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Abstract: Chemoresistance is a pharmacological condition that allows transformed cells to maintain
their proliferative phenotype in the presence of administered anticancer drugs. Recently, extracel-
lular vesicles, including exosomes, have been identified as additional players responsible for the
chemoresistance of cancer cells. These are nanovesicles that are released by almost all cell types in
both physiological and pathological conditions and contain proteins and nucleic acids as molecu-
lar cargo. Extracellular vesicles released in the bloodstream reach recipient cells and confer them
novel metabolic properties. Exosomes can foster chemoresistance by promoting prosurvival and
antiapoptotic pathways, affecting cancer stem cells and immunotherapies, and stimulating drug
efflux. In this context, a crucial role is played by membrane transporters belonging to ABC, SLC,
and P-type pump families. These proteins are fundamental in cell metabolism and drug transport in
either physiological or pathological conditions. In this review, different roles of extracellular vesicles
in drug resistance of cancer cells will be explored.
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1. Introduction

Cancer is the second leading cause of death globally, representing one of the most
significant public health problems [1]. Although novel therapeutic strategies have been
developed, chemotherapy remains the leading approach for tumor treatment [2]. Despite
significant advances in increasing the efficacy of chemotherapeutics, chemoresistance
remains one of the major obstacles in cancer treatment and represents a significant risk to
the survival of patients [3–5]. Two main classes of chemoresistance can be distinguished:
intrinsic and acquired [6]. The intrinsic resistance is associated with factors, such as
stem cells in the tumor mass, present before any drug exposure. The acquired resistance
is a stepwise process involving various mechanisms, including increased DNA repair,
altered expression of oncogenes or tumor suppressor genes, altered drug targets, increased
drug efflux, and increased autophagy [7,8]. A growing body of evidence suggests that
extracellular vesicles can play a role in mediating drug resistance of cancer cells [9]. Indeed,
these vesicles, released from almost all cells, carry different cargo types, including mRNA,
microRNA, long noncoding RNA, lipids, and proteins, that may influence the phenotype
and metabolisms of recipient cells even they are located far from the donors [7,10].

The cargo of extracellular vesicles changes accordingly with the physio-pathological
conditions of the donor cells [10,11]. In the chemoresistance scenario, extracellular vesicles
from drug-resistant cancer cells can provide drug-sensitive cells with nucleic acids and
proteins that confer a resistance phenotype (Figure 1 and Table 1). Moreover, some evidence
demonstrates that extracellular vesicles can be directly involved in drug extrusion from
cancer cells [12]. The understanding of vesicle-mediated drug resistance is required for
finding new targets of chemoresistance, as well as to identify suitable biomarkers devoted
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to managing treatments at the earliest sign of drug resistance. Since vesicles can be collected
from body fluids such as blood, urine, and saliva, they represent an easily accessible source
of biomarkers for monitoring the effectiveness of therapy [10]. Besides other advantages
and novelties, detecting biomarkers from body fluids via noninvasive methods also avoids
the harm and discomfort of solid tissue biopsy [13].

Table 1. Chemoresistance associated with extracellular vesicles.

EV Cargo Type Cancer Type Drug Resistance Ref.

miRNA Lung cancer Cisplatin [14,15]
Gemcitabine [16]

Gefitinib [17,18]
Methotrexate [3,19]

Gastric cancer Paclitaxel [20]
Cisplatin [20]

Doxorubicin [21]
Breast cancer Paclitaxel [22]

Doxorubicin [22]
Docetaxel [23,24]

Gemcitabine [24]
CDK4/6 inhibitor [25]

Epirubicin [24]
Head and neck cancer Cisplatin [26,27]

Pancreatic cancer Gemcitabine [28]
Hepatic carcinoma 5-Fluorouracil [29]

Oxaliplatin
Gemcitabine

Sorafenib
Colorectal cancer 5-Fluorouracil [30,31]

Oxaliplatin [31]
Ovarian cancer Cisplatin [32]

Paclitaxel [33,34]
Lymphoma Gemcitabine [35]

Prostate cancer Cisplatin [36]
Doxorubicin

Docetaxel
lncRNA Lung cancer Gefitinib [37]

Ovarian cancer Cisplatin [38]
Esophageal cancer Gefitinib [39]

Sorafenib [40]
Camptothecin [40]
Doxorubicin [40]

Renal cell carcinoma Sunitinib [41]
Glioblastoma Temozolomide [42]
Breast cancer Trastuzumab [43,44]

Colorectal cancer Oxaliplatin [45,46]
Bladder cancer Cisplatin [47]

circRNA Colorectal cancer Oxaliplatin [48]
Lung cancer Cisplatin [49]

Gastric cancer Cisplatin [50]
mRNA Glioma Temozolomide [51]

Lung cancer Cisplatin [52]
Gemcitabine [52]

Osteosarcoma Doxorubicin [53]
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Table 1. Cont.

EV Cargo Type Cancer Type Drug Resistance Ref.

Protein Breast cancer Adriamycin [54]
Docetaxel [55]

Doxorubicin [56]
Paclitaxel [57]

Trastuzumab [58]
Ovarian cancer Cisplatin [59]

Paclitaxel [60]
Platinum-based

therapy [60]

Cisplatin [61]
Osteosarcoma Doxorubicin [53]
Prostate cancer Docetaxel [62]

Colorectal cancer 5-Fluorouracil [63,64]
Pancreatic cancer Gemcitabine [65]
B-cell lymphoma R-CHOP [66]

Rituximab [67]
Glioblastoma Temozolomide [68]

Extracellular vesicles (EVs) can be classified into different subtypes. Using the nomen-
clature suggested by Minimal Information for Studies of Extracellular Vesicles 2018 (MI-
SEV2018) [69], it is possible to distinguish three different subtypes of vesicles: large EVs
(>1 µm), medium EVs (>150 nm and <1 µm), and small EVs (<150 nm) [69,70]. Another
possible classification is based on the cell origin of the extracellular vesicles. A first class
includes apoptotic bodies, which bud directly from the plasma membrane during late apop-
tosis and contain disaggregated cell components and organelles. The medium and small
size extracellular vesicles are also, respectively, described as microvesicles that directly
bud from the cell membrane and exosomes which originate from the exocytic fusion of
multivesicular bodies with the plasma membrane (Figure 1).

However, due to the heterogeneity in terms of size and the overlap of some biochemical
characteristics (markers) between exosomes and microvesicles, it is difficult to unequivo-
cally distinguish these two subgroups of vesicles [71,72]. As a consequence, most studies
on the extracellular vesicles are carried out on a mixture of exosomes and microvesicles.
For this reason, we will use the term EVs instead of exosomes or microvesicles throughout
the review.

Another important issue to consider about extracellular vesicles is the possible coisola-
tion of particles such as ribonucleoprotein aggregates, lipoproteins, and exomers [69]. For
instance, miRNAs bound with high-density lipoproteins may be co-isolated as a contami-
nant of miRNAs embedded into extracellular vesicles [73]. Thus, contaminants can affect
the correct interpretation of the experimental results. Further analyses of the isolated EVs to
determine the presence and the proportion of such contaminants are highly desirable [69].
However, in certain cases such as when only small amounts of working materials are
available, these additional investigations cannot be performed. In this case, as suggested by
MISEV2018, the results will be examined as action mediated by EV-enriched preparations,
rather than EV-specific activity [69].
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Figure 1. Representation of the biogenesis of vesicles. From a generic donor cell, budding of 
different vesicles: exosomes/small extracellular vesicles (size: less than 0.15 µm); 
Figure 1. Representation of the biogenesis of vesicles. From a generic donor cell, budding of different
vesicles: exosomes/small extracellular vesicles (size: less than 0.15 µm); microvesicles/medium
extracellular vesicles (size: 0.15–1 µm); apoptotic bodies/large extracellular vesicles (size: greater
than 1 µm). MVB, multivesicular body; EV, extracellular vesicle. Intracellular organelles, RNAs (red),
and proteins (green and light blue) are indicated.

2. Extracellular Vesicles, Drug Efflux, and Membrane Transporters

Drug efflux is a common mechanism underlying the chemoresistance of cancer cells.
In this respect, vesicles have been shown to play some key roles. One of the most common
cancer features is the presence of an acidic microenvironment primarily due to altered
glycolysis and hypoxia that causes the production of lactic acid and release of protons to the
extracellular milieu [74,75]. Recent studies demonstrated a link between microenvironment
acidity and increased secretion of vesicles [76,77]. In particular, there is evidence that
drug-resistant cancer cells secrete more exosomes than sensitive cells and that these vesicles
contain anticancer drugs. Accordingly, Federici et al. showed that human melanoma cells
could develop resistance against cisplatin, exporting the drug via vesicles whose release is
increased in the presence of an acidic environment [78]. The pretreatment of melanoma
cells with the proton pump inhibitor lansoprazole reduces exosome secretion and improves
cisplatin efficacy [78]. Accordingly, in vitro and in vivo experiments showed that inhibition
of vesicle biogenesis enhances the accumulation of doxorubicin and pixantrone in B-cell
lymphoma [79]. The treatment of breast and ovarian cancer cells with doxorubicin and
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pixantrone leads to increased secretion of vesicles containing considerable amounts of these
drugs, compared to untreated cells that in turn induce resistance [80].

Another mechanism by which vesicle secretion can be increased is based on annexin
A3 action. Upregulation of annexin A3, belonging to the phospholipid-binding protein
family, induces biogenesis and release of exosomes [81]. According to that, it was found
that this protein is enriched in drug-resistant ovarian cancer cells and its upregulation
correlated with the reduction in the intracellular Pt-drug concentration, which in turn
prevents apoptosis [7,82]. Moreover, annexin A3 was also directly found in extracellu-
lar vesicles, suggesting that the transfer of this protein may induce chemoresistance in
recipient cells [81].

Altogether, these findings correlate with a well-assessed role of vesicles in removing toxic
compounds from cells, representing a first biological function ascribed to exosome secretion.

In the context of vesicle-mediated drug resistance caused by the efflux or improper
accumulation of therapeutic agents in cancer cells, membrane transporters can be involved
as primary players.

Membrane transporters are classified into two major groups, according to the source of
energy used for the transport reaction, namely ABC and SLC super families. ATP-binding
cassettes (ABCs) are primary active transporters since they use ATP hydrolysis as energy for
driving transport [83,84], whereas solute carriers (SLCs) are secondary active transporters
that exploit the gradients of ions or other substrates across the cell membranes [85,86].
Another class of proteins, called P-type pumps, involved in many cell processes and present
in virtually all living organisms, have to be added to the list of transporters [87]. These
proteins share with the ABCs the source of energy, namely ATP hydrolysis.

The following sections will deal with the link between exosome-mediated drug resis-
tance and transporters belonging to ABC, SLC, and P-type pump families.

2.1. ABC Transporters and Exosomes in Drug Efflux

ABCs originated early during evolution and are conserved across all kingdoms of life,
sharing some structural features: regardless of being prokaryotic or eukaryotic proteins,
ABCs are constituted by two transmembrane domains (TMDs) and two nucleotide-binding
domains (NBDs) which are involved in the binding and hydrolysis of ATP [88,89]. ABC
are classified into seven families, including more than 50 members in humans [88] (https:
//www.genenames.org/data/genegroup/#!/group/417, accessed on 19 March 2022). An
eminent example of ABC transporters involved in drug efflux is given by the P-glycoprotein
(P-gp), also known as ABCB1 or MDR1 [90–92]. Among the ABC transporters, P-gp
is the best studied due to the discovery of its role in cancer development and progres-
sion [90–92]. Indeed, P-gp is famous as a drug transporter mainly involved in the efflux of
chemotherapy agents and is, hence, one of the most relevant players in chemoresistance.
Notwithstanding the large variety and different structures, a common feature among the
substrates recognized by P-gp is the hydrophobic nature of the molecules [90–92]. This is
probably due to the peculiar transport mechanism of P-gp that consists of anchoring the
substrate to the membrane before the actual translocation through P-gp, coupled to the
hydrolysis of ATP [93].

Given the role of P-gp in mediating drug efflux, strong efforts have been made to
identify good and specific inhibitors [94]. However, an intriguing paradox exists: indeed, a
pharmacological molecule, even though tested as an inhibitor, may behave as a substrate of
P-gp. Indeed, a sizable number of drugs failed to be true inhibitors of P-gp, being rather sub-
strates of the protein [94]. These results made it difficult to overcome the chemoresistance
linked to P-gp overexpression in human cancers.

This scenario is made even more complex considering that several SNPs have been
identified and annotated in P-gp, further influencing the substrate specificity [95]. Moving
from these premises, it is not surprising that alteration of the P-gp expression profoundly
influences the disposition and pharmacodynamics of many anticancer drugs [96].

https://www.genenames.org/data/genegroup/#!/group/417
https://www.genenames.org/data/genegroup/#!/group/417
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Several studies reported the presence of P-gp in extracellular vesicles that can induce
chemoresistance in sensitive recipient cancer cells [53,62,97]. In particular, P-gp is inserted
in the membrane of vesicles as in the native membrane, i.e., with the transmembrane-
spanning domain crossing the vesicle bilayer [97]. For instance, vesicles derived from
docetaxel-resistant prostate cancer cells (PC3) transfer the drug resistance to sensitive
cells by delivering P-gp as a cargo [62]. Similarly, extracellular vesicles released from
doxorubicin-resistant osteosarcoma cells induce resistance in recipient cells by delivering
P-gp mRNA and protein [53] (Figure 1 and Table 2). Another study demonstrated that
the P-gp level in blood vesicles from patients with docetaxel-resistant prostate cancer was
relatively higher than in patients that did not receive therapy [62].

Table 2. Exosomal bioactive molecules involved in the induction of drug resistance.

Section Effectors Mechanisms Cancer Type Drug
Resistance Marker Ref.

2 Acidic environment Increased EV secretion Melanoma Cisplatin Rab-5b
[78]CD63

ABCA3 depletion
Decreased EV secretion

ameliorates drug
sensitiveness

B-cell lymphomas Doxorubicin
Pixantrone

CD9
[79]CD63

ADAM10

Annexin A3 Increased EV secretion Ovarian cancer Pt-drugs TEM
[81]Hsp70

P-gp Delivering through
EVs

Prostate cancer
Docetaxel

CD9 [62]Doxorubicin
MDR-1

mRNA/P-gp
Delivering through

EVs Osteosarcoma Doxorubicin CD63 [53]

P-gp Delivering through
EVs Breast cancer Docetaxel TSG101 [55]

TrpC5 Induction of P-gp
expression Breast cancer Adriamycin Flotillin-2 [56]

TrpC5 Delivering through
EVs

Breast cancer Anthracycline
Taxane

CD63
[98]Flotillin-1

UCH-L1
Induction of P-gp

expression Breast cancer Adriamycin CD63
[54]Flotillin-1

LINC00355
Induction of P-gp

expression Bladder cancer Cisplatin CD9
[47]CD63

miR-1246
Downregulation of

caveolin1, Ovarian cancer Paclitaxel CD63 [34]
upregulation of P-gp

circ_PIP5K1A
Downregulation of Lung cancer Cisplatin CD81

[49]miR-101 CD63

linc-VLDLR Upregulation of
ABCG2

Hepatocellular cancer
Sorafenib,

camptothecin NTA [99]
Doxorubicin

ABCA3 Increased exosome
secretions

Malignant lymphoma Rituximab

Flotillin-2

[67]
Alix
CD9

CD63
ATP7A Increased Pt-drug

excretion
Ovarian cancer Pt-based drugs Microscopy of

labeled vesicles
[61]ATP7B

miR-4717-5p Downregulating of
ENT2

Lymphoma Gemcitabine CD9
[35]Cytarabine CD63

miR-1236

SLC9A1
downregulation
ameliorates drug

sensitiveness

Breast cancer Cisplatin

CD9

[100]
CD63
CD81
HSP70

Sulfasalazine (SAS)
EVs from cells treated

Melanoma
Immune

checkpoint
blockade (ICB)

therapy

TEM [101]with xCT inhibitor SAS
reduced ICB therapy

efficacy
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Table 2. Cont.

Section Effectors Mechanisms Cancer Type Drug
Resistance Marker Ref.

3 miR-145/−34a Lower apoptosis level Colon cancer 5-Fluorouracil NTA [30]

Bone marrow
stromal cell derived

EVs

Increase in
antiapoptotic proteins Multiple myeloma Bortezomib

Hsp90

[102]
Hsp70
CD63

Flotillin-1

SNHG14
Modulation of

Bcl-2/Bax Breast cancer Trastuzumab

CD9

[43]
CD63
CD81
Alix

PART1 Modulation of miR-129 Esophageal squamous
cell carcinoma

Gefitinib
CD63

[39]CD81

miR-21
Modulation of
PTEN/PDCD4

Squamous cell
carcinoma

Cisplatin CD81
[27]CD68

miR-32-5p PI3K/Akt pathway
activation

Hepatocellular
carcinoma

Multidrug CD63
[29]resistance TSG-101

Flotillin-1

miR-27a TP53 Prostate cancer
Cisplatin,
docetaxel,

doxorubicin

CD63
[36]CD9

EVs from
HBV-associated

Chaperone-mediated
autophagy Liver cancer Oxaliplatin CD63

[103]
liver cancer cells CD9

miR-425-3p Modulation of AKT1 Lung cancer Cisplatin TEM
[14]NTA

PD-L1
Activation of

Glioblastoma Temozolomide TSG101 [68]AMPK/ULK1
pathway

circ-PVT1
Modulating

Gastric cancer Cisplatin CD63
[50]miR-30a-5p CD9

SBF2-AS1 Modulation of
miR-151a

Glioblastoma Temozolomide
CD63

[42]CD81

MGMT Delivering through
EVs

Glioma Temozolomide
CD63

[51]CD81

4 miR-210 Inhibition of apoptosis Pancreatic cancer Gemcitabine
CD63

[104]CD81
GM130

miR-92a-3p FBXW7, MOAP1 Colorectal cancer
5-Fluorouracil CD63

[31]Oxaliplatin CD81
TSG101

G-CSF, IL-6 Gene expression
changes

Lung carcinoma Methotrexate

EV
communication

in [19]

Activin-A
cocultured cells
was blocked by

xyloside

Wnt
Reprogramming of

differentiated cancer
cells

Colorectal cancer 5-Fluorouracil CD81 [63]

5 HER2 Antibody binding Breast cancers Trastuzumab
CD63

[58]Flotillin-1

AFAP1-AS1 Upregulation HER-2 Breast cancers Trastuzumab
TSG101

[44]CD81

The transient receptor potential channel 5 (TrpC5) was also found in extracellular
vesicles deriving from adriamycin-resistant Michigan Cancer Foundation (MCF)-7 cells
(Table 2) [56,98]. The transfer of TrpC5 through the vesicular membrane confers the phe-
notype of resistance in drug-sensitive cells. The acquisition of exosomal TrpC5 leads to
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Ca2+ influx in breast cancer recipient cells. The increase in Ca2+ influx was specifically
ascribed to TrpC5, as confirmed by using specific TrpC5 inhibitors as well as blockers of
other cell Ca2+ channels. The increase in intracellular Ca2+ concentration of recipient cells
caused the nuclear translocation of the transcription factor Nuclear Factor of Activated
T-cells Cytoplasmic 3 (NFATC3), which induces P-gp overexpression [56]. Similarly, the
adriamycin-resistant breast cancer cells secreted vesicles containing UCH-L1 (Table 2) [54].
It is a member of the ubiquitin carboxyterminal hydrolase (UCH) family, which upregu-
lates P-gp expression through the MAPK/ERK signaling pathway [105]. The uptake of
UCH-L1-containing vesicles into adriamycin-sensitive breast cancer cells transferred the
chemoresistance phenotype [54]. Furthermore, it has been reported that vesicles released
by docetaxel-resistant breast cancer cell line (MCF-7) rendered recipient-sensitive MCF-7
cells resistant to the same drug by transferring the P-gp protein [55].

Besides proteins, extracellular vesicles can deliver other bioactive molecules, such as
nucleic acids (Figure 2 and Table 2). As an example, extracellular vesicles derived from
cancer-associated fibroblasts (CAFs) carry a specific long noncoding RNA (lncRNA), named
LINC00355. This lncRNA is responsible for buffering the miRNA miR-34b-5p, known as a
modulator of the P-gp protein [47]. The absorption of CAF vesicles, carrying LINC00355, by
bladder cancer cells triggers the overexpression of P-gp with the consequent acquirement
of a cisplatin-resistance phenotype (Table 2) [47].

A mechanism based on miRNA has also been described for ovarian cancer; in this case,
the resistance of cancer cells to paclitaxel is mediated by exosomes containing miR-1246,
which can target caveolin 1, i.e., a regulator of P-gp expression (Table 2). Therefore,
miR-1246 released into recipient cancer cells by extracellular vesicles reduces the ex-
pression of caveolin 1, which triggers the overexpression of P-gp1, causing resistance
to paclitaxel [34].

Another protein involved in drug resistance is multidrug resistance protein 1 (MRP1),
also known as ABCC1 [106]. MRP1 is mainly localized at the basolateral surface of epithelial
and the apical surface of brain capillaries [107]. This localization allows the efflux towards
the blood of the MRP1 substrates contributing to drug and xenobiotic disposition in normal
and cancer cells [106,107]. Like P-gp, ABCC1 recognizes a large variety of antineoplastic
drugs, antivirals, and toxicants [106,107]. Interestingly, vesicles released from non-small-
cell lung cancer contain the circular RNA phosphatidylinositol-4-phosphate 5-kinase type 1
alpha (circ_PIP5K1A) [49]. This molecule has miR-101 as a primary target; the disruption
of miR-101 causes the overexpression of ABCC1 given that ABCC1 protein levels are
negatively regulated by miR-101 [49]. Therefore, the miR-101/ABCC1 axis is disrupted
in recipient cells, and these acquire a cisplatin-resistant phenotype (Table 2). Conversely,
the knockdown of exosomal circ_PIP5K1A promoted cisplatin sensitivity in recipient lung
cancer cells [49].

Another member of the ABC superfamily with a well-acknowledged role in cancer
resistance is ABCG2, better known as breast cancer resistance protein (BCRP). As indi-
cated by the name, this protein was first identified in breast cancer cells (MCF-7) as highly
resistant to doxorubicin. Then, it was discovered that this protein is mainly expressed
in the placental syncytiotrophoblasts, in the canalicular membrane of the hepatocytes,
and on the luminal side of epithelial cells in the small and large intestine [108]. ABCG2
recognizes as a substrate a broad spectrum of anticancer drugs, sulfate and glucuronide
conjugates of xenobiotics, natural compounds, and toxins [108]. In the frame of chemore-
sistance related to extracellular vesicles, some reports indicated regulation of ABCG2
expression by long noncoding RNAs and circular RNA present in exosomes released by
cancer cells (Figure 2 and Table 2). For example, the long noncoding RNA known as
linc-VLDLR is an upstream positive regulator of ABCG2 [40]. The linc-VLDLR is highly
present in hepatocellular cancer (HCC) cells resistant to sorafenib, camptothecin, and dox-
orubicin [99]. Interestingly, vesicles released by the resistant cells contain linc-VLDLR as a
cargo. The exposure of sensitive HCC cells to extracellular vesicles carrying linc-VLDLR
increased ABCG2 expression, with a consequent reduction in cancer cell death [99]. The



Life 2022, 12, 618 9 of 25

same mechanism has also been described for the linc-VLDLR/ABCG2 axis in esophageal
cancer cells [40].
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Figure 2. Representation of pathways regulating membrane transporters in chemoresistance. Small
extracellular vesicles carry RNAs (in red, mRNA, miRNA, lncRNA), regulatory proteins (green), and
membrane transporters (blue). In the donor cells, mRNAs induce de novo transporter synthesis,
miRNAs reduce the expression of negative regulators of transporter function/expression, lncRNAs
induce miRNA degradation with consequent transporter overexpression, proteins (green) regulate
transporter function, and transporter(s) carried by small EVs are inserted directly in the membrane.

Finally, another link between extracellular vesicles, ABC transporters, and chemoresis-
tance has been proposed: indeed, besides other mechanisms, the biogenesis of vesicles in
hematological neoplasm is dependent on the lipid transporter ABCA3 (Table 2). ABCA3
levels in malignant lymphoma and myeloma are augmented with a consequent increase in
exosome secretions. This phenomenon is linked to the resistance to anticancer drugs such
as adriamycin, picoxenone [109], and rituximab [67].

2.2. P-Type ATPases and Extracellular Vesicles

The P-type ATPase family is formed by five groups (indicated by I–V symbols), each
including different classes able to recognize a specific ion as a substrate [87]. These proteins
are constituted by an even number of membrane-spanning domains with molecular masses
ranging from 70 to 150 kDa [87]. As suggested by the name, P-type ATPases can hydrolyze
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ATP, allowing for ion translocation through the cell membranes [87]. The overall architec-
ture of these proteins is well conserved within the family members and consists of four
domains indicated as P-domain, N-domain, A-domain, and M-domain [87]. The P-domain
is the phosphorylation site, being the core of the catalytic mechanism, and includes the
N-domain, i.e., the ATP-binding domain. The A-domain is located at the N-terminus of the
pumps and is responsible for the conformational changes occurring during the transport
cycle; it is plausible that the A-domain plays a regulatory role [87]. Finally, the M-domain
is the transmembrane portion of the pump responsible for the ion-path formation [87]. Two
P-type pumps have been identified as involved in the resistance to Pt-based drugs: the
copper efflux transporters ATP7A and ATP7B (Table 2) [61]. These participate in heavy
metal detoxification, thus being crucial for cell life [61,110]. Therefore, it is not surprising
that alterations of human ATP7A and ATP7B are associated with Wilson’s disease, which is
characterized by abnormal copper accumulation in the liver and the brain [110]. In contrast
to Wilson’s phenotype, the upregulation of ATP7A and ATP7B has been associated with
Alzheimer’s disease and chemoresistance. Interestingly, the authors of [111] found that
vesicles released by ovarian cancer cells resistant to Pt-based drugs harbor higher amounts
of ATP7A and ATP7B than exosomes derived from drug-sensitive cells. The same authors
also described augmented exosome secretion from resistant cells compared to that from
their sensitive counterparts [61].

2.3. Solute Carrier (SLC) Transporters and Extracellular Vesicles

SLC transporters are classified into 60 families, including more than 500 members. In
humans, indeed, SLCs are involved in the absorption of several nutrients and cofactors
and their distribution in intracellular organelles [112]. Moreover, SLCs are responsible for
the excretion of catabolites and reabsorption phenomena occurring in the kidney [112].
The role of SLCs in mediating cancer chemoresistance is well acknowledged due to their
ability to mediate drug transport, besides their physiological substrates [113–116]. Several
SLCs can be found in the dedicated database of exosome cargos, named Exocarta [117],
which also collects the rough proteomic data about exosomes released by cancer cells;
however, only little information is currently available on the function of these proteins as
exosome cargo(s) [35,100,101,118].

However, some information that links SLCs to drug resistance induced by extracellular
vesicles is available (Figure 2). An eminent example is the case of the equilibrative nucleo-
side transporter 2 (ENT2) [35,119]. It belongs to the SLC29 family and is responsible for the
uptake of purine and pyrimidine nucleosides [120]. ENT2 is a ubiquitous protein mainly
localized at the plasma membrane but has also been detected in nuclear membranes. Be-
sides nucleobases, ENT2 is involved in the transport of nucleoside-based drugs [120]. The
ability to recognize several pharmacological compounds as substrates made this protein a
hot pharmacological target for several diseases, including cancer and acquired immunode-
ficiency syndrome (AIDS) [121]. In the frame of chemoresistance mediated by extracellular
vesicles, the role of ENT2 has been linked to exosomes released from cancer-associated
fibroblasts (CAFs) to lymphoma [35,119]. Indeed, CAFs support lymphoma cell growth
and chemoresistance to gemcitabine and cytarabine by downregulating ENT2 expression
(Figure 1) [122]. CAF-derived vesicles were found to contain the miRNA-4717-5p that
targets a deubiquitinase, triggering a cascade event: the disruption of deubiquitinase
causes higher ubiquitination of ENT2 with following faster ENT2 degradation (Table 2).
Ultimately, increased resistance to anticancer drugs is observed [35].

Another SLC member involved in chemoresistance is SL9A1, known as NHE1 [123].
This protein belongs to the SLC9 family, a subgroup of the eukaryotic and prokaryotic
monovalent cation proton antiporter (CPA) superfamily (Transport Protein Database http:
//tcdb.ucsd.edu/tcdb/, accessed on 19 March 2022) [124,125]. NHE1 is a glycosylated
plasma membrane protein with a large hydrophilic C-terminus responsible for regulating
its activity [126]. NHE1 is ubiquitously expressed in mammalian cells and is responsible
for the exchange of Na+ and H+ with the consequent alkalization of the cell in defense

http://tcdb.ucsd.edu/tcdb/
http://tcdb.ucsd.edu/tcdb/
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of H+ derived from metabolism or electrically driven H+-accumulation [124,125]. NHE1
plays a crucial role in cell migration, proliferation, and death, and it has been linked to the
sensitivity of breast cancer cells to cisplatin [125]. In good agreement, silencing of SCL9A1
was responsible for the inhibition of cell migration, inhibition, and matrix metalloproteinase
production in breast cancer cells [127].

Interestingly, extracellular vesicles derived from adipose mesenchymal stem cells
(AdMSC-Exos) were shown to have an antiproliferative effect in recipient breast cancer
cells, ameliorating their drug resistance [100].

Indeed, these vesicles carry the miRNA miR-1236, which is an upstream negative
regulator of NHE1 in breast cancer cells where a link between NHE and the Wingless-
related integration site (Wnt)–catenin pathway has been proposed [100]. NHE1 activates
β-catenin which, in turn, induces cancer cell proliferation and resistance to DPP. Therefore,
when vesicles containing miR-1236 enter breast cancer cells, the degradation of NHE1
mRNA is responsible for the above-described antiproliferative effects [100].

Another SLC protein linked to exosomes and chemoresistance is SLC7A11, known
as xCT [128]. This protein forms a functional heterodimer with the glycoprotein CD98
(SLC3A2) via a disulfide bond between two conserved cysteine residues, whose 3D struc-
ture has been recently determined by CryoEM [129]. The protein xCT is well acknowledged
as a crucial player in cancer development and progression [130], being overexpressed in
virtually all human cancers, despite the narrower expression in nonpathological condi-
tions [131]. xCT is a plasma membrane transporter responsible for exchanging cystine with
glutamate with a 1:1 stoichiometry; the cystine taken up from the extracellular milieu is
reduced to cysteine for GSH synthesis [132]. This transport mechanism underlies the role
of xCT in the redox homeostasis of cells and, then, in the oxidative stress response. Indeed,
xCT has been described as the mediator of a recently discovered cell death pathway called
ferroptosis, characterized by an iron-dependent abnormal peroxidation [133]. In particular,
xCT impairment causes cystine depletion and consequent accumulation of lipid hydroper-
oxides [134]. The involvement in human cancers prompted the research of drugs with
inhibitory effects on the xCT transport activity, even though a link with chemoresistance
and poor survival of glioblastoma patients has been proposed [135].

In the context of anticancer research, an inhibitor of xCT that has been approved
by FDA is sulfasalazine (SAS). SAS upregulates ROS via xCT inhibition leading to cell
death [136]. In the exosome scenario, a link between xCT and immune checkpoint blockade
(ICB) therapy has been proposed in melanoma patients [101]. The study proposed that the
inhibition of xCT by SAS is strategic for treating melanoma patients in line with the altered
levels of glutamate found in cancer cells [101]. However, in the same study, it has been
shown that extracellular vesicles, released from melanoma cells treated with SAS, reduced
the efficacy of the ICB therapy [101]. Indeed, ICB therapy aims at enhancing antitumoral
immunity by acting on specific immune system components [137]. Therefore, the authors
concluded that melanoma patients affected by inflammatory diseases may not be eligible
for the combination of SAS and immunotherapy [101].

3. Extracellular-Vesicle-Induced Drug Resistance Promoting Prosurvival and
Antiapoptotic Pathways

A growing body of evidence has demonstrated that exosomes can mediate drug
resistance by modulating several cell processes (Figure 3) [3,7,138]. One of these is apoptosis,
which is disturbed in both acquired and intrinsic resistance to chemotherapies [7,138].
Indeed, drug resistance frequently makes tumor cells able to inhibit apoptosis, resulting in
cancer cell survival and unfavorable outcomes [139]. Extracellular vesicles can decrease
proapoptotic signaling in the donor cells or increase antiapoptotic signaling in the recipient
cells (Figure 3 and Table 2) [140].
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Figure 3. Representation of pathways regulating chemoresistance. Small extracellular vesicles carry
RNAs (in red, mRNA, miRNA, lncRNA), regulatory proteins (green), and membrane transporters
(blue) released by chemoresistant cancer cells (donor-red membrane). In the donor cells, RNAs (in
red, circRNAs, miRNAs, and lncRNAs) and proteins (green) regulate cell cycle control, proapototic
and antiapoptic programs, and autophagy. The donor cells release antiapoptotic proteins (blue) to
activate prosurvival pathways.

In the first case, vesicles embed and remove proapoptotic proteins such as caspase-3
from the donor cells. The decrease in the intracellular concentration of caspase-3 promotes
the shift towards an antiapoptotic state of the donor cells [141]. As demonstrated by
Boing et al., inhibition of the release of vesicles carrying caspase-3 rescued the normal level
of apoptosis in endothelial donor cells [141]. Another example of this mechanism occurs in
colorectal cancer, where the tumor-suppressive miRNAs miR-145 and miR-34 are removed
from cells through extracellular vesicles. This triggers a decrease in apoptosis level and an
increase in 5-fluorouracil resistance of these cells (Table 2) [30].

In recipient cells, extracellular vesicles can promote tumor survival by supplying
nucleic acids and proteins that directly interfere with antiapoptotic pathways [39,43]
(Figure 3). As an example, vesicles released by platelets carry the membrane receptor
CD41 (integrin a-IIb), which interacts with the extracellular matrix of cancer cells such as
bone marrow myeloma cells [140]. The interaction with CD41-related exosomes reduces
the phosphorylation of the c-Jun-N terminal kinase (JNK), with a consequent increase in
antiapoptotic proteins such as Bcl-2 and reduced cleavage of caspase-3 [102]. For instance,
vesicles can promote cell survival by delivering the lncRNA small nucleolar RNA host
gene 14 (SNHG14) to recipient cells [43]. Indeed, the upregulation of SNHG14 has been
associated with trastuzumab-resistance of HER2+ breast cell lines by targeting the apop-
tosis regulator Bcl-2/Bax signaling pathway. This lncRNA is highly expressed in vesicles
derived from resistant cells [43]. The incubation of sensitive cells with vesicles containing
SNHG14 induces trastuzumab resistance (Table 2) [43]. Following that, higher vesicular
levels of lncRNA SNHG14 were detected in the serum of patients who exhibited resistance
compared to responsive patients [43].

The Bcl-2/Bax pathway was also found to be modulated by another lncRNA named
PART1, secreted into exosomes that disseminate drug resistance to sensitive cells (Figure 1



Life 2022, 12, 618 13 of 25

and Table 2) [39]. Indeed, in esophageal squamous cell carcinoma, PART1 promotes
resistance to gefitinib because it is able to competitively bind miR-129 which in turn
facilitates the expression of the antiapoptotic Bcl-2 protein [39] (Figure 3 and Table 2).
Moreover, extracellular PART1, embedded into vesicles, can transfer the gefitinib resistance
to recipient cells with the same molecular mechanism. In good agreement, high serum
levels of PART1 were associated with poor response to patient treatment [39].

Furthermore, vesicles can confer resistance by delivering miRNAs into chemosensitive
tumor cells, altering cell cycle control and inducing antiapoptotic programs (Figure 3) [23].
This is the case of vesicular miR-21 that induced cisplatin resistance in oral squamous
cell carcinoma by targeting phosphatase and tensin homolog (PTEN) and programmed
cell death protein 4 (PDCD4), which are tumor suppressors involved in apoptosis, cell
transformation, invasion, and tumor progression [27]. PTEN is also suppressed through the
phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway activation induced
by vesicular miR-32-5p (Table 2). Indeed, in hepatocellular carcinoma, drug-resistant cells
deliver miR-32-5p-containing exosomes inducing resistance into sensitive counterparts by
modulating angiogenesis and epithelial–mesenchymal transition [29]. miRNAs also target
TP53 [142], another crucial player in cell cycle arrest and apoptosis [36]. Alterations of its
expression and function cause resistance to canonical anticancer drugs. In prostate cancer
cells, vesicles induce resistance to cisplatin, docetaxel, and doxorubicin through the action
of miR-27a, which targets p53 mRNA (Table 2) [36].

Another cell process enhanced in resistant cancer cells is autophagy [143]. The ac-
tivation of autophagy in response to environmental stress, including that deriving from
chemotherapeutic agents, helps cell survival and is implicated in the development of drug
resistance [144]. For instance, vesicles derived from hepatitis B virus (HBV)-associated liver
cancer cells induce oxaliplatin resistance by activating chaperone-mediated autophagy [103].
In the case of non-small-cell lung cancer, vesicles can mediate chemoresistance by deliv-
ering miR-425-3p, whose transcription is upregulated by cisplatin-induced c-Myc. Vesic-
ular miR-425-3p confers chemoresistance through the activation of autophagy targeting
AKT1 [14] (Table 2). Moreover, glioblastoma-derived stem cells secrete exosomes that en-
hance chemoresistance; indeed, these vesicles contain programmed death-ligand 1 (PD-L1),
which activates the AMP-activated protein kinase (AMPK)/Unc-51-like kinase 1 (ULK1)
pathway mediating autophagy activation that, in turn, results in the increased TMZ-
resistance in glioblastoma cells (Table 2) [68]. Vesicular circulating plasmacytoma variant
translocation 1 (PVT1) was found to facilitate drug resistance in gastric cancer cells; it
induces autophagy activation by modulating the miR-30a-5p, whose target is YAP1, a factor
involved in the transcriptional modulation of several genes related to cell proliferation and
apoptosis suppression [50].

Finally, vesicles can promote tumor cell survival by triggering DNA repair [145].
Indeed, many anticancer agents target cancer cells, inducing DNA lesions [146,147]. Vesi-
cles that contain in their lumen a long noncoding RNA named SBF2 antisense RNA1
(lncRNA SBF2-AS1) are secreted by glioblastoma cells resistant to temozolomide (Table 2).
SBF2-AS1 acts on miR-151a that normally represses X-ray repair cross-complementing
4 (XRCC4) [42,148]. Consequently, vesicles from temozolomide-resistant glioblastoma
cells spread a resistant phenotype, delivering high levels of SBF2-AS1 to sensitive cells,
which in turn deregulates XRCC4 and enhances the DNA double-strand break repair
process [42,148]. Vesicles from reactive astrocytes spread temozolomide resistance by de-
livering O6-alkylguanine DNA alkyltransferase (MGMT) mRNA to glioma cells. Indeed,
MGMT plays a crucial role in repairing DNA damage induced by temozolomide [51].

4. Cancer Stem Cell Derived Vesicles and Chemoresistance

Tumors consist of a heterogeneous population of stromal cells, immune cells, fibrob-
lasts, and cancer stem cells (CSCs) [149]. These are characterized by self-renewal capacity,
upregulation of drug efflux pumps, increased DNA repair, and dormancy [150]. As a
consequence of the above-mentioned features, CSCs are resistant to standard therapies
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such as anticancer drug treatments and radiotherapy [151]. Several studies individuate ex-
tracellular vesicles as the carrier through which CSCs transfer active molecules to non-CSCs
for drug resistance. It was demonstrated that CSCs isolated from gemcitabine-resistant pan-
creatic cancer release vesicles that can stimulate the expression of drug-resistance-related
proteins, such as P-gp, Y-box binding protein 1, and breast cancer resistance protein, in a
drug-sensitive pancreatic cancer cell line [104]. Moreover, these vesicles are enriched in
miR-210 [104], which can inhibit drug-induced apoptosis and increase the phosphorylation
of ribosomal protein S6 kinase beta-1, a downstream target of mTOR [152]. Another miRNA
associated with chemoresistant phenotype is miR-92a-3p (Table 2).

miR-92a-3p, embedded into vesicles secreted by cancer-associated fibroblasts, induces
drug resistance in colorectal cancer cells, promoting cell stemness phenotype and epithelial–
mesenchymal transition (EMT) [31]. Indeed, miR-92a-3p targets F-box and WD repeat
domain-containing 7 (FBXW7) and modulator of apoptosis protein 1 (MOAP1), which
are involved in the modulation of mTOR and apoptosis, respectively (Table 2) [31,153].
Cancer-associated fibroblasts exosomes can also transfer IL-6, activin-A, and granulocyte
colony-stimulating factor (G-CSF), inducing gene expression changes with consequent
activation of stemness-associated pathways and methotrexate resistance in lung carcinoma
cells [19]. Similarly, exosome Wnt induces resistance to 5-fluorouracil via reprogramming
differentiated colorectal cancer cells [63] (Table 2).

5. Vesicle-Mediated Resistance to Immunotherapies

Cancers have evolved several strategies to evade immune surveillance; one of these
consists of modulating the tumor microenvironment by inhibiting immune response or
inducing immune suppressor cells via exosome secretion [154]. Cancer-derived exosomes
can impair lymphocyte response, inhibit monocyte differentiation, induce apoptosis in
activated T lymphocytes, and downmodulate the cytolytic activity of natural killer (NK)
cells [138]. Moreover, vesicles also play a role in immunotherapy resistance. Indeed, these
vesicles might act as a decoy target for anticancer immunotherapies [3,155,156]. Vesicles
derived from certain tumors can directly bind and neutralize, at least partially, antibody-
based drugs. Trastuzumab is a humanized monoclonal antibody that is widely used to treat
HER2+ breast cancer [157] and targets the extracellular domain of HER2. HER2+ breast
cancer cells release vesicles expressing this receptor on the surface and competing with
that of cancer cells in the binding of trastuzumab, causing a reduction in its bioavailability
and efficacy (Table 2) [58]. Moreover, it was recently suggested that a long noncoding
RNA named AFAP1-AS1 plays a critical role in establishing trastuzumab resistance [44].
Vesicles mediated the AFAP1-AS1 transfer from trastuzumab-resistant cells to sensitive
cells, disseminating drug resistance [44]. The mechanism by which AFAP1-AS1 induces
chemoresistance is related to its ability to upregulate HER-2 protein expression through
associating with A+U rich RNA binding factor 1 (AUF1) (Table 2) [44]. Rituximab is another
antibody used to treat cancer [158] that directly interacts with a vesicle cargo protein.

This chimeric antibody, used in lymphoma therapy, recognizes the cell surface CD20
antigen and induces apoptosis, cytolysis, and complement-dependent cell cytotoxicity
(Table 2) [67]. Vesicles isolated from lymphoma specimens and aggressive B-cell lines
harbor, at their membrane, a high amount of CD20 that can bind to rituximab, lowering the
drug efficacy [67]. The mechanism by which vesicles reduce the efficacy of rituximab is
enhanced by the action of ABCA3, as described in Section 2.1 [67].

6. Extracellular Vesicles as a Tool to Monitor Chemoresistance

The resistance to anticancer agents remains the leading cause of treatment failure for
many oncological patients [3–5]. Thus, developing a panel of biomarkers is necessary to
identify chemotherapy-resistant patients. As described in the above paragraphs, emerging
evidence has revealed the correlation between the onset of chemoresistance and some
vesicular components. These data are mainly obtained using vesicles isolated from cancer
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cell cultures. However, in the last year, a growing number of studies also include the
analysis of liquid biopsies from patients to obtain a preliminary in vivo validation [159,160].

In this regard, some examples of lung, prostate, and breast cancers will be described.
Janpipatkul et al. analyzed the vesicular miRNA profile of eight patients affected by
non-small-cell lung cancer (NSCLS) [161]. The patients were diagnosed with advanced
NSCLC with EGFR mutations and started treatment with osimertinib. This drug is a third-
generation inhibitor targeting the epidermal growth factor receptor tyrosine kinase (EGFR);
it is used to treat a subgroup of NSCLS patients harboring the T790M-EGFR mutation [161].
It is reported that resistance could appear after 9–13 months of treatment [162]. The analysis
of vesicular miRNAs isolated from blood samples indicated that miR-323-3p, miR-1468-3p,
miR-5189-5p, and miR-6513-5p are suitable candidate biomarkers for the discrimination of
osimertinib-resistant from osimertinib-sensitive NSCLC patients [161]. In another study,
blood sampling was performed before Pt-based chemotherapy administration and repeated
after the occurrence of chemoresistance in 19 NSCLC patients [14]. The analysis of vesicular
miRNAs showed that miR-425-3p is abundantly present and might represent a potential
biomarker for identifying cisplatin resistance in NSCLC patients [14]. The same miR-425-
3p was analyzed in another study that involved 170 patients (76 platinum-resistant and
94 platinum-sensitive). In this case, after collecting serum samples of lung cancer, the
authors concluded that miR-425-3p is a good candidate for predicting the clinical response
to Pt-based chemotherapy [153]. Furthermore, miR-222-3p significantly correlated with the
patient response to chemotherapy; indeed, a study involving 50 patients with lung cancer
(NSCLC) demonstrated that high levels of miR-222-3p in serum seem to be predictive of a
negative response to gemcitabine treatment [16].

The first-line treatment for prostate cancer, the most commonly diagnosed malignancy
in men, is androgen deprivation therapy (ADT); however, about 50% of patients become
resistant [163]. In the case of resistance, one of the possible therapeutic interventions
is docetaxel, but most patients also acquire docetaxel resistance [164]. A recent study
demonstrated that a high copy number of the variant isoform CD44v8-10 mRNA in vesicles
is correlated with docetaxel resistance; the study was conducted on blood samples from
three groups of patients: controls (n = 15), prostate cancer patients that had not previously
received docetaxel therapy (n = 50), and patients with docetaxel-resistant prostate cancer
(n = 10). On the contrary, the serum exosomal mRNA of the CD44 standard isoform was
not significantly different among the three groups [163]. In the same context, the P-gp
level could also serve as a marker for docetaxel resistance in prostate cancer; indeed, in
blood exosomes from six docetaxel-resistant patients, the P-gp level was higher than that
in patients that had not previously received docetaxel therapy [62]. Another possible
strategy to treat ADT-resistant patients is the use of androgen signaling-targeted therapies
such as abiraterone and enzalutamide [165]. A study enrolling 36 patients demonstrated
that abiraterone and enzalutamide resistance can be predicted by measuring the level of
androgen receptor splice variant 7 RNA in plasma-derived vesicles [166]. Moreover, the
currently adopted criteria for diagnosing prostate cancer include the use of the prostate-
specific antigen (PSA), which showed a low specificity for prostate cancer. This results in an
increase in unnecessary biopsies as part of surveillance programs [167]. On the other hand,
due to the heterogeneity of primary prostate cancer, tumor biopsy may not necessarily
detect the true characteristics of a tumor [168,169]. In light of this, extracellular vesicles
collected from body fluids such as urine more likely reflect the current state of cancer cells
from which they originated [169]. McKiernan et al. designed and validated a predictive
urine-based extracellular vesicle test for prostate cancer using a cohort of 503 men. The
amount of exosomal mRNA of prostate cancer antigen 3 (PCA3), ETS-related gene (ERG),
and SAM pointed domain-containing Ets transcription factor (SPDEF) was determined for
each patient. The results highlight that this test is predictive of high-grade prostate cancer
and may contribute to reducing unnecessary biopsies [167,170].

While prostate cancer is the most commonly diagnosed cancer in men, breast cancer
is the second leading cause of women’s death [171]. The human epidermal growth factor
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receptor-2 (HER2) is overexpressed in many breast cancer patients and is the target of
the trastuzumab, as described in Section 5. However, a consistent number of patients
became resistant to this therapy within 1 year of exposure [172–174]. A study showed that
vesicular miR-1246 and miR-155 were upregulated in four trastuzumab-resistant patients
compared with four patients that responded to therapy [172]. Another study analyzed the
expression level of serum vesicular lncRNA-SNHG14 from 38 responding patients and
34 non-responding to trastuzumab therapy, revealing that the lncRNA was upregulated
in patients with resistance [43]. It has to be highlighted that trastuzumab is not the only
treatment available for breast cancer; indeed, anthracycline and taxane are frequently
used in breast cancer patients as neoadjuvant chemotherapies to decrease tumor size and
prevent metastasis [175].

However, not all patients respond to the treatment due to intrinsic or acquired re-
sistance [176]. Yang et al. analyzed the expression of the glutathione S-transferase P1
(GSTP1) in exosomes from 30 patients treated with anthracycline/taxane-based neoadju-
vant chemotherapy. Results suggested that GSTP1 was significantly higher in the lumen
of vesicles from the 14 patients who did not respond to the therapy than in responsive
patients [175]. Another study on 131 patients with breast cancer demonstrated that the level
of transient receptor potential channel TRPC5 in the membrane of vesicles is a promising
candidate as a noninvasive chemoresistance marker [98]. Ning et al. analyzed exosomes
isolated from the blood of 93 patients with breast cancer and discovered that the vesicular
ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1) is a useful biomarker for detecting
chemoresistance in breast cancer [54].

Similar studies have also been conducted on other cancer types, showing that ex-
tracellular vesicles can be used to monitor chemotherapy efficacy [41,42,177–179]. In the
case of colorectal cancer (CRC), serum samples from patients have been collected and
analyzed [180]; in particular, extracellular vesicles containing the lncRNA UCA1 have
been identified as responsible for cetuximab resistance phenotype through degradation of
miR-204-5p [180]. In the case of ovarian cancer, serum samples were found to contain extra-
cellular vesicles carrying the circular RNA circFoxp1 [177]. This molecule is responsible
for cisplatin resistance by targeting miRNAs miR-22 and miR-150-3p [177]. The sorafenib
resistance of hepatocellular carcinoma (HCC) has been linked to extracellular vesicles
found in the serum of patients containing a lower amount of miR-744 [178]. In the case of
renal cell carcinoma (RCC), the resistance to sunitinib treatment is ascribed to an lncRNA,
named lncRNA activated in RCC with sunitinib resistance (lncARSR), which binds to
miR-34/miR-449 [41]. Glioblastoma is one of the most aggressive tumors, and TMZ is the
first-line chemotherapy; however, chemoresistance to TMZ is a common occurrence in
glioblastoma and is mediated by miR-1587 and miR-151a contained in serum vesicles [179].
Another study conducted on glioblastoma samples highlighted the miR-4315 released by
lymphocytes as responsible for resistance to the anti-PD-1 therapy [42]. In the case of
chronic myeloid leukemia (CML), the resistance to imatinib is mediated by miR-365 re-
leased in extracellular vesicles [181]. In all the mentioned studies, the extracellular vesicles
produced by resistant cancer cells can induce the resistant phenotype in sensitive recipient
cells [41,42,177–179]. Therefore, circulating serum vesicles can be considered a promising
tool for identifying the cancer stage and responsiveness to treatment.

7. Conclusions

Extracellular vesicles represent a highly attractive source of biomarkers because these
vesicles can be easily collected from different body fluids by liquid biopsy. This is greatly
relevant in terms of the life quality of cancer patients because it is possible to monitor cancer
treatment response via a noninvasive procedure. Compared to other types of molecules
that can be isolated from body fluids, such as circulating miRNA or circulating tumor DNA,
extracellular vesicles are highly preferable because their membrane protects cargo(s) from
degradation (Figure 1). Moreover, vesicle analysis offers the opportunity to isolate multiple
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biomarkers simultaneously. Indeed, comparing a panel of markers may give more accurate
results or information to predict therapeutic response.

However, still, some limitations exist: an aspect to consider is the type of body
fluid used for collecting extracellular vesicles. Urine is a suitable source from which to
isolate vesicles for detecting biomarkers of the urinary system such as those signifying
prostate, bladder, and kidney cancers. Another body fluid that is used in the detection of
biomarkers for detecting oral and lung cancer is saliva [182]. Saliva is the most proximal
body fluid in oral cancer and is easily accessible in a noninvasive manner [183]. An
example of the potential use of saliva as a source of biomarkers to predict oral cancer is
reported by Gai et al. In this study, miR-302b-3p and miR-517b-3p were found selectively
enriched in salivary EVs from 16 oral squamous cell carcinoma patients compared to those
from 6 healthy controls [184]. Moreover, He et al. showed that the level of miR-24-3p
from the salivary vesicles of 45 OSCC patients is significantly higher compared to that of
10 normal controls [185]. Another example is represented by the salivary vesicle GOLM1-
NAA35 chimeric RNA, which was proposed as a noninvasive biomarker candidate for
reliable assessment of therapeutic response, recurrence, and early detection of esophageal
squamous cell carcinoma [186].

However, for other cancer types, blood is the source of choice for vesicle isolation.
In this respect, it has to be stressed that blood contains a large number of proteins
that can contaminate exosome preparation, making the detection of poorly expressed
biomarkers difficult.

Other prerequisites for developing a functional clinical test are cheapness and easy
execution. Currently, the exosome isolation methods are time-consuming or expensive.
Nevertheless, the feasibility of using extracellular vesicles biomarkers in precision medicine
is demonstrated by the fact that in 2019, the EPI test, the first EV-based Clinical Laboratory
Improvement Amendments (CLIA)-validated and clinically available test, received the
FDA breakthrough design designation for fast-tracked approval process. It is a noninvasive
urine exosome-based diagnostic test that measures the RNA of prostate cancer antigen 3
(PCA3), ETS-related gene (ERG), and SAM pointed domain-containing Ets transcription
factor (SPDEF). This test can guide physicians in determining the need for a prostate
biopsy in patients 50 years of age or older with a prostate-specific antigen (PSA) in the
grey zone [187].

Moreover, as extracellular vesicles naturally carry bioactive molecules between cells,
some studies suggest that these may serve to deliver drugs or RNAs in the context of cancer
therapy or to reverse drug resistance [140,188]. Indeed, extracellular vesicles may offer
some advantages as delivery carriers, such as biocompatibility, non-cytotoxicity, and low
immunogenicity [140,189,190]. In this light, Liang et al. showed that the administration of
engineered extracellular vesicles loaded with the 5-fluorouracil and the miR-21 inhibitor
oligonucleotide (miR-21i) to resistant colon cancer cells effectively reverses drug resis-
tance [188,191]. Therefore, even if the way is still long, all the mentioned findings strongly
support the development of a therapeutic and diagnostic era based on exosomes.
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