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Abstract
Sleep is a ubiquitous and complex behavior in both its manifestation and
regulation. Despite its essential role in maintaining optimal performance,
health, and well-being, the genetic mechanisms underlying sleep remain
poorly understood. Here, we review the forward genetic approaches
undertaken in the last four years to elucidate the genes and gene pathways
affecting sleep and its regulation. Despite an increasing number of studies
and mining large databases, a coherent picture on “sleep” genes has yet to
emerge. We highlight the results achieved by using unbiased genetic
screens mainly in humans, mice, and fruit flies with an emphasis on normal
sleep and make reference to lessons learned from the circadian field.
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Introduction
Through genetic analyses of sleep, we hope to learn about 
the molecular substrates of this remarkable behavior and its  
pathologies. Sleep is remarkable because we spend a consider-
able portion of our lives in this state (>24 years for most of us) 
yet we know little about its likely numerous functions. Clearly, 
sleep is important as lack of sleep, poor-quality sleep, or sleep  
disorders greatly impact performance and well-being and may 
lead to poor health. Genetics can be used to approach a variety  
of questions about sleep regulation, sleep function, abnormal 
sleep, and the consequences of poor or insufficient sleep. For  
example, research aimed at discovering the gene variants  
altering susceptibility to the deleterious effects of sleep loss and 
the molecular pathways activated by sleep loss are two areas  
of great interest, from both a basic scientific understanding and a 
clinical point of view.

With perhaps some envy, sleep geneticists look at the  
astounding progress made in the closely related circadian  
rhythms research field. Results from mutagenesis screens in 
flies and mice for circadian phenotypes1,2, mostly variations in  
circadian period length, led to the discovery of a core set of 
interacting genes (that is, “clock genes”) that pace the clock3  
and to a Nobel prize in 2017 (www.nobelprize.org/prizes/ 
medicine/2017/prize-announcement/). With this promise,  
mutagenesis screens have been applied to the problem of 
sleep, and although important new insights have been gained, a  
core set of genes regulating sleep (apart from those involved in 
sleep’s circadian modulation) remains to be identified. Perhaps  
one reason hampering breakthrough progress matching that 
in the circadian field is that sleep is a circuit-driven behavior  
whereas circadian rhythms rely on cell-autonomous processes 
and thus are more tractable in terms of identifying key players  
through genetic dissection. Moreover, sleep is not one phenotype 
but a multi-faceted behavior starting off with two very different  
sleep states—rapid eye movement (REM) sleep and non-REM 
(NREM) sleep—that seem preserved across vertebrates4 and 
that each have their distinct (neuro)physiology, regulation, and  
functions. In a recent study, we quantified well over 300  
sleep-related phenotypes in a genetic reference population 
(GRP) of mice5. These phenotypes included time spent in the  
various sleep-wake states, their distribution over the day, and 
the frequency- and amplitude-specific characteristics of the  
electroencephalogram (EEG), all under undisturbed baseline  
conditions and after a period of enforced waking. The median  
heritability in this comprehensive sleep-wake phenome was  
high (h2 = 0.68), and although a number of phenotypes were  
highly correlated, many among them proved to be independent 
sleep traits each with their distinct polygenic mode of inheritance. 
It is therefore unrealistic to aim at finding core “sleep genes”;  
instead, we expect to uncover sets of genes or gene pathways  
each modulating specific aspects of sleep. Such genes could 
affect sleep traits directly or could do so indirectly through early  
(or late) processes of neurodevelopment and neuroplasticity. 
In addition to its phenotypic complexity, sleep varies with life 
history and environment and can differ greatly among animal  
species according to their ecological niche. Therefore, genetic  
analysis of sleep in species other than the established model  

species that have been used thus far could help delineate  
conserved genetic pathways regulation sleep6.

With this in mind, this brief overview of the progress in the 
field will focus on the recent efforts to discover the genetic  
underpinnings of sleep in various species and mainly concern 
flies, mice, and humans with some reference to zebrafish and  
Caenorhabditis elegans work. Genetics is a broad term and 
is used differently among fields; for example, we will have to  
ignore optogenetics although this technique has revolutionized 
sleep research in the last 15 years in dissecting its underlying  
neuro-circuitry7,8. Similarly, we will not be comprehensive in 
reporting on the ever-growing list of candidate genes that have 
been genetically targeted to study their specific role in aspects  
of sleep, although much has been learned using this approach.  
This “gene-to-phenotype” approach is referred to as reverse  
genetics. In reply, classic genetic approaches (from phenotype 
to gene), which include the mutagenesis screens mentioned  
above, have become known as forward genetic approaches. 
However, these methods can clearly overlap and the distinction  
depends on scale; a large screen of knockout mice for known  
single genes could be considered a large-scale reverse genetic 
approach but is really more similar to a mutagenesis screen, 
as we will discuss below. Here, progress in the last four years  
(2016–2019) using unbiased gene discovery approaches will 
be reviewed with a strong emphasis on studies focusing on  
“normal” sleep and its regulation as opposed to sleep-related  
disorders.

Forward genetic screens for induced genetic variants
In forward genetic screens, changes in gene function are induced 
more or less randomly9 throughout the genome. Mutations 
affecting gene function have been made through the use of  
chemicals—for example, N-ethyl-N-nitrosourea (ENU) or 
ethyl methanesulfonate (EMS)—or, in the fruit fly, Drosophila  
melanogaster through insertion of transposable P elements.  
Screens for the effects of overexpression of genes can be  
achieved by making use of the GAL4-upstream activation  
sequence (GAL4-UAS) system10 or through injection of  
plasmids containing inducible overexpression vectors11.  
Phenotyping of a large number of animals will identify lines with 
aberrant phenotypes caused by single genes.

The earliest sleep screen was performed in Drosophila12. In 
that study, about 9,000 mutagenized lines were phenotyped 
for extreme short sleep time. Flies carrying loss-of-function 
mutations for Shaker, a gene encoding a voltage-dependent  
potassium channel, were found to sleep exceptionally  
little. Surprisingly, after screening several thousand additional  
mutagenized lines, a later Drosophila sleep screen identified 
the gene Sleepless, which proved to be a regulator of  
Shaker13. Together, the two studies suggest neuronal membrane  
excitability as a core feature of homeostatic sleep drive13,14.

In mammals, the first mutagenesis sleep screen was published 
in 201615. ENU was used to induce random point mutations  
as 8,000 mice were screened for sleep abnormalities. A mutation 
in a single phosphorylation site in the protein kinase Sik3 was  
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found to increase homeostatic sleep drive concomitantly with 
increased time spent in NREM sleep16. SIK3 was found to  
associate specifically with phosphoproteins for which the  
phosphorylation state was found to be sleep-wake–driven, 
suggesting that the sleep homeostatic process represents a  
phosphorylation (during wakefulness)/dephosphorylation  
(during NREM sleep) cycle17,18. Moreover, in the same screen, 
a missense mutation in Nalcn, a voltage-independent and  
non-selective cation channel, reduced time spent in REM sleep,  
and a point mutation in Cacna1a, encoding a voltage-dependent 
calcium channel, reduced wakefulness by about 70 minutes 
per day19. While other genes discovered with this screen are  
likely to be in the pipeline, the yield thus far seems disappointing 
given the large number of mice phenotyped.

In C. elegans, forward genetic screens for sleep have been  
performed as well. In these nematodes, periods of sleep can 
be observed at the transition between developmental stages  
(developmentally timed sleep) or sleep can be induced by 
stress (stress-induced sleep)20. Upon stress, the release of the  
neuropeptide Flp-13 (FMRFamide-like peptide-13) was shown 
to mediate the sleep-promoting effect21. In an EMS mutagenesis 
screen in Flp-13–overexpressing worms for genes modifying the 
sleep-promoting effect of Flp-13, its receptor Dmsr-1, encoding 
a G protein–coupled receptor, was identified22,23. The G-protein 
that is coupled to Dmsr-1 may be the G

i/o
 alpha subunit Goa-1,  

which was identified in another mutagenesis screen for genes  
regulating developmentally timed sleep, along with Gpb-2, 
encoding another G-protein subunit24. Together, these results  
confirm the importance of G-protein signaling pathways in worm 
sleep.

Screens in which the effects of gene overexpression on sleep 
were studied were performed in Drosophila and zebrafish. By  
phenotyping about 12,000 fly lines for sleep duration  
Nemuri, encoding an uncharacterized antimicrobial peptide, was 
identified, which when overexpressed in adults induced sleep, 
thereby linking sleep and the immune system10. In a zebrafish-
overexpression screen for secreted proteins, the neuropeptide  
Neuromedin U (Nmu) was identified to regulate sleep-wake  
behavior11. Interestingly, anatomical and functional analyses  
found that Nmu-induced arousal is mediated by corticotropin- 
releasing hormone (CRH) signaling in the brainstem specifi-
cally, independent of the role of CRH in the hypothalamic– 
pituitary–adrenal axis. Also, overexpression of the neuropeptide 
Neuropeptide Y (NPY) in this screen was found to affect sleep 
and the authors could establish that this effect was mediated  
through inhibition of noradrenergic signaling known to  
promote wakefulness25.

The ongoing efforts of the International Knockout Mouse  
Consortium (IKMC) to “knock out” each protein-coding gene 
and of the International Mouse Phenotyping Consortium 
(IMPC) to determine the phenotypic consequences26 should be  
mentioned here because this (in principle) “reverse genetic” 
approach must be considered “forward” given its generally  
unbiased and genome-wide character, as already pointed out  
above. Sleep is part of the IMPC phenotyping pipeline and thus  

far 512 null-mutant strains have been evaluated; 72 of these  
displayed aberrant values for some of the 13 sleep-related  
variables quantified (www.mousephenotype.org). These results 
suggest that a high percentage of gene products influence 
sleep in some way, including breathing rates during sleep  
(https://doi.org/10.1101/517680). Several of the genes identified, 
such as Ppp1r9b, Pitx3, Ap4e1, and Myh1, affected time spent 
asleep to a similar degree as found in mutagenesis screens,  
suggesting that both mutagenesis and screens of knockout 
mice have found only a very small fraction of the genes that 
can influence sleep when mutated or eliminated. This again  
supports the notion that no core set of genes may underlie  
sleep regulation, at least to the same degree found for clock  
genes that underlie circadian rhythm generation. However, as 
discussed below, the transcriptional/translational oscillation of  
clock genes, especially outside the suprachiasmatic nuclei  
(SCN), appears to play a key role in sleep homeostasis as well  
(and a number of other functions).

The IKMC uses a combination of gene trapping and gene  
targeting in C57BL/6N mouse embryonic stem cells to mutate  
protein-coding genes. With CRISPR-Cas9, a more efficient  
technology has become available to target genes and might be  
used in genome-wide screens27. Already, through the use of a  
triple-target CRISPR approach to generate bi-allelic knockouts 
in a single generation, targeting entire gene families has become  
feasible and applied to sleep (for example, acetylcholine  
receptors, N-methyl-D-aspartate receptors, and Ca2+-dependent  
K+ channels28–30) with some striking results; mice lacking the  
muscarinic acetylcholine receptors, Chrm1 and Chrm3, were also 
found to lack REM sleep28.

Forward genetic mapping of natural genetic variants 
involved in sleep
The above-mentioned forward genetic screens report on the 
effects of single genes on a mostly uniform genetic background.  
However, many sleep traits are known to be genetically  
complex and each contributing gene usually explains but a small 
fraction of the overall phenotypic variance. Examples from the  
circadian field powerfully illustrate that genetic background  
matters. The first circadian clock gene identified in a mam-
malian mutagenesis was Clock2. The ENU-induced ClockΔ19 
mutation discovered in that study caused circadian period 
lengthening and periodicity loss in mice of the C57BL/6J 
background but would have gone unnoticed if the melatonin- 
producing C3H/HeJ strain had been used in the screen instead31. 
Moreover, linkage analysis of circadian traits quantified in a  
C57BL/6J × BALB/cJ - F2 population identified a number of 
quantitative trait loci (QTLs) that did not map to known clock 
genes32, suggesting not only that many genes important in circa-
dian rhythm generation await their discovery but also that some 
of the genes identified through mutagenesis might be invariant in  
natural populations and not contribute to phenotypic variability.

Although the phenotypic variance explained by QTLs  
underlying complex traits is generally small, which makes  
identifying the causative genes difficult, the above findings 
convinced sleep researchers of the necessity to study natural  
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populations or population panels constructed through selective 
breeding, such as GRPs, to map the natural genetic variants and 
their interactions underlying differences in sleep traits. With 
this aim, genome-wide association (GWA) studies have been  
performed in flies, mice, and humans. Although the genetic 
contribution over environmental factors is generally high  
(h2 >0.5 for many sleep-wake traits and h2 >0.8 for a number of 
EEG-related traits5,33,34), it arises from many possible genetic 
variants (so far, 650 million variations have been identified in  
human populations35) and their interactions. This very large  
genotypic diversity and the small effect size of each neces-
sitates sample sizes of several thousands to reach the P value  
threshold required to identify a variant significantly associated  
with a given trait (usually set to P <5 × 10−8), even when the 
interactions among them are ignored (epistasis36). This is a  
problem for almost all normal and pathological traits that  
have been studied, including sleep. To address this problem, GRPs 
have been constructed in model species (see below).

The first “sleep” GWA study in humans was a case control study 
for the sleep-related disorder restless legs syndrome (RLS) and  
identified a number of genetic risk variants each conferring 
only minor increases in disease risk37,38. To date, six such RLS  
risk-conferring genomic loci have been found. Among those, 
functional contributions have been demonstrated in follow-up  
studies, including the use of mouse models, for the transcription 
factors Meis1, important for nervous system development and 
affecting dopamine signaling, and Btbd9, which sets the activity of 
medium spiny neurons in the striatum39–42.

GWA studies focusing on the quantitative aspects of normal  
sleep in the population rely on self-reported estimates of sleep 
and sleep problems through questionnaires or wrist actimetry  
devices or both. (Because of the large sample size required,  
classic EEG-based sleep phenotyping is time- and cost-prohibitive.)  
Variables such as sleep duration and timing, chronotype,  
sleep-onset latency, daytime sleepiness, or sleep problems 
(or a combination of these) have been assessed in an increas-
ing number of studies by mining databases such as the UK  
Biobank43 and 23andME combined or not with other large  
cohorts with aggregate sample sizes reaching more than  
100,000 samples44–54. Many significant loci have been reported, 
some confirming results of other reports but all with quite small 
effect sizes (for example, explaining 3.5-minute differences  
in sleep duration) and without a coherent emerging picture  
explaining the large difference in sleep in the general  
population. The largest GWA analyses to date used more than 
1.3 million individual samples to study insomnia complaints 
and found correlations able to explain 2.6% of the variance in  
insomnia55. Many significant loci (202) were found pointing 
to about 1,000 genes that were identified through gene set  
enrichment analyses and available expression QTL (eQTL) 
and chromatin mapping data. Interestingly, overlap with RLS 
and RLS risk-conferring loci, including Meis1 and Btbd9, and  
striatal medium spiny neurons were reported, pointing to 
shared etiology or to pleiotropic gene effects not uncommon 
in sleep and neurological disorders56. Although computational  
approaches and the use of datasets on intermediate pheno-
types (intermediate between genome and phenotype such as  

transcriptome and chromatin data) strengthen the likelihood 
that the identified candidate genes are causally involved, the  
challenge remains to experimentally demonstrate their biological 
relevance for the sleep phenotypes they associate with.

GWA studies have been performed in animals as well. For  
example, in a large cohort of CFW outbred mice, in which more 
than 5.7 million variants segregate, 19 aspects of sleep were  
quantified by using a piezoelectric device57 as part of a larger 
phenotyping pipeline58. QTLs for sleep quality containing single  
genes identified Ppargc1a and Unc13c, both of which are  
involved in synaptic plasticity and transmission59,60.

Mapping of natural genetic variants underlying sleep 
traits in genetic reference populations
To better harness the genetic complexity contained in natural  
populations, mouse and fly GRPs have been created with a  
reduced but better-controlled and better-characterized genetic 
diversity. Fewer samples are needed to significantly associate 
sleep phenotypes to genotypes and to have the power to identify  
causal variants. In the fly, the Drosophila-GRP (DGRP), a set 
of about 200 recombinant inbred lines, was generated for the  
analyses of quantitative traits at a population level61. A GWA  
study for sleep and activity phenotypes was performed with this 
GRP which yielded many single-nucleotide polymorphisms  
(SNPs) significantly associated with each trait, several of which 
mapped to genes over-represented in the epidermal growth 
factor receptor (Egfr) signaling pathway62. Another GRP for  
Drosophila concerns a panel of 39 fully sequenced inbred 
lines selected for long and short sleep phenotypes: the Sleep  
Inbred Panel63. In this panel, differences in sleep duration were 
associated with 126 polymorphisms pointing to 80 candidate 
genes related to the Egfr, Wnt, Hippo, and Mapk signaling  
pathways64.

In the mouse, several GRPs have been derived from two or 
more isogenic strains such as the BXD65, Collaborative Cross  
(CC)66, Diversity Outbred (DO)67, and Hybrid Mouse Diversity68 
panels. Some of these GRPs have been phenotyped for sleep. 
In the DO panel, moderate to high heritabilities for a number of  
sleep and circadian traits were observed by using a high- 
throughput phenotyping strategy69. During construction of the 
CC panel, 50 sleep-related parameters and their response to 
sleep deprivation were assessed in about 600 “pre”-inbred mice  
(about F2:G5 or 75% inbred) carrying alleles from eight  
parental strains70. For the resumption of activity after sleep 
deprivation, a significant and narrow QTL was identified  
encompassing two protein-coding genes (Ntm and Snx19) 
involved in neural cell adhesion and insulin-containing vesicles  
maintenance, respectively. The BXD panel is perhaps the 
most widely used and best-characterized GRP. Earlier sleep  
analyses in the older BXD/TyJ panel of recombinant inbred 
strains yielded Homer1, encoding a post-synaptic density scaffold 
protein involved in synaptic plasticity and calcium signaling, 
as a candidate gene for the increase in delta power, an 
EEG-derived proxy for sleep homeostatic drive, after sleep  
deprivation71,72. Additionally, retinoic acid receptor beta (Rarb)  
was found to determine the contribution of slow waves to the 
NREM sleep EEG73.
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The QTLs identified in GRP panels can be quite large, encom-
passing many genes. Adding transcriptome data and other  
intermediate phenotypes such as proteome and metabolome 
data not only can help to select candidate genes located within  
QTLs but also can give insight into the flow of information 
from DNA to phenotype at the level of a population and how  
environmental challenges such as sleep deprivation alter this 
information flow. This multi-level, integrative approach has 
been termed systems genetics74. Systems genetics approaches 
for sleep have been pioneered in the fly and mouse75,76. Sleep  
phenotyping and transcriptome analysis of four brain regions 
in a C57BL/6J × 129S1/SvImJ intercross identified gene  
expression networks underlying sleep regulation, such as an 
Arc-driven gene modules associated with EEG delta power77.  
Systems genetics analyses have also been performed in the  
more recent BXD/RwwJ GRP. In addition to the comprehen-
sive sleep-wake phenome already mentioned above, cortical  
and liver transcriptome data and plasma metabolomic data 
were collected as intermediate phenotypes all assessed under  
undisturbed baseline conditions and after sleep deprivation5.  
Sleep deprivation was found to extensively reshape the systems 
genetics landscape by altering 60 to 78% of the transcriptomes 
and the metabolome, and numerous genetic loci affected the  
magnitude and in some cases even the direction of change.  
Systems genetics analyses imply α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptor trafficking and  
fatty acid turnover as substrates of the negative effects of  
insufficient sleep. Perhaps the most surprising finding con-
cerned the implication of Acot11, an enzyme involved in fatty  
acid regulation in the liver, in determining the recovery of  
NREM sleep after sleep deprivation, demonstrating that  
peripheral systems can be crucial in explaining phenotypes 
that are generally considered to be controlled centrally. (“Sleep  
is of the brain, by the brain, and for the brain”78.)

Furthermore, integrating gene expression data such as from 
the Genotype-Tissue Expression (GTEx) database79 with GWA  
studies in humans facilitated the identification of the specific 
cell types implicated in insomnia (for example, medium spiny 
neurons55), identification of eQTLs (for example, Cluap1  
associated with the number of nocturnal sleep episodes52), and 
feature construction for machine learning methods (for example,  
4,374 eQTLs identified for morningness behavior like Nmur2, a 
Neuromedin receptor80).

Novel insights into sleep using familial pedigrees
Studying familial pedigrees in which extreme phenotypes  
segregate can be highly informative in discovering rare  
mutations, likely to be missed in large-population GWA studies. 
This was powerfully illustrated with cases of the circadian sleep 
disorder familial advanced sleep phase syndrome (FASPS),  
which led to the discovery of causal mutations in the core  
clock genes Period 2 (Per2) and Casein kinase I delta  
(Csnk1d)81,82. Subsequently, a number of studies identified  
additional gene mutations affecting chronotype in humans, 
such as Timeless (Tim), Cryptochrome 2 (Cry2), and Period 3  
(Per3) (reviewed in 83). Many of the rare mutations identified 
had in common that they were of high penetrance and of large  
effect size which is a prerequisite for functional studies in 

model species such as fly and mouse, as illustrated in the next  
examples concerning sleep.

Besides the timing of sleep, which is generally considered a  
circadian phenotype (but see 84), a number of pedigrees in 
which a short sleep phenotype segregates have been reported. 
The first such study concerned the discovery of a mutation in 
Dec2 conferring short sleep in humans and mice85. Besides 
its role in circadian timekeeping86, Dec2 was found to act as a  
transcriptional repressor of Hypocretin (Hcrt) encoding the two 
neuropeptides HCRT1 and 2, which are important in sleep- 
wake regulation87. In another family with natural short sleepers, 
the causative mutation was found in the β1-adrenergic receptor  
(Adr1), leading to decreased protein stability88. Results in mice 
carrying the same mutation also showed a short sleep phenotype,  
albeit less pronounced compared with humans, and established 
an important role of β1-adrenergic receptors in sleep-wake  
regulation88. A final example concerns a missense mutation in 
the G protein–coupled Neuropeptide S receptor 1 (Npsr1), also  
found to be associated with a natural short sleep phenotype in 
humans89. Mice expressing the homologous mutations slept  
less and interestingly were resistant to the memory deficits 
usually associated with sleep loss, thus suggesting that the  
NPS/NPSR1 pathway determines sleep duration and links sleep 
homeostasis and memory consolidation89.

Discussion
In the above sections, we briefly outlined recent progress in the 
field of sleep genetics according to the different approaches 
used because a coherent picture on the core genes or gene  
pathways regulating specific aspects of sleep has yet to emerge. 
Sleep’s phenotypic complexity and the presumed redundancy 
of molecular pathways regulating specific aspects of sleep  
might be at the base of this. To some extent, such redundancy 
is also apparent at the neuro-anatomical level; a singular sleep  
center does not seem to exist that, when lesioned, eliminates 
sleep analogous to the effect of lesioning the SCN, which 
results in the elimination of circadian organization for most 
overt behaviors. To carry this analogy further, eliminating core 
clock genes (or combinations thereof) will render animals  
arrhythmic90, while no genes for which null mutants  
preclude sleep are known. This might indicate that lacking  
sleep is embryonic lethal as long-term sleep deprivations are 
for adult rats and flies91,92 (but also see 93). In this respect, the  
finding of an all-but-complete abolishment of the EEG  
manifestation of REM sleep in mice lacking Chrm1 and 3 is both 
surprising and encouraging28.

The field of sleep genetics might profit by focusing on core  
aspects of sleep, such as its homeostatic regulation94, one of 
its defining features. Only a few genetic screens assessed the  
effects of sleep loss, even fewer have quantified the dynamics of 
the processes that accumulate during wakefulness and dissipate  
during sleep, and none systematically evaluated the negative  
impact of sleep loss on, for example, cognitive outcome  
variables. Quantifying the sleep homeostatic process is not  
trivial. When sleep deprivation is included as part of the pheno-
typing pipeline, usually a single sleep-deprivation duration is  
chosen, precluding the empirical quantification of the relationship  
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between time spent awake and the resulting compensatory 
change in the sleep variable concerned. Instead, sleep variables  
quantified after sleep deprivation are contrasted to their levels 
during undisturbed baseline conditions, thereby implicitly 
assuming that these baseline levels represent what the subject  
“needs”. Whether baseline levels are indeed the levels that are 
homeostatically defended seems unlikely, especially under 
standard laboratory conditions (with little stimulation and  
challenge), animals might sleep more than required. Moreover, 
the widely used sleep homeostatic proxy95—EEG delta power—is  
phenotypically and genetically complex and not all changes 
observed in this variable can be interpreted as proof of an altered 
underlying sleep homeostat5,94.

The concept of sleep homeostasis as a process in which a need 
for sleep accumulates during wakefulness and decreases during 
sleep is compatible with a feedback oscillation similar to that  
underlying circadian rhythms with the important distinction that 
the resulting oscillation is sleep-wake–driven in the case of the  
sleep homeostat whereas it is self-sustained in the case of the 
circadian clock. Although the role of clock genes in circadian  
rhythm generation is firmly established, their function goes well 
beyond what their name suggests. One example of this is the  
notion that they also fulfill a function in sleep homeostasis96. 
Our recent study demonstrated that the cortical expression of the 
core clock genes Npas2 and Clock are sleep-wake–driven and  
not circadian97. Moreover, the same study showed that a short 
6-hour sleep deprivation caused a long-term (>48 hours)  
dampening of the circadian amplitude in the cortical expression 
of most other clock genes. Such results suggest that in periph-
eral and especially in extra-SCN brain tissues the clock gene  
circuitry may be used to track time spent awake and asleep  
rather than circadian time, which is compatible with the notion 
that clock genes integrate environmental and systemic cues  
such as temperature, corticosterone, light, and metabolic state, 
a number of which change according to sleep-wake state96,98.  
Therefore, the clock genes might already provide us a core set 
of sleep (homeostatic) genes that are preserved mostly from  
Drosophila to humans96.

The approaches we presented can be broadly divided into two 
complementary approaches: one aimed at discovering naturally  
occurring allelic variants affecting sleep and the other at  
discovering genes by inducing mutations (randomly) on a single 
genetic background. The former seeks to explain the large  
phenotypic variability present in natural populations. Identify-
ing the underlying genetic variants that have been maintained 
during natural selection, though challenging, might give insight 
into molecular pathways upon which evolutionary forces shape  
variation within and between species as well as insight into the  
variants determining disease risk. By disrupting single genes, 
the latter approach seeks to identify causal, large-effect  
genes to uncover specific molecular or physiological pathways. 
These genes may or may not vary in natural populations or be 
very rare. Thus, both approaches are needed to move the field  
forward.

We already presented an example from the circadian field in 
which an induced mutation of large effect was phenotypically  
rescued when expressed on a different genetic background31.  
Similarly, the effect of major disease risk variants such as for 
the Brca1 and 2 genes in hereditary breast cancer is strongly  
affected by polygenic background (https://doi.
org/10.1101/19013086). Identifying the modifier genes that can 
offset the monogenic risk effects is obviously of importance 
in increasing the accuracy of risk assessment and deciding on  
therapeutic strategies. To systemically explore the effects of  
genetic background and to discover modifier genes affecting  
disease risk, established transgenic mouse models of Alzhe-
imer disease have been crossed to a GRP, such as the BXD  
recombinant inbred panel, to create a resource for experimen-
tal precision medicine99. Such combined approaches could also 
be taken for major-effect genes identified in mutagenesis or 
knockout screens for sleep to study the epistatic interactions  
and charting the molecular pathways involved.

Though not the focus of this review, studying intermediate  
phenotypes (that is, *omics) can aid in identifying genes  
implicated in sleep and its regulation, especially when  
combined with genomic information5,76,77. For example, sleep-
wake–driven changes in transcriptome, metabolome, or  
phosphoproteome studies led to molecular pathways for sleep 
homeostasis and key genes therein such as Homer1, Acot11, 
and Sik35,17,72,100. Given the enormous number of “genome-wide”  
data sets that have been accumulated, methods to mine and  
integrate them become increasingly important. Supervised and 
unsupervised machine learning methods (for example,101–103) 
are being actively developed to better integrate multi-omics  
datasets and infer causality, and their implementations in the  
sleep field are ongoing. Finally, the information contained in 
the DNA alone is insufficient to explain phenotypic variability,  
and the importance of the contribution of activity or accessibil-
ity of non-coding regulatory elements (for example, enhancers,  
silencers, and promotors) is increasingly acknowledged in the  
sleep field104,105 as these were shown to be sensitive to sleep loss 
with surprisingly fast dynamics97,106. 

Abbreviations
BXD, panel of recombinant inbred mouse lines derived from 
a C57BL/6J (B) × DBA/2J (D) intercross; CC, Collaborative  
Cross; CFW, outbred population of mice derived from Swiss  
Webster (W) at Carworth Farms (CF); CRISPR-Cas9, clustered 
regularly interspaced short palindromic repeats and CRISPR- 
associated protein 9; DGRP, Drosophila genetic reference  
population; EEG, electroencephalogram; EMS, the mutagen ethyl 
methanesulfonate; ENU, N-ethyl-N-nitrosourea; eQTL, expression 
quantitative trait locus; GRP, genetic reference population; GTEx, 
Genotype-Tissue Expression; GWA, genome-wide association; 
IKMC, International Knockout Mouse Consortium; IMPC, Inter-
national Mouse Phenotyping Consortium; NREM, non–rapid eye 
movement; QTL, quantitative trait locus; REM, rapid eye move-
ment; RLS, restless legs syndrome; SCN, suprachiasmatic nuclei; 
SNP, single-nucleotide polymorphism; UAS, upstream activation 
sequence
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