.5) have been a critical environmental problem in China due to the rapid
road vehicle growth in recent years. To date, most methods available to estimate traffic contributions
to ambient PM2.5 concentration are often hampered by the need for collecting data on traffic
volume, vehicle type and emission profile. Objective: To develop a simplified and indirect method
to estimate the contribution of traffic to PM2.5 concentration in Beijing, China. Methods: Hourly
PM2.5 concentration data, daily meteorological data and geographic information were collected at
35 air quality monitoring (AQM) stations in Beijing between 2013 and 2014. Based on the PM2.5

concentrations of different AQM station types, a two-stage method comprising a dispersion model
and generalized additive mixed model (GAMM) was developed to estimate separately the traffic and
non-traffic contributions to daily PM2.5 concentration. The geographical trend of PM2.5 concentrations
was investigated using generalized linear mixed model. The temporal trend of PM2.5 and non-linear
relationship between PM2.5 and meteorological conditions were assessed using GAMM. Results:
The medians of daily PM2.5 concentrations during 2013–2014 at 35 AQM stations in Beijing ranged
from 40 to 92 µg/m3. There was a significant increasing trend of PM2.5 concentration from north
to south. The contributions of road traffic to daily PM2.5 concentrations ranged from 17.2% to
37.3% with an average 30%. The greatest contribution was found at AQM stations near busy roads.
On average, the contribution of road traffic at urban stations was 14% higher than that at rural stations.
Conclusions: Traffic emissions account for a substantial share of daily total PM2.5 concentrations in
Beijing. Our two-stage method is a useful and convenient tool in ecological and epidemiological
studies to estimate the traffic contribution to PM2.5 concentrations when there is limited information
on vehicle number and types and emission profile.

Keywords: PM2.5 concentration; road traffic contribution; atmospheric dispersion model; generalized
additive mixed model

Int. J. Environ. Res. Public Health 2016, 13, 124; doi:10.3390/ijerph13010124 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2016, 13, 124 2 of 19

1. Introduction

According to a growing body of epidemiological evidence traffic-related air pollution has been
shown to have adverse health impacts. Fine particulate matters with aerodynamic diameters smaller
than 2.5 micrometers (PM2.5) pose great public health hazards, including higher risks of respiratory
diseases, impaired lung function, asthma attacks, cardiovascular diseases, and potentially also
premature death [1].

The particulates generated from combustion are more harmful than those generated from other
processes, and traffic emissions are estimated to account for up to 50% of combustion-generated
particulates in urban areas in developing countries [2]. According to the Ministry of Environmental
Protection of China, traffic emissions have become the main source of air pollution in Beijing [3].
Among all air pollutants, PM2.5 is of special importance in China due to the rapidly growing number
of road vehicles in recent years. By collecting and analyzing aerosol samples of PM2.5 and PM10 both
in summer and winter seasons at different traffic, industrial and residential areas in Beijing, a multisite
study found that industrial and motor vehicle emissions, together with coal burning, were the major
contributors to the air-borne particulate pollution in Beijing [4].

Although the Beijing Environmental Protection Bureau started monitoring air pollution in 1984,
monitoring of PM2.5 only started in 2006. Prior to that, PM2.5 was mainly used for air pollution
research purposes [5]. As a result of increasing demand from the public, since October 2012, Beijing
has increased its number of fixed air quality monitoring (AQM) stations from 27 to 35 across the entire
municipal area. In addition to carbon dioxide, sulfur dioxide, nitrogen dioxide, ozone and PM10, PM2.5

has also been included in the air quality evaluations of these AQM stations. A study found that, while
burning of coal for power plants is a major source of air pollution across China, vehicle emissions are
one of the biggest sources of PM2.5 in Beijing, with greater impact than soil dust, fossil fuel combustion,
biomass burning and some industrial sources [6]. Although previous studies have clearly shown that
the contribution of traffic emissions to total air pollution varies largely with time and space, they
were unable to characterize the spatiotemporal features of the traffic-related PM2.5 because of limited
information on location and time period for air sample collection [5].

Chemical mass balanced receptor models and source-oriented chemical transport models have
been used to estimate the contributions of various sources to PM2.5, but most of them require the
knowledge of the chemical profile of both the emissions of the sources and the air samples of the
receptors (i.e., the impacted locations) [7,8]. Although other models such as principal component and
factor analyses do not require a priori knowledge of the source profile, application of these models
yielded controversial results. For example, the estimated motor-vehicle contribution to PM2.5 ranged
from 6% in Beijing, China to 53% in Barcelona, Spain [9].

Although traffic emission is the principal source of intra-urban concentration of PM2.5, one reason
that the direct measurement of motor-vehicle emission may not be feasible in epidemiological studies
is that it is usually not possible to track all the vehicles and measure corresponding components
of the traffic-pollutant mix in the whole study area [10]. As a result, different surrogates of
traffic-related pollution have been used to assess the contribution of road traffic to ambient air
pollution. In epidemiological studies, the commonly used surrogate models include geostatistical
interpolation [11], land-use regression [12], dispersion [13] and hybrid [14] models. Hybrid models
combine personal activity of residents in the study area and exposure data, and incorporate various
measurements, therefore better quantify the contribution of traffic on air pollution, against a
background concentration of specific regions. However, none of the models has an ideal surrogate
to access the emissions from all sources over time and space, posing a significant challenge in
disentangling the contribution of road traffic from other sources.

To improve the assessment of traffic-related contributions to PM2.5, a promising method is the
deployment of a large number of AQM stations in places where concentrations of PM2.5 are expected to
be highly variable, and with available information on temporal and spatial factors [15]. The intensive
air quality data that we collected from 35 AQM stations in Beijing, one of the most populous cities in
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the world, between 2013 and 2014, provided us a unique opportunity to achieve this purpose. In our
paper, we presented a two-stage method using dispersion model and generalized additive mixed
model (GAMM) to estimate the contribution of road traffic to PM2.5 concentrations in Beijing. We used
different types of the AQM stations (described in Material and Methods section) to distinguish the
emission sources of PM2.5, adjusted for the location of these stations, traffic density and meteorological
conditions. In the first stage, a Community Multi-scale Air Quality (CMAQ) based model was built to
estimate the contribution of road vehicle emission to PM2.5 as a result of dispersion and decay in the
areas represented by background stations [16]. In the second stage, a GAMM with meteorological and
geographic data was developed to estimate the non-traffic contribution to PM 2.5 at the rest stations.
The traffic contribution to PM2.5 was then calculated by subtracting the total PM2.5 concentration with
non-traffic concentration. The study was approved by the Institutional Review Board of Karolinska
Institutet, Sweden.

2. Materials and Methods

2.1. Data Collection

Hourly concentrations of PM2.5 were collected from 35 AQM stations in Beijing from 1 January
2013 to 31 December 2014. The AQM stations were installed by the Beijing Municipal Environmental
Protection Bureau. The aim of these stations was to assess the air quality under different conditions
from the most polluted area with high density of traffic to the least polluted rural areas in Beijing.
Thus, air pollution concentrations of these stations vary largely from each other due to the variation of
their distances to pollution sources, e.g., traffic emissions and industrial emissions. The distribution of
the AQM stations was shown in Figure 1. These stations scattered from the very south to the north of
Beijing, from the central urban areas to countryside, covering most of the spatial regions and typical
land types. Geographic information of these stations was attained from College of Resources and
Environment, University of Chinese Academy of Sciences. According to the Ambient Air Quality
Standards and Technical Regulation on Ambient Quality Index of China, 24-hour concentrations
of PM2.5 and individual air quality index (IAQI) were reported hourly from these stations [17].
The air quality has been classified by Chinese Environmental Protection Agency into six categories,
i.e., “Good”, ”Moderate”, ”Unhealthy for Sensitive Groups”, “Unhealthy”, ”Very Unhealthy” and
“Hazardous” [17,18]. Duplicated records were first removed from the dataset, and the records with
empty or 0 value were treated as missing. The missing rate was 9% and no apparent trend was
found for the missing values. In total, 553,877 PM2.5 concentration records were collected from the
35 monitoring stations in 730 days in 2013 and 2014. Values greater than 10 times the 75% percentile or
smaller than one-tenth of the 25% percentile of all the records were treated as abnormal values and
only included in sensitivity analyses.

Daily meteorological data were collected from National Meteorological Information Center of
China in the same period, including air temperature, atmospheric pressure, wind speed, wind direction,
volume of rainfall and hours of daylight. Five-minute traffic volume and speed data per 30 minutes for
four days from eight crossroads in core districts in Beijing were collected by the College of Resources
and Environment, University of Chinese Academy of Sciences. The traffic density of the monitoring
stations in these districts was characterized by an inverse function of mean road vehicle speed on the
main roads [19].
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Yongdingmen, which are less than 10 meters away from the main roads of Beijing, where the PM2.5 
concentration mainly derives from traffic emissions. The two industrial stations include Liulihe and 
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2.2. Fitting Spatial Trend of PM2.5 Concentration

Historical data and previous findings showed that air pollution was often heavier in the southern
part than the northern part of Beijing [20], therefore a three-level generalized linear mixed model
(GLMM) was fitted between the geographical Y coordinates (i.e., distance from an AQM station to
the southern boundary of Beijing ) of the AQM stations in a rectangular coordinate system and the
log transformed PM2.5 concentrations (logPM2.5). The Y coordinates were used as an independent
variable, whereas calendar days and hours of each calendar day were include as random effects in
the model.

Because background stations are less but still affected by traffic pollution, and non-traffic portion
of PM2.5 pollutants is more geographically stable, fitting a regional non-traffic trend in the study area
that takes advantage of the background stations is plausible. The final traffic contribution could be
calculated by subtracting the non-traffic portion from the total observed concentration. The two-stage
method is described in detail below:

2.2.1. Stage 1: Estimating the Traffic Contribution to PM2.5 Concentration at Background Stations
Using Dispersion Model

Based on the sources of air pollution, we divided the 35 AQM stations into four groups: six
background stations, five traffic stations, two industrial stations and 22 other stations. The six
background stations are located at Dingling, Yungang, Beibuxinqu, Zhiwuyuan, Miyunshuiku and
Badaling, located far away from both urban areas and industrial areas and had few direct traffic and
industrial emissions. The air pollution at these stations is mainly from dispersed pollutants, and the
PM2.5 concentration of these stations can be regarded as the background pollution concentration in
each region. The five traffic stations include Dongsihuan, Nansanhuan, Qianmen, Xizhimenbei and
Yongdingmen, which are less than 10 meters away from the main roads of Beijing, where the PM2.5
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concentration mainly derives from traffic emissions. The two industrial stations include Liulihe and
Yufa which are located at the southern boundary between Beijing and Heibei Province where the PM2.5

concentration is mainly caused by local industrial emission and dispersion. For traffic stations, the
PM2.5 pollutants were mainly from vehicle emissions. The total PM2.5 concentration of the five stations
was considered as a surrogate of the PM2.5 from traffic emissions. Two industrial stations close to
the southern boundary of Beijing are located near to an industrial area of Hebei Province. The PM2.5

concentrations of these two stations are therefore treated as a surrogate of the industrial emissions.
Based on the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, backward

trajectories were used to track the transport corridors that are regarded as a “region of influence”
i.e., the five traffic stations and two industrial stations in our study [21]. Both traffic and industrial
stations were considered as PM2.5 sources of the six background stations because no other major
PM2.5 contributors were found near the background stations. Because dispersion processes are
largely additive, PM2.5 pollution at every station is supposed to be consisted of remaining from
daily deposition and dispersion from different emission source points, i.e., traffic, factories and other
sources (such as household cooking and coal burning) [22,23]. For the background stations, PM2.5

contribution other than traffic and industrial dispersed is considered as station-specific background
PM2.5 concentration.

Since distance also played an important role for pollutant dispersion, the inversed value of
distance from source stations (i.e., traffic stations and industrial stations) to the receptor stations
(i.e., background station) was put as a weight of dispersion factor.

According to the Community Multiscale Air Quality (CMAQ) model, all emissions are assumed
to be instantaneously well-mixed and have their own atmospheric lifetime [24]. Therefore a strong
daily dependence is expected on consecutive days. We assume that in the condition of wind, PM2.5 can
partly linger for at least one day [25]. Analogously, we built a dispersion model as shown in model
(1), in which the PM2.5 concentration was presented as a summation of traffic dispersion, industrial
dispersion and the remaining from daily deposition. Because the pollution carried by wind had a
strong positive relationship with the wind flux, a power function was used to fit dispersion effect. The
daily deposition of pollution with interaction of wind was fitted by the exponential function:

Ĉpptq “ rk1 Cppt´1q ` k2 ˆ
1

b

Dindp

ˆ Cindptq ˆ pŴindptq{Wavgq
k3
` k4 ˆ

1
b

Dtra f f icp

ˆ

Ctra f f icptq ˆ pŴtra f f icptq{Wavgq
k3
ı

ˆ e´k5ˆWptq

(1)

In model (1): Ĉpptqdenotes the expected PM2.5 concentration at station p on day t. Cppt´1q denotes
the observed PM2.5 concentration on day t-1; Dindp represents the average distance from station p to
industrial stations; Cindptq denotes the observed PM2.5 concentration of industrials stations on day t;
and Dtra f f icp represents the average distance from station p to traffic stations; Ctra f f icptq denotes the
observed PM2.5 concentration of traffic stations on day t; Ŵindptq denotes the summation of valid flux
of wind from industrial stations and Ŵtra f f icptq means the summation of valid flux of wind from traffic
stations on day t; Wavg is the average wind speed of the year; Wptq is the maximum wind speed on
day t; and k1, ¨ ¨ ¨ , k5 are the parameters to be estimated by Levenberg-Marquardt and global minimum
algorithm till their convergence [26].

In model (1), k1 ˆ Cppt´1q describes the residual concentration on last day’s pollution;

k2 ˆ
1

b

Dindp

ˆ Cindptq ˆ pŴindptq{Wavgq
k3 illustrates PM2.5 concentration from industrial stations by

dispersion; k4ˆ
1

b

Dtra f f icp

ˆCtra f f icptqˆ pŴtra f f icptq{Wavgq
k3 illustrates the traffic PM2.5 concentration

from traffic stations by dispersion. The sum of these three components is allowed to decay with
increasing wind by the factor e´k5ˆWptq .
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According to model (1), if Wptq “ 0, which means there were no wind/dispersion at all, the
model (1) reduces to its simplest format:

Ĉpptq “ k1 ˆ Cppt´1q (2)

To estimate the parameters in model (1), we obtained following data: daily PM2.5 concentration
of the six background stations Cpptq, (p = 1, . . . , 6); daily PM2.5 concentration of the two industrial
stations Cjptq.(j = 1, 2); daily PM2.5 concentration of the five traffic stations Ckptq.(k = 1, . . . , 5); distance
from each background station to each industrial station Dindjp

; distance from each background station
to each traffic station Dtra f f ickp

; daily maximum wind speed Wptq; direction of daily maximum wind
á
mw, which is given in 16 compass points clockwise from the Y coordinate.

Let
á
mw denote the unit vector of wind direction, and θ be the degree of direction from source

station to receptor station p deviating from the Y coordinate, then:

á
mw “ ´pcosθ, sinθq (3)

Let
á

R p denote the direction vector from the centroid of source stations to the receptor station p,
then the summation of valid wind flux Ŵptq to station p is given as:

Ŵptq “
á

Wptq ˆ
p
á

R pptq ˆ
á
mwq

ˇ

ˇ

ˇ

ˇ

p
á

R pptq ˆ
á
mwq

ˇ

ˇ

ˇ

ˇ

(4)

where
á

Wptq is the vector value of Wptq.
In our projection, we limited the minimum pollution brought by wind to nonnegative value, thus:

Ŵptq “ maxpŴptq, 0q (5)

Based on model (1), the daily traffic contribution to PM2.5 at background stations can be
calculated as:

Tpptq% “

k4 ˆ
1

b

Dtra f f icp

ˆ Ctra f f icptq ˆ p
Ŵtra f f icptq

Wavg
q

k3

ˆ e´k5ˆWptq

Cpptq
ˆ 100% (6)

where Tpptq% is estimated percentage of daily traffic contribution to total PM2.5 concentration
at background stations. Meanwhile, the expected daily non-traffic contribution NTpptq

˚ can be
calculated as:

NTpptq
˚ “ Cpptq ˆ p1´ Tpptq%q (7)

2.2.2. Stage 2: Estimating Non-Traffic Contribution to PM2.5 Concentrations at Non-Background
Stations Using GAMM

A GAMM was fitted between log transformed daily non-traffic PM2.5 concentration logNTpptq and
Y coordinates (Yp) for the background stations. Because there were apparent nonlinear relationship
between daily PM2.5 concentration and day (t) (Figure 2a), humidity, temperature and atmospheric
pressure (atmos) (Figure 2c), we used B-spline penalized by discrete penalties as additive smoothing
function in the GAMM. Ten knots per year were set for day, five for humid, five for temperature and
four for atmos, respectively. Numbers of knots were determined by minimizing Akaike Information
Criterion (AIC) [27]. Besides the Yp, our preliminary analyses suggested linear associations between
daily PM2.5 concentration and wind speed (Wind(t)), rain volume (Rain(t)) and hours of daylight (Light(t))
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(Figure 2d), they were included as covariates in the GAMM in addition to Yp. Day of week (DOW(t))
and direction of daily maximum wind speed (Max_wind_dir(t)) were included as factor variables in the
model. In addition, considering the intra-cluster correlation of PM2.5 concentration within stations, we
included a random effect for stations in the model (Figure 2b). The selection of explanatory variables
was also decided by a top-down rule [28]. The model was run by stepwise approach and generalized
cross-validation (GCV) criterion [29]. The final GAMM is:

logpNTpptqq
˚
“ β0 ` β1 ˆYp ` β2 ˆWindptq ` β3 ˆ Lightptq ` β4

ˆRainptq `β5 ˆMax_wind_dirptq `β6 ˆDOWt

`s pt, k “ 10 per yearq ` s ptemperatureptq, k “ 5q
`s phumidptq, k “ 5q ` s patmosptq, k “ 4q ` µˆ Zp

(8)

where logpNTpptqq
˚ is expected log transformed non-traffic PM2.5 concentration; βs are parameters to

be estimated; sp.qs are additive smoothing functions which illustrate the effects of day, temperature
and humidity on non-traffic concentrations; Zp is a random intercept for station p.
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Figure 2. Relationship between daily mean PM2.5 concentrations and day (a) at all stations and (b) by
stations; relationship between daily mean PM2.5 concentrations and (c) daily mean temperature and
(d) daily hours of light.

Log transformed non-traffic PM2.5 concentrations at non-background station q, logpNTqptqq
˚, were

then predicted using the GAMM fitted in model (8). The estimated contribution of road traffic to PM2.5
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contribution at non-background station q, Tqptq%, was calculated as observed PM2.5 concentration
deducted by estimated non-traffic PM2.5 concentration:

Tqptq% “
Cqptq ´ elogpNTqptqq

˚

Cqptq
ˆ 100 (9)

The whole process of the method is shown in Figure 3. The parameters for dispersion model were
estimated in software 1stOpt [26]. GLMM was fitted in Stata 13.1 and GAMM was fitted in R 3.2.2
using mgcv package.
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Figure 3. Process of estimating traffic contribution to PM2.5 concentration at background AQM stations
and other stations.

3. Results

PM2.5 concentrations from the 35 AQM stations and meteorological conditions during 2013–2014
in Beijing are shown in Tables 1 and 2. The medians of daily PM2.5 concentration of the 35 stations
ranged from 40 to 92 µg/m3. The means of daily PM2.5 concentration ranged from 63 to 112 µg/m3,
higher than 55.4 µg/m3 as reported by Yu et al. in 2013 [30]. The average PM2.5 concentration was
almost four times the U.S. Environmental Protection Agency standard (15 µg/m3) [31]. In general,
background stations had lower whereas traffic stations and industrial stations had higher PM2.5

concentrations than the other stations located in the same districts.
There was a significant linear relationship between Y coordinates and log transformed PM2.5

concentrations both in all stations and in background stations (Figure 4), supporting our assumption
that PM2.5 concentration followed an exponential decline function on distance. The Y coordinates
could explain more than 80% variation of log transformed annual average PM2.5 concentrations in all
stations. The closer a station was to the south border of the southern industrial area, the heavier the
pollution level it had.
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The optimal estimation of the parameters and fitness of the model was shown in Table 3. The
dispersion model can explain more than 60% variation of the daily PM2.5 concentration of the
background stations. The unexplained variation might on the other hand be due to temporal trend
and meteorological conditions and was modeled in the GAMM later.

Table 1. PM2.5 concentrations and Y coordinates of 35 AQM stations.

Stations
PM2.5 (µg/m3)

Y Coordinate (km)
Mean P25 Median P75

Background stations
Badaling 64.8 17.0 40.0 91.0 100.47
Beibuxinqu 86.5 24.2 62.0 122.7 69.47
Dingling 71.2 15.0 45.0 101.0 93.12
Miyunshuiku 63.4 13.0 40.3 91.0 109.68
Yungang 90.0 28.0 65.0 125.0 41.32
Zhiwuyuan 79.7 19.0 56.0 112.7 60.91

Traffic stations
Dongsihuan 97.5 29.0 71.0 135.0 54.82
Nansanhuan 106.6 36.2 81.0 147.0 44.70
Qianmen 100.0 31.0 76.6 138.8 49.45
Xizhimenbei 92.8 29.0 68.3 127.2 54.66
Yongdingmen 98.0 31.0 73.0 135.1 46.62

Industrial stations
Liulihe 122.2 44.0 92.0 169.0 16.81
Yufa 109.6 38.0 79.8 148.0 4.06

Other stations
Aoti 89.8 27.0 67.0 125.0 58.61
Changping 78.0 19.0 53.0 111.0 84.81
Daxing 106.9 35.0 79.0 147.0 31.81
Donggaocun 79.3 22.0 58.0 113.0 72.61
Dongsi 90.4 25.2 66.5 128.0 52.71
Fangshan 101.2 33.0 75.8 140.8 32.43
Fengtaihuayuan 99.7 31.0 74.1 139.0 45.53
Guanyuan 88.4 27.0 65.5 123.4 52.82
Gucheng 90.0 28.0 67.5 125.0 51.16
Huairou 76.1 19.0 52.9 108.0 96.85
Mentougou 79.2 22.0 55.4 111.0 53.85
Miyun 71.9 17.5 49.0 100.0 101.39
Nongzhanguan 91.3 26.4 66.0 126.0 53.63
Pinggu 80.8 23.0 57.0 111.0 76.40
Shunyi 84.8 22.0 61.0 121.0 74.58
Tiantan 89.0 27.0 66.4 125.2 48.00
Tongzhou 105.7 33.2 79.3 144.0 47.08
Wanliu 93.6 29.8 69.5 130.1 59.28
Wanshouxigong 91.2 26.0 68.0 128.0 47.13
Yanqing 72.0 20.0 49.5 102.0 111.24
Yizhuang 105.3 34.2 78.9 144.0 37.93
Yongledian 111.8 38.7 81.7 149.8 28.87

Total 90.0 25.2 65.0 125.5 59.13

P25: the 25th percentile; P75: the 75th percentile.
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Table 2. Meteorological conditions in Beijing.

Meteorological Conditions Mean P25 Median P75

Temperature (˝C) 13.4 3.2 14.3 23.7
Humid (%) 53 38 53 68
Atmospheric pressure (hPa) 1012.5 1004.2 1012.7 1021.1
Wind speed (m/s) 2.1 1.5 1.9 2.5
Hours of light (h) 6.5 2.4 7.8 9.6
Rain volume (mm) * 15.6 - - -

* Because 81% of days had no rain, P25, median and P75 are 0.
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Table 3. Parameters of dispersion model for PM2.5 concentrations.

Parameter Value

k1 0.7553
k2 31.6683
k3 0.2079
k4 14.8340
k5 0.1591
Root-mean-square error 43.4203
R 0.7981
R-square 0.6370
Coefficient of determination (adjusted) 0.6171

Based on Equation (6), the road traffic contribution to PM2.5 concentration of the background
stations is shown in Table 4. The contributions ranged from 17.2% in Yungang to 25.3% in Zhiwuyuan.

Table 4. Contribution (%) of road traffic to PM2.5 concentrations of background stations.

Station Mean (%) 95% Confidence Interval (%)

Badaling 20.5 (18.7, 22.2)
Beibuxinqu 19.6 (18.1, 21.1)
Dingling 20.9 (19.2, 22.6)
Miyunshuiku 21.8 (19.5, 24.1)
Yungang 17.2 (15.5, 18.8)
Zhiwuyuan 25.3 (23.3, 27.3)
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The estimations of parameters and the approximate test of smoothing of GAMM are shown
in Tables 5 and 6. All coefficients of the linear components and the smooth terms are significant at
α = 0.05 level. The result is also in line with the fact that increasing pollution dilution was expected
to be associated with greater wind speed and rain volume. According to Yu et al. [30], average PM2.5

concentration during the days with wind speed higher than 2 m/s was 13% lower than those during the
days with weaker wind. Average PM2.5 concentration during the rainy days was 21% lower than those
during the days without rain. But it is interesting that hours of daylight were negatively associated
with the PM2.5 concentration. This may be partly due to low dispersion rate during days with
fewer daylight hours (usually in hazy and cloudy days) and accelerated accumulation of pollutants.
The partial regression smooth plots (Figure 5b–e) and normal Q-Q plot of Pearson residual (Figure 5f)
showed a good fit of GAMM. Based on Equation (9), the traffic contribution to PM2.5 concentration
of other stations is shown in Table 7. The absolute and relative contributions of road traffic to PM2.5

concentrations of all stations were summarized in Figure 6. The average annual contribution of road
traffic to PM2.5 concentration ranged from 17.2% to 37.3% with a mean contribution 30%. The highest
contribution was found in busy road areas, and the contribution in traffic-related stations is about 14%
higher than those in rural areas.

Because there were no PM2.5 values lower than one-tenth of the 25% percentile and only 5%
values were higher than 10 times the 75% percentile, the estimated contributions changed little when
including these abnormal values in sensitivity analysis (results not shown).

Table 5. Parametric coefficients of GAMM (n = 3593).

Independent Variable Estimate Std. Error t Value 95% Confidence Interval

(Intercept) *** 4.5353 0.1544 29.374 (4.2327, 4.8380)
Y coordinate *** ´0.0063 0.0017 ´3.817 (´0.0096, ´0.0031)
Wind direction(2) * 0.1358 0.0646 2.103 (0.0092, 0.2624)
Wind direction(3) 0.0246 0.0534 0.461 (´0.0801, 0.1294)
Wind direction(4) ´0.0537 0.0617 ´0.871 (´0.1746, 0.0672)
Wind direction(5) 0.0795 0.0719 1.106 (´0.0614. 0.2203)
Wind direction(6) ´0.0738 0.0697 ´1.059 (´0.2103, 0.0627)
Wind direction(7) * ´0.2143 0.0905 ´2.369 (´0.3917, ´0.0370)
Wind direction(8) 0.1302 0.1006 1.294 (´0.0669, 0.3272)
Wind direction(9) 0.0547 0.0611 0.895 (´0.0651, 0.1745)
Wind direction(10) ** 0.1480 0.0520 2.845 (0.0460, 0.2499)
Wind direction(11) *** 0.2080 0.0507 4.103 (0.1086, 0.3073)
Wind direction(12) ** 0.2481 0.0805 3.084 (0.0904, 0.4059)
Wind direction(13) 0.0634 0.0928 0.684 (´0.1184, 0.2453)
Wind direction(14) * 0.1632 0.0678 2.408 (0.0304, 0.2960)
Wind direction(15) 0.1002 0.0688 1.456 (´0.0347, 0.2351)
Wind direction(16) ** 0.1788 0.0601 2.976 (0.0611, 0.2965)
Day of week (2) ´0.0007 0.0405 ´0.017 (´0.0800, 0.0786)
Day of week (3) 0.0186 0.0395 0.472 (´0.0587, 0.0960)
Day of week (4) ´0.0009 0.0410 ´0.023 (´0.0813, 0.0794)
Day of week (5) 0.0445 0.0408 1.091 (´0.0354, 0.1244)
Day of week (6) 0.0558 0.0400 1.396 (´0.0226, 0.1342)
Day of week (7) ´0.0366 0.0409 ´0.894 (´0.1168, 0.0437)
Wind speed * ´0.0402 0.0175 ´2.290 (´0.0746, ´0.0058)
Hour of light *** ´0.0558 0.0039 ´14.404 (´0.0633, ´0.0482)
Rain volume *** ´0.0012 0.0002 ´6.406 (´0.0015, ´0.0008)

*** p < 0.001; ** p < 0.01; * p < 0.05.

Table 6. Approximate significance of smooth terms.

Effective Degree of Freedom (EDF) F

s(t) *** 16.771 64.34
s(temperature) *** 2.816 99.28
s(humid) *** 3.787 263.91
s(atmos) *** 2.767 13.77

*** p < 0.001.
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Figure 5. Diagnostic plots of GAMM on non-traffic PM2.5 concentrations at background stations:
(a) time trend of log transformed non-traffic PM2.5 concentrations; (b) partial regression smooth curve
of day with residuals; (c) partial regression smooth curve of temperature with residuals; (d) partial
regression smooth curve of humid with residuals; (e) partial regression smooth curve of atmospheric
pressure with residuals; (f) Q-Q plot of Pearson residuals.
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Table 7. Contribution (%) of road traffic to PM2.5 concentrations of other stations.

Station Mean (%) 95% Confidence Interval (%)

Aoti 32.6 (30.8, 34.5)
Changping 31.6 (29.7, 33.5)
Daxing 31.1 (29.2, 33.0)
Donggaocun 30.2 (28.3, 32.1)
Dongsi 30.5 (28.6, 32.3)
Dongsihuan 35.1 (33.2, 37.0)
Fangshan 30.0 (28.1, 32.0)
Fengtaihuayuan 33.1 (31.2, 34.9)
Guanyuan 29.9 (28.1, 31.6)
Gucheng 30.6 (28.8, 32.4)
Huairou 33.6 (31.6, 35.6)
Liulihe 33.3 (31.2, 35.4)
Mentougou 24.1 (22.3, 25.9)
Miyun 33.5 (31.6, 35.4)
Nansanhuan 37.0 (35.1, 38.8)
Nongzhanguan 30.7 (28.9, 32.5)
Pinggu 32.8 (30.9, 34.7)
Qianmen 36.0 (34.1, 37.9)
Shunyi 33.4 (31.5, 35.3)
Tiantan 28.2 (26.4, 30.0)
Tongzhou 37.3 (35.3, 39.2)
Wanliu 34.4 (32.6, 36.2)
Wanshouxigong 29.3 (27.5, 31.2)
Xizhimenbei 33.0 (31.1, 34.9)
Yanqing 36.2 (34.3, 38.1)
Yizhuang 33.3 (31.4, 35.2)
Yongdingmen 33.3 (31.5, 35.2)
Yongledian 33.5 (31.5. 35.4)
Yufa 24.1 (22.1, 26.0)
All stations * 30.0 (29.7, 30.3)

* Including 6 background stations.
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4. Discussion

Exhaust emissions due to road traffic are known to make a large contribution to total PM2.5

concentrations in urban areas [32–35] and exposure to PM2.5 from vehicular emissions has been
demonstrated to have a negative impact on human health [36–40]. An improved understanding of
the traffic-related contribution to PM2.5 is therefore vital for conducting source apportionment and
health effect studies. Due to rapid economic and industrial development and urbanization in the
past few decades, energy consumption and the number of motor vehicles are rapidly escalating in
China [41]. As the capital of China, Beijing has witnessed a devastating increase in air pollution in the
past decades. To develop effective PM2.5 reduction strategies, major sources of PM2.5 and contributions
from each source need to be understood thoroughly. A recent study claimed that vehicles had limited
contribution to atmospheric particulate pollution in Beijing [42], and had since caused the public to
question the governmental policy in limiting car use. The study presented PM2.5 concentrations in
all seasons in Beijing and concluded that vehicle emissions accounted for less than 4% of the total
PM2.5 [42], much smaller than the previous estimates of the Chinese Environmental Protection Agency
or as reported by other studies [43–46]. Other studies using the same data sources suggested however
that vehicle contribution to PM2.5 in Beijing could vary between 10% and 50% [47,48].

Quantifying traffic-related contribution to PM2.5 requires the compilation of detailed traffic data
according to time and space, including, for example, traffic counts, vehicle types, travel speeds, fuel
types, and emission controls [9]. Receptor models and air-quality dispersion models have been used to
assess the contribution of different types of sources, including motor vehicles, to ambient pollution
in urban and rural areas [49]. Traditionally, source apportionment estimation methods [50] such as
chemical mass balance (CMB) [51] or positive matrix factorization (PMF) have been applied to analyze
the contribution of pollutant source. Air mass trajectory analysis is also a useful tool for detecting the
direction and location of sources for various air pollutants as a PM2.5 forecast model [52]. However,
these models heavily rely on the accuracy of source profile information. Some other models were also
commonly used, mainly including source apportionment model [53], land use regression model and
Gaussian dispersion model [54–56]. However, the limited numbers of roadside monitors have made it
difficult to catch the geographical variation in motor-vehicle emissions. Resource requirements for
collecting these data can be prohibitive and have led to the use of source-oriented dispersion based
models [57], meteorological-chemical transport based models [58] and observation-based statistical
models [59].

In our study, we developed a two-stage method to estimate the traffic-related contribution to PM2.5

concentration that utilized the air-quality data from different types of AQM stations. This method
combined atmospheric chemistry dispersion model and statistical GAMM model, and simplified the
mathematical algorithm by omitting the detailed traffic-related information, e.g., types, number and
density of vehicles, and incorporated the temporal trend of PM2.5 concentration in a more precise way.
We collected hourly PM2.5 data at 35 monitoring stations to estimate the road traffic contributions to
PM2.5 concentrations. The results revealed that 17.2%–37.3% of PM2.5 might be attributable to traffic
emissions. Compared to the results released by Beijing Municipal Environmental Protection Bureau
(22%–30%) [60], our reported contribution is higher and may partly be due to the rapid increase of
traffic volume and decrease of industrial and coal burning emissions in recent years in Beijing [61].

Usually, the estimation of traffic-related emission relies on the analysis of road side measurements
correcting for background concentrations [62]. In our study, we carefully defined the components
of PM2.5 concentration of background stations from two major sources, i.e., traffic emission and
industrial sources. Considering the complex components of the traffic related PM2.5 source at the
traffic stations and industrial stations, relative to the background stations, we modeled the non-traffic
PM2.5 concentration for all stations using GAMM. The results from previous studies using particulate
matter source apportioning and Comprehensive Air Quality Model with Extensions (CAMx) revealed
that the maximum level of uncertainty for secondary production was low (6%), hence the application
of an additive linear relationship was considered reliable [63,64].
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In our dispersion model, the coefficients k3, k4, k5 determine the precision of the estimated traffic
contribution to PM2.5. We made simulation using different k3, k4, k5 settings for the purpose of
sensitivity analysis. The results showed that a 20% deviation in k3, k4, or k5 would result in <7% change
in the estimated traffic contribution. It indicated that our dispersion model was robust regarding the
variation of the estimates of different parameters.

In order to avoid over-fitting or under-fitting, frequent in GAMM, we used penalized B-splines
(P-splines). The P-spline approach controls the coefficients of the smooth function for which a certain
penalty term is specified. In this approach, the crucial point is the selection of smoothing parameter.
We tested the residual of the model and the scatter plots showed a clear homogeneity around smoothing
curves with no specific trend (Figure 5b–e). In our model, the geographical variations were efficiently
explained by Y coordinators. A few meteorological variables were selected in the models as previously
suggested [65–67].

Our study has several strengths. First, most of the previous researches were performed in the
United States or Europe, while reliable information from Africa, Asia and South America is lacking.
Our study provides important evidence to fill in this information gap and offers an opportunity to
develop enhanced methods for quantification of the contribution of traffic emission to air pollution.
Second, the two-stage method predicted the background pollution instead of traffic emissions directly.
In this case, the residual of the first dispersion model could be further decomposed in the GAMM and
the unknown non-linear relationships and temporal autocorrelation were modeled using smoothing
functions. Third, although existing dispersion models can give an approximate estimation of traffic
emissions based on a big database, they need rich information in terms of vehicle types and fuels, traffic
stop-and-go-driving situations, average speed and traffic density, etc. [68]. Moreover, the advanced
Gaussian dispersion model also requires more complicated 3-dimensional meteorological and location
information, making it unfeasible to adapt in less developed countries and regions. Our simplified
dispersion model, on the other hand, needs less traffic and geographic data and applies simpler
estimation algorithm, and therefore increases flexibility and feasibility of usage. In such context, it is
a convenient tool on operational basis for estimating traffic contribution to PM2.5 over a region with
moderate number of AQM stations. Lastly, because of the limited number of AQM stations available,
previous estimates of traffic contribution to PM2.5 were mainly based on GAM that might not precisely
reflect the variation between stations and correlation within stations in areas with various land use
types [69]. The results of such studies were consequently very sensitive to the location of monitoring
stations. However, the use of widespread AQM stations and intensive air quality data collected in our
study made it possible to involve the different type of stations as a random factor in the mixed effect
model that may sufficiently reflect the variation of contribution over a wide region.

Our study also had some limitations. Given the complexity of pollution sources and dynamic
dispersion mechanisms, our simplified dispersion model only took into account industrial and traffic
emissions, whereas it combined all other pollution sources as a whole. As a result, our method might
have led to an overestimation of the traffic contribution. Although we examined the influence of
daily average vehicle speed on PM2.5 concentrations at five traffic stations and found no statistically
significant association, this variable was not included in the GAMM since such information was not
available for other stations. Finally, we did not consider some indirect sources from vehicles, such as
tire type and asphalt roads that may also increase PM2.5 concentration [70]. Future efforts are needed
to compare methods using direct traffic emission measurements with our simplified indirect method.
We also admit that the predictability of our models is not high and the accuracy of the estimated
contributions needs to be assessed by further studies.

5. Conclusions

We developed a two-stage method to estimate the traffic contribution to daily PM2.5 concentrations
in Beijing using hourly PM2.5 concentration data, daily meteorological data and geographic information
collected at 35 AQM stations in Beijing between 2013 and 2014. Our results showed that traffic



Int. J. Environ. Res. Public Health 2016, 13, 124 16 of 19

emissions accounted for a substantial share of total PM2.5 concentrations, ranging from 17% at rural
stations to 37% at stations close to busy roads. Our estimates were not only comparable to reports from
the Beijing Municipal Environmental Protection Bureau but also reflected the spatial and temporal
trends of traffic contribution in a large area. Lacking complete direct measurements of traffic emissions
throughout the study area, this method fully utilized the characteristics of different station types. Our
method is a useful and feasible tool in ecological and epidemiological studies to estimate the burden
of PM2.5 derived from road traffic when there is no sufficient traffic-related information.
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