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Abstract: Conventional decision trees use queries each of which is based on one attribute. In this
study, we also examine decision trees that handle additional queries based on hypotheses. This kind
of query is similar to the equivalence queries considered in exact learning. Earlier, we designed
dynamic programming algorithms for the computation of the minimum depth and the minimum
number of internal nodes in decision trees that have hypotheses. Modification of these algorithms
considered in the present paper permits us to build decision trees with hypotheses that are optimal
relative to the depth or relative to the number of the internal nodes. We compare the length and
coverage of decision rules extracted from optimal decision trees with hypotheses and decision rules
extracted from optimal conventional decision trees to choose the ones that are preferable as a tool
for the representation of information. To this end, we conduct computer experiments on various
decision tables from the UCI Machine Learning Repository. In addition, we also consider decision
tables for randomly generated Boolean functions. The collected results show that the decision rules
derived from decision trees with hypotheses in many cases are better than the rules extracted from
conventional decision trees.

Keywords: decision rule; decision tree; representation of information; hypothesis

1. Introduction

Decision trees are commonly used as classifiers, as an algorithmic tool for solving
various problems, and a means of representing information [1–3]. They form a part of sta-
tistical learning, which refers to a vast set of tools for understanding data [4]. Conventional
decision trees studied in test theory [5], rough set theory [6–8], and many other areas of
computer science exploit queries based on a single attribute. In [9–12], we considered deci-
sion trees that also exploit queries based on hypotheses. Such decision trees are analogous
to the tools that have been analyzed in exact learning [13–15], where both membership and
equivalence queries are used.

In the present paper, we analyze decision trees with hypotheses as a means for
representation of information. We design dynamic programming algorithms to optimize
such trees corresponding to two cost functions. For various decision tables, we build
optimal decision trees and analyze the length and coverage of decision rules extracted
from the constructed trees to study which kinds of decision trees are more suitable for the
representation of information.

Let us have a decision table T that contains n attributes. We can use two types of
queries in the decision trees for this table. We can ask about the value of an attribute. As a
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result, we obtain this value. We can choose an n-tuple of possible values of attributes and
formulate a hypothesis that it is really the tuple of values of the considered attributes. As a
result, we either obtain confirmation of the hypothesis or a counterexample. We call this
hypothesis proper if the considered n-tuple is a row of the table T.

We studied the following five types of decision trees:

1. Using attributes.
2. Using hypotheses.
3. Using both attributes and hypotheses.
4. Using proper hypotheses.
5. Using attributes as well as proper hypotheses.

We analyzed four different cost functions for the decision trees: the depth, the number
of realizable nodes, the number of realizable leaf nodes, and the number of internal nodes.
We define a node as realizable relative to a given decision table if a computation can pass
through this node for at least one row of the considered decision table.

Previously, we proposed a dynamic programming algorithm in [12] for each of these
four cost functions. When we give a decision table and a type of decision tree to this
algorithm, it returns the minimum cost of a decision tree of a given type for the given table.
The results of the computer experiments show that decision trees with hypotheses can
have less complexity than conventional decision trees. It means that they can be used as a
means for the representation of information.

The present paper has two aims. The first aim is to construct optimal decision trees
with hypotheses. We know that such trees can be used for the representation of information
(especially decision trees of type 3). However, the algorithms from [12] were designed
only to find the complexity of optimal trees. The algorithms for the two cost functions
(the depth and the number of internal nodes) can be modified to build optimal decision
trees. Unfortunately, we cannot use a similar approach to build optimal decision trees of
types 2 and 3 relative to the number of realizable nodes and optimal decision trees of type
2 relative to the number of realizable leaf nodes.

The second aim is to study the length and coverage of decision rules extracted from
the optimal decision trees. Decision rules can be considered one of the simplest and most
understandable models for the representation of information. Deriving decision rules
from decision trees is a well-known approach. We want to confirm that the decision rules
derived from decision trees with hypotheses can be better than the rules derived from
conventional decision trees.

For computer experiments, we chose eight decision tables from the UCI ML Repository [16]
as well as 100 randomly generated Boolean functions that contain n variables (n = 3, . . . , 6). We
constructed optimal (relative to the depth or to the number of internal nodes) decision trees of
five types for these tables. Then we analyzed the length and coverage of decision rules extracted
from these trees. For a decision tree with hypotheses for some rows of the considered decision
table, it can be more than one derived decision rule that covers the row. In this case, for each row
we chose the best rule. The results of the computer experiments show that the decision rules
derived from the decision trees with hypotheses, in many cases, are better than the ones derived
from conventional decision trees.

The novelty of the paper is directly related to its two main contributions: (i) the
modification of dynamic programming algorithms described in [12] such that the modified
algorithms can now construct optimal decision trees of five types relative to two cost
functions and (ii) the experimental confirmation that the decision rules derived from the
decision trees with hypotheses can be more suitable for the representation of information
than the decision rules derived from conventional decision trees.

To make the paper more understandable, we add to it slightly modified definitions
and one algorithm from [12].

We present the remaining parts of the paper as follows: important notions in
Sections 2 and 3, the decision tree optimization based on dynamic programming algo-
rithms in Sections 4–6, experimental results in Section 7, and short conclusions in Section 8.
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2. Decision Tables

We can define a decision table T as follows:

• It is a rectangular table that contains n (n ≥ 1) columns.
• Its columns are tagged by conditional attributes f1, . . . , fn.
• Its columns’ values are from the set ω = {0, 1, 2, . . .}.
• Its rows are unique.
• Its rows are tagged by numbers from ω interpreted as decisions.
• Its rows are considered as tuples of values of the conditional attributes.

When a decision table does not have any rows, then we call it an empty table. We
define a degenerate table as a decision table which is either empty or has all of its rows
tagged by the same decision.

Furthermore, we consider the following notation for T:

• F(T) is the set of conditional attributes, i.e., F(T) = { f1, . . . , fn}.
• D(T) is the set of decisions that are attached to rows.
• E(T, fi) is the set of fi’s values where fi ∈ F(T).
• E(T) is the set of conditional attributes of T for which |E(T, fi)| ≥ 2.

Let S = { fi1 = δ1, . . . , fim = δm} be a system of equations where m ∈ ω, fi1 , . . . , fim ∈
F(T), and δ1 ∈ E(T, fi1), . . . , δm ∈ E(T, fim) (S is empty when m = 0). We denote by TS the
subtable of T consisting of all rows of T that have values δ1, . . . , δm when they intersect
with the columns fi1 , . . . , fim . Such subtables are called separable subtables of T.

3. Decision Trees and Rules

In this section, we define notions of decision trees and rules related with a given
nonempty decision table T that contains n conditional attributes f1, . . . , fn. Let us consider
the decision trees in connection with two types of queries. The first type of query is to ask
the value of an attribute fi ∈ F(T) = { f1, . . . , fn}. The answer of this query is from the set
A( fi) = {{ fi = δ} : δ ∈ E(T, fi)}. The second type of query is to ask about a hypothesis
over T in the form of H = { f1 = δ1, . . . , fn = δn} where δ1 ∈ E(T, f1), . . . , δn ∈ E(T, fn).
The answer of this query is from the set A(H) = {H, { f1 = σ1}, . . . , { fn = σn} : σ1 ∈
E(T, f1) \ {δ1}, ..., σn ∈ E(T, fn) \ {δn}}. If the answer is H, then the hypothesis is true.
Other answers are counterexamples. Note that H is a proper hypothesis for T if (δ1, . . . , δn)
is a row of the table T.

A decision tree over T is a tagged finite directed rooted tree, where the following hold:

• We label each leaf node by a number from the set D(T) ∪ {0}.
• We label each internal node by a hypothesis over T or an attribute from the set F(T). In

both cases, there is exactly one edge leaving this node for each answer, either from the
set A(H) in the case of hypothesis query or from the set A( fi) in the case of attribute
query, and no other edges exit from this node.

Let us consider a decision tree Γ over T. If v is a node of Γ, then we define an equation
system S(Γ, v) over T corresponding to the node v. We denote the directed path from the
root of Γ to the node v as ξ. When ξ does not have any internal nodes, then S(Γ, v) is the
empty system. On the other side, if it has internal nodes, then S(Γ, v) is the union of the
systems of equation attached to the edges in ξ.

We consider a decision tree Γ over T as a decision tree for T if, for any node v of Γ, the
following hold:

• When the node v is a leaf node, then the subtable TS(Γ, v) is degenerate and vice versa.
• When v is a leaf node and the subtable TS(Γ, v) is empty, then we label the node v by

the decision 0.
• When v is a leaf node and the subtable TS(Γ, v) is nonempty, then we label the node v

by the decision attached to all rows of TS(Γ, v).

An arbitrary directed path ξ from the root to a leaf node v in Γ is called a complete
path in Γ. Denote T(ξ) = TS(Γ, v).
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The depth of a decision tree Γ is analogous to its time complexity. We denote its depth
by h(Γ), which is defined as the maximum number of internal nodes in a complete path in
the tree. Similarly, the number of internal nodes in a decision tree Γ (denoted by Lw(Γ)) is
analogous to its space complexity.

Let Γ be a decision tree for T, ξ be a complete path in Γ such that T(ξ) is a nonempty
table, and the leaf node of the path ξ be tagged with the decision d. We now define a
system of equations S(ξ). S(ξ) is the empty system in the case of no internal nodes in ξ.
Let us assume now that ξ contains at least one internal node. We now transform systems
of equations attached to edges leaving internal nodes of ξ. If an edge is tagged with an
equation system containing exactly one equation, then we not change this system. Let an
edge e leaving a internal node v be tagged with an equation system containing more than
one equation. Then v is tagged with a hypothesis H and e is tagged with the equation
system H. (Note that if such a node exists, then it is the last internal node in the complete
path ξ.) In this case, we remove from the equation system H attached to e all equations of
the kind f j = σ such that f j /∈ E(TS(Γ, v)). Then, we can obtain S(ξ) as the union of new
equation systems corresponding to edges in the path ξ. One can show that T(ξ) = TS(ξ).

We correspond to the complete path ξ the decision rule,∧
fi=δ∈S(ξ)

( fi = δ)→ d.

We denote this rule by rule(ξ). The number of equations in the equation system S(ξ)
is called the length of the rule rule(ξ) and is denoted l(rule(ξ)). The number of rows in the
subtable TS(ξ) is called the coverage of the rule rule(ξ) and is denoted c(rule(ξ)).

Denote Ξ(T, Γ) the set of complete paths ξ in Γ such that the table T(ξ) is nonempty
and Rows(T) the set of rows of the decision table T. For a row r ∈ Rows(T), we denote by
l(r, T, Γ) the minimum length of a rule rule(ξ) such that ξ ∈ Ξ(T, Γ) and r is a row of the
subtable TS(ξ), and we denote by c(r, T, Γ) the maximum coverage of a rule rule(ξ) such
that ξ ∈ Ξ(T, Γ) and r is a row of the subtable TS(ξ).

We use the following notation:

l(T, Γ) =
∑r∈Rows(T) l(r, T, Γ)
|Rows(T)| ,

c(T, Γ) =
∑r∈Rows(T) c(r, T, Γ)
|Rows(T)| .

4. Construction of Directed Acyclic Graph ∆(T)

Let us consider a nonempty decision table T that has n conditional attributes f1, . . . , fn.
The Algorithm 1 ADAG is used for the construction of a directed acyclic graph (DAG)
∆(T). Consequently, this DAG is used for the construction of optimal decision trees. Some
separable subtables of the table T are the nodes of this DAG. We process one node during
each iteration of the algorithm. We begin by the graph consisting of unprocessed one node
T and end by processing all nodes of the graph. This algorithm was described and used
in [9,10,12]. It is a special version of the more general algorithm considered in [17].
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Algorithm 1 ADAG (building of DAG ∆(T)).
Input: A nonempty decision table T that has n conditional attributes f1, . . . , fn.
Output: Directed acyclic graph ∆(T).

1. Build the graph consisting of one node T that is not tagged as processed.
2. Check the processing of all nodes of the graph is completed or not. If yes, then the

algorithm halts and returns the resulting graph as ∆(T). Otherwise, select a node
(table) Θ which is yet unprocessed.

3. Check node Θ is degenerate or not.
(a) If yes, then tag the node Θ as processed and move to step 2.
(b) If no, then draw a bundle of edges from the node Θ for each fi ∈ E(Θ).

Let E(Θ, fi) = {a1, . . . , ak}. Then draw k edges from Θ and attach to these
edges systems of equations { fi = a1}, . . . , { fi = ak}. These edges enter
nodes Θ{ fi = a1}, . . . , Θ{ fi = ak}, respectively. In case some of the nodes
Θ{ fi = a1}, . . . , Θ{ fi = ak} are not available in the graph, then add these
nodes to the graph. Tag the node Θ as processed and move to step 2.

5. Construction of Decision Trees with Minimum Depth

Let us consider a nonempty decision table T that contains n conditional attributes
f1, . . . , fn and k ∈ {1, . . . , 5}. We can use the DAG ∆(T) to construct a decision tree Γ(k)(T)
of the type k with the minimum depth for the decision table T. For this purpose, we have to
construct, corresponding to each vertex Θ of ∆(T), a decision tree Γ(k)(Θ) of the type k with
minimum depth for the table Θ. It is necessary not only consider subtables corresponding
to the nodes of ∆(T) but also empty subtable Λ of T as well as subtables Tr containing
only one row r of T, which are not nodes of ∆(T). The idea is to start with these special
subtables as well as leaf nodes of ∆(T) that are degenerate separable subtables of T. In this
way, we move step wise in a bottom up fashion to the table T.

Let us consider the case when Θ is a leaf node of ∆(T) or Θ = Tr for a row r of the
table T, or T = Λ. If Θ is nonempty, then Γ(k)(Θ) has only one node that is tagged by a
decision which is attached to all rows of Θ. Otherwise, it is tagged with 0.

Let us consider other case when Θ is an internal node of ∆(T) and the construction of
the decision tree Γ(k)(Θ′) is already completed for each child Θ′ of Θ. Based on these trees,
a decision tree for Θ having the minimum depth can be constructed that uses decision trees
of the type k for the subtables corresponding to the children of the root. In this tree, the
root can be tagged as follows:

• By an attribute from F(T) (such decision tree can be designated as Γ(k)
a (Θ)).

• By a hypothesis over T (such decision tree can be designated as Γ(k)
h (Θ)).

• By a proper hypothesis over T (such decision tree can be designated as Γ(k)
p (Θ)).

The set E(Θ) is nonempty because Θ is nondegenerate. Now, three procedures for the
construction of the trees Γ(k)

a (Θ), Γ(k)
h (Θ), and Γ(k)

p (Θ) are described.
We now concentrate on a decision tree Γ( fi) for the node Θ, where the root is tagged

by an attribute fi ∈ E(Θ). For each δ ∈ E(T, fi), there exists an edge that exits the root
and enters the root of the decision tree Γ(k)(Θ{ fi = δ}). We tag this edge by the equation
system { fi = δ}. It is obvious that

h(Γ( fi)) = 1 + max{h(Γ(k)(Θ{ fi = δ})) : δ ∈ E(T, fi)}. (1)

One can easily prove using (1) that Γ( fi) is a decision tree with the minimum depth
for Θ such that the root of this tree is tagged by the attribute fi and it uses decision trees of
the type k for the subtables corresponding to the children of the root.

It is obvious not to consider attributes fi ∈ F(T) \ E(Θ). The reason is that for such fi,
we can find δ ∈ E(T, fi) with Θ{ fi = δ} = Θ. Therefore, we cannot construct an optimal
tree for Θ based on fi.
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Construction of the tree Γ(k)
a (Θ). We build the set E(Θ). For any fi ∈ E(Θ), construct

the decision tree Γ( fi) and choose among these trees a tree with the minimum depth.
Return this tree as Γ(k)

a (Θ).
Let us consider a hypothesis H = { f1 = δ1, . . . , fn = δn} over T. We call this

hypothesis admissible for Θ and an attribute fi ∈ F(T) = { f1, . . . , fn} if Θ{ fi = σ} 6= Θ
for any σ ∈ E(T, fi) \ {δi}. This hypothesis is not admissible for Θ and an attribute
fi ∈ F(T) if and only if |E(Θ, fi)| = 1 and δi /∈ E(Θ, fi). We call H admissible for Θ when
we find that H is admissible for Θ and any attribute fi ∈ F(T).

We now describe a decision tree Γ(H) for Θ. The root of this tree is tagged by an
admissible hypothesis H = { f1 = δ1, . . . , fn = δn} for Θ. For any equation system
S ∈ A(H), there is an edge that exits the root of Γ(H) and enters the root of the tree
Γ(k)(ΘS) This edge is tagged by the equation system S.

It is obvious that

h(Γ(H)) = 1 + max{h(Γ(k)(ΘS)) : S ∈ A(H)}. (2)

One can easily prove using (2) that Γ(H) is a decision tree with the minimum depth
for Θ such that the root of this tree is tagged by the hypothesis H and it uses decision trees
of the type k for the subtables corresponding to the children of the root.

It is obvious not to consider hypotheses H that are not admissible for Θ. The reason is
that for such H, we can find an equation system S ∈ A(H) with ΘS = Θ. Therefore, we
cannot construct an optimal decision tree for Θ based on H.

Construction of the tree Γ(k)
h (Θ). Construct a hypothesis HΘ = { f1 = δ1, . . . , fn =

δn} for Θ. If fi ∈ F(T) \ E(Θ), then δi is the only value from E(Θ, fi). If fi ∈ E(Θ), then δi
is minimum number from E(Θ, fi) for which h(Γ(k)(Θ{ fi = δi})) = max{h(Γ(k)(Θ{ fi =

σ})) : σ ∈ E(Θ, fi)}. Return the tree Γ(HΘ) as Γ(k)
h (Θ). Using (2), one can prove the

correctness of this procedure.
Construction of the tree Γ(k)

p (Θ). For each row r = (δ1, . . . , δn) of the decision table
T, we consider a proper hypothesis Hr = { f1 = δ1, . . . , fn = δn}. We inspect if Hr is
admissible for Θ. If yes, then we construct the decision tree Γ(Hr). We choose among the
constructed trees a tree with the minimum depth. Return this tree as Γ(k)

p (Θ).
Given input of a decision table T and k ∈ {1, . . . , 5}, the following Algorithm 2 Ch

builds for each node Θ of the DAG ∆(T) a decision tree Γ(k)(Θ) of the type k for the table
Θ having the minimum depth.
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Algorithm 2 Ch (construction of the tree Γ(k)(T)).
Input: T (a nonempty decision table), ∆(T) (the directed acyclic graph for T), and k (a
natural number between 1 to 5).
Output: A decision tree Γ(k)(T).

1. Check all nodes of the DAG ∆(T) whether there is a decision tree attached to each
node. If yes, then return the tree attached to the node T as Γ(k)(T) and break the
algorithm. If not, select a node Θ of the graph ∆(T) that does not have an attached
tree. It can be either a leaf node of ∆(T) or an internal node of ∆(T) where all children
are tagged with trees.

2. If Θ is a leaf node, then attach to it the decision tree Γ(k)(Θ) that have only a single
node. This node is tagged with the decision attached to all rows of Θ. Move to step 1.

3. If Θ is not a leaf node, then do the following according to the value k:

• When k = 1, construct the tree Γ(1)
a (Θ) and attach it to Θ as the tree Γ(1)(Θ).

• When k = 2, construct the tree Γ(2)
h (Θ) and attach it to Θ as the tree Γ(2)(Θ).

• When k = 3, construct the trees Γ(3)
a (Θ) and Γ(3)

h (Θ), choose between them a
tree with the minimum depth and attach it to Θ as the tree Γ(3)(Θ).

• When k = 4, construct the tree Γ(4)
p (Θ) and attach it to Θ as the tree Γ(4)(Θ).

• When k = 5, construct the trees Γ(5)
a (Θ) and Γ(5)

p (Θ), choose between them a
tree with the minimum depth and attach it to Θ as the tree Γ(5)(Θ).

Move to step 1.

Let T be a decision table and k ∈ {1, . . . , 5}. We use the following notation: l(k)h (T) =

l(T, Γ(k)(T)) and c(k)h (T) = c(T, Γ(k)(T)).

6. Construction of Decision Trees Containing Minimum Number of Internal Nodes

Let us consider a nonempty decision table T that contains n conditional attributes
f1, . . . , fn and k ∈ {1, . . . , 5}. We can use the DAG ∆(T) to construct a decision tree G(k)(T)
of the type k with the minimum number of internal nodes for the decision table T. To
construct the tree G(k)(T), for each node Θ of the DAG ∆(T), we construct a decision tree
G(k)(Θ) of the type k with the minimum number of internal nodes for the decision table
Θ. It is necessary to not only consider the subtables corresponding to the nodes of ∆(T)
but also the empty subtable Λ of T as well as the subtables Tr containing only one row r of
T which are not nodes of ∆(T). The idea is to start with these special subtables as well as
leaf nodes of ∆(T) that are degenerate separable subtables of T. In this way, we move step
wise in a bottom up fashion to the table T.

Let us consider the case when Θ is a leaf node of ∆(T) or Θ = Tr for a row r of the
table T, or T = Λ. If Θ is nonempty, then the decision tree G(k)(Θ) has only one node that
is tagged by a decision which is attached to all rows of Θ. Otherwise, it is tagged with 0.

Let us consider another case when Θ is an internal node of ∆(T) such that the con-
struction of the decision tree G(k)(Θ′) is already completed for each child Θ′ of Θ. Based
on these trees, a decision tree containing the minimum number of internal nodes for Θ can
be constructed that uses decision trees of the type k for the subtables corresponding to the
children of the root. In this tree, the root can be tagged as follows:

• By an attribute from F(T) (such decision tree can be designated as G(k)
a (Θ)).

• By a hypothesis over T (such decision tree can be designated as G(k)
h (Θ)).

• By a proper hypothesis over T (such decision tree can be designated as G(k)
p (Θ)).

The set E(Θ) is nonempty because Θ is nondegenerate. Now, three procedures for the
construction of the trees G(k)

a (Θ), G(k)
h (Θ), and G(k)

p (Θ) are described.
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We now concentrate on a decision tree G( fi) for the node Θ where the root is tagged
by an attribute fi ∈ E(Θ). For each δ ∈ E(T, fi), there is an edge that exits the root and
enters the root of the decision tree G(k)(Θ{ fi = δ}). We tag this edge by the equation
system { fi = δ}. It is obvious that

Lw(G( fi)) = 1 + ∑
δ∈E(T, fi)

Lw(G(k)(Θ{ fi = δ})). (3)

One can easily prove using (3) that G( fi) is a decision tree with the minimum number
of internal nodes for Θ such that the root of the tree is tagged by the attribute fi and it uses
decision trees of the type k for the subtables corresponding to the children of the root.

It is obvious not to consider attributes fi ∈ F(T) \ E(Θ). The reason is that for such fi,
we can find δ ∈ E(T, fi) with Θ{ fi = δ} = Θ. Therefore, we cannot construct an optimal
tree for Θ based on fi.

Construction of the tree G(k)
a (Θ). We build the set of attributes E(Θ). For any fi ∈

E(Θ), construct the decision tree G( fi) and choose among these trees a tree with the
minimum number of internal nodes. We return this tree as G(k)

a (Θ).
We now describe a decision tree G(H) for Θ. The root of this tree is tagged by an

admissible hypothesis H = { f1 = δ1, . . . , fn = δn} for Θ. For any equation system
S ∈ A(H), there is an edge that exits the root of G(H) and enters the root of the tree
G(k)(ΘS). This edge is tagged by the equation system S. It is obvious that

Lw(G(H)) = 1 + ∑
S∈A(H)

Lw(G(k)(ΘS)). (4)

One can easily prove using (4) that G(H) is a decision tree with the minimum number
of internal nodes for Θ such that the root of the tree is tagged by the hypothesis H and it
uses decision trees of the type k for the subtables corresponding to the children of the root.

It is obvious not to consider hypotheses H that are not admissible for Θ. The reason is
that for such H, we can find an equation system S ∈ A(H) with ΘS = Θ. Therefore, we
cannot construct an optimal decision tree for Θ based on such H.

Construction of the tree G(k)
h (Θ). We construct a hypothesis HΘ = { f1 = δ1, . . . , fn =

δn} for Θ. If fi /∈ E(Θ), then δi is the only value in E(Θ, fi). Let fi ∈ E(Θ). Then δi is the
minimum number from E(Θ, fi) such that Lw(G(k)(Θ{ fi = δi})) = max{Lw(G(k)(Θ{ fi =

σ})) : σ ∈ E(Θ, fi)}. Obviously, HΘ is admissible for Θ. Return the tree G(HΘ) as G(k)
h (Θ).

Using (4), one can prove the correctness of this procedure.
Construction of the tree G(k)

p (Θ). For each row r = (δ1, . . . , δn) of the decision table
T, let us consider a proper hypothesis Hr = { f1 = δ1, . . . , fn = δn}. We inspect if Hr is
admissible for Θ. If yes, then we construct the decision tree G(Hr). We choose among the
constructed trees a tree with the minimum number of internal nodes. Return this tree as
G(k)

p (Θ).
Given input of a decision table T and k ∈ {1, . . . , 5}, the following Algorithm 3 CLw

builds for each node Θ of the DAG ∆(T) a decision tree G(k)(Θ) of the type k for the table
Θ having the minimum number of internal nodes.
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Algorithm 3 CLw (construction of the tree G(k)(T)).
Input: T (a nonempty decision table), ∆(T) (the directed acyclic graph for T), and k (a
natural number between 1 to 5).
Output: A decision tree G(k)(T).

1. Check all nodes of the DAG ∆(T) whether there is a decision tree attached to each
node. If yes, then return the tree attached to the node T as G(k)(T) and break the
algorithm. If not, select a node Θ of the graph ∆(T) that does not have an attached
tree. It can be either a leaf node of ∆(T) or an internal node of ∆(T) where all children
are tagged with trees.

2. If Θ is a leaf node, then attach to it the decision tree G(k)(Θ) that have only a single
node. This node is tagged with the decision attached to all rows of Θ. Move to step 1.

3. If Θ is not a leaf node, then do the following according to the value k:

• When k = 1, construct the tree G(1)
a (Θ) and attach it to Θ as the tree G(1)(Θ).

• When k = 2, construct the tree G(2)
h (Θ) and attach it to Θ as the tree G(2)(Θ).

• When k = 3, construct the trees G(3)
a (Θ) and G(3)

h (Θ), choose between them a
tree with the minimum number of internal nodes and attach it to Θ as the tree
G(3)(Θ).

• When k = 4, construct the tree G(4)
p (Θ) and attach it to Θ as the tree G(4)(Θ).

• When k = 5, construct the trees G(5)
a (Θ) and G(5)

p (Θ), choose between them a
tree with the minimum number of internal nodes and attach it to Θ as the tree
G(5)(Θ).

Move to step 1.

Let T be a decision table and k ∈ {1, . . . , 5}. We use the following notation: l(k)Lw
(T) =

l(T, G(k)(T)) and c(k)Lw
(T) = c(T, G(k)(T)).

7. Experimental Results and Discussion

In this section, we describe the results of the experiments. First, we accomplished
the experiments on eight decision tables from the UCI ML Repository [16]. We give the
description of these tables in Table 1 where we show first the name of the table (Name),
then number of rows (#Rows) and the number of attributes (#Attrs). We arranged the
decision tables in Table 1 based on the number of rows. For each of these tables, we built
an optimal decision tree of each of five possible types for each of the two possible cost
functions. From these trees, we derive decision rules and study their coverage and length.

Table 1. Description of decision tables from [16] which were used in experiments.

Name #Rows #Attrs

SOYBEAN-SMALL 47 36
ZOO-DATA 59 17

HAYES-ROTH-DATA 69 5
BREAST-CANCER 266 10
BALANCE-SCALE 625 5

TIC-TAC-TOE 958 10
CARS 1728 7

NURSERY 12,960 9

Next, we experimented with 100 Boolean functions having n variables (n = 3, . . . , 6)
which are generated randomly. Let f be such a Boolean function with n variables x1, . . . , xn.
We can map it to a decision table Tf having n attributes x1, . . . , xn. This table has 2n rows
corresponding to all possible n-tuples of variable values. We label each row with the
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decision that is the value of the function f for the considered row. The decision trees for
the table Tf are interpreted as decision trees that compute the function f .

For each of tables representing the generated Boolean functions, we build an optimal
decision tree of each of five possible types for each of the two possible cost functions. From
these trees, we derive decision rules and study their coverage and length.

7.1. Decision Trees with Minimum Depth

The results of experiments based on eight decision tables from [16] and decision trees
optimal relative to the depth are represented in Tables 2 and 3. The first column of Table 2
contains the name of the considered decision table T. The last five columns contain values
l(1)h (T), . . . , l(5)h (T) (minimum values for each decision table are in bold).

Table 2. Results for decision tables from [16]: length of decision rules derived from decision trees
with minimum depth.

Decision Table T l(1)
h (T) l(2)

h (T) l(3)
h (T) l(4)

h (T) l(5)
h (T)

SOYBEAN-SMALL 1.89 1.00 1.89 1.55 1.89
ZOO-DATA 3.69 1.56 2.42 2.17 3.24

HAYES-ROTH-DATA 2.83 2.22 2.16 2.32 2.35
BREAST-CANCER 3.61 2.68 2.71 2.70 2.78
BALANCE-SCALE 3.60 3.20 3.20 3.21 3.20

TIC-TAC-TOE 5.09 3.04 3.40 3.24 3.14
CARS 3.72 2.44 2.48 3.07 3.02

NURSERY 5.78 3.16 4.53 3.12 4.50

Average 3.78 2.41 2.85 2.67 3.01

The first column of Table 3 contains the name of the considered decision table T. The
last five columns contain values c(1)h (T), . . . , c(5)h (T) (maximum values for each decision
table are in bold).

Table 3. Results for decision tables from [16]: coverage of decision rules derived from decision trees
with minimum depth.

Decision Table T c(1)
h (T) c(2)

h (T) c(3)
h (T) c(4)

h (T) c(5)
h (T)

SOYBEAN-SMALL 3.47 12.53 3.47 10.62 3.47
ZOO-DATA 7.88 10.78 9.80 10.86 6.46

HAYES-ROTH-DATA 3.46 6.20 6.49 5.48 5.45
BREAST-CANCER 4.98 9.30 8.36 9.38 6.90
BALANCE-SCALE 2.60 4.19 4.18 4.16 4.19

TIC-TAC-TOE 8.38 66.01 27.23 56.64 61.45
CARS 197.60 332.76 330.35 97.20 99.42

NURSERY 29.33 1524.04 304.71 1530.50 246.14

Average 32.21 245.73 86.82 215.60 54.18

The results of experiments based on Boolean functions and decision trees optimal
relative to the depth are represented in Tables 4 and 5. The first column of Table 4 contains
the number n of variables in the considered Boolean functions. The last five columns
contain information about values l(1)h , . . . , l(5)h in the format minAvgmax (minimum values of
Avg for each n are in bold).

The first column of Table 5 contains the number n of variables in the considered
Boolean functions. The last five columns contain information about values c(1)h , . . . , c(5)h in
the format minAvgmax (maximum values of Avg for each n are in bold).
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Table 4. Results for Boolean functions: length of decision rules derived from decision trees with
minimum depth.

Number of Variables n l(1)
h l(2)

h l(3)
h l(4)

h l(5)
h

3 1.502.202.75 1.252.052.63 1.251.992.50 1.252.082.63 1.252.012.50
4 1.883.183.75 1.632.923.50 1.632.873.50 1.632.913.50 1.632.943.50
5 3.444.094.63 3.003.644.22 2.973.604.06 3.133.664.13 3.093.704.19
6 4.785.145.47 3.984.364.77 3.984.414.75 3.974.354.70 4.034.464.78

Table 5. Results for Boolean functions: coverage of decision rules derived from decision trees with
minimum depth.

Number of Variables n c(1)
h c(2)

h c(3)
h c(4)

h c(5)
h

3 1.251.943.00 1.382.223.63 1.502.213.63 1.382.143.63 1.502.173.63
4 1.251.995.38 1.502.576.44 1.502.526.44 1.502.536.44 1.502.366.44
5 1.382.103.69 2.033.034.56 2.062.984.97 2.032.934.69 1.812.764.66
6 1.592.032.84 2.693.554.81 2.583.374.64 2.723.534.70 2.533.244.69

7.2. Decision Trees Containing Minimum Number of Internal Nodes

We present the results based on the decision tables from [16] and decision trees optimal
relative to the number of internal nodes in Tables 6 and 7. The first column of Table 6
contains the name of the considered decision table T. The last five columns contain values
l(1)Lw

(T), . . . , l(5)Lw
(T) (minimum values for each decision table are in bold).

Table 6. Results for decision tables from [16]: length of decision rules derived from decision trees
with minimum number of internal nodes.

Decision Table T l(1)
Lw

(T) l(2)
Lw

(T) l(3)
Lw

(T) l(4)
Lw

(T) l(5)
Lw

(T)

SOYBEAN-SMALL 1.34 1.00 1.34 1.51 1.34
ZOO-DATA 3.05 1.69 3.05 2.39 3.05

HAYES-ROTH-DATA 2.64 2.22 2.61 2.23 2.61
BREAST-CANCER 4.98 2.72 5.30 2.73 5.27
BALANCE-SCALE 3.55 3.20 3.53 3.20 3.53

TIC-TAC-TOE 4.45 3.35 4.41 3.15 4.45
CARS 2.97 2.49 2.96 2.49 2.96

NURSERY 3.77 3.19 3.77 3.19 3.77

Average 3.34 2.48 3.37 2.61 3.37

The first column of Table 7 contains the name of the considered decision table T. The
last five columns contain values c(1)Lw

(T), . . . , c(5)Lw
(T) (maximum values for each decision

table are in bold).
The results of experiments based on Boolean functions and decision trees optimal

relative to the number of internal nodes are represented in Tables 8 and 9. The first column
of Table 8 contains the number n of variables in the considered Boolean functions. The
last five columns contain information about values l(1)Lw

, . . . , l(5)Lw
in the format minAvgmax

(minimum values of Avg for each n are in bold).
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Table 7. Results for decision tables from [16]: coverage of decision rules derived from decision trees
with minimum number of internal nodes.

Decision Table T c(1)
Lw

(T) c(2)
Lw

(T) c(3)
Lw

(T) c(4)
Lw

(T) c(5)
Lw

(T)

SOYBEAN-SMALL 11.51 12.53 11.51 9.81 11.51
ZOO-DATA 10.69 10.68 10.69 10.63 10.69

HAYES-ROTH-DATA 3.84 6.20 3.87 6.20 3.87
BREAST-CANCER 2.73 8.96 3.05 9.06 3.15
BALANCE-SCALE 2.79 4.21 2.88 4.21 2.88

TIC-TAC-TOE 22.49 30.19 23.50 56.50 22.69
CARS 237.33 332.46 237.37 332.46 237.37

NURSERY 1471.45 1527.95 1471.47 1527.95 1471.47

Average 220.35 241.65 220.54 244.60 220.45

Table 8. Results for Boolean functions: length of decision rules derived from decision trees with
minimum number of internal nodes.

Number of Variables n l(1)
Lw

l(2)
Lw

l(3)
Lw

l(4)
Lw

l(5)
Lw

3 1.502.072.75 1.252.062.63 1.251.942.50 1.252.062.63 1.251.942.50
4 1.882.903.50 1.632.943.50 1.812.793.50 1.632.943.50 1.812.793.50
5 3.133.754.19 3.003.774.31 3.133.694.25 3.003.774.31 3.133.694.25
6 4.284.695.06 4.134.695.19 4.254.614.98 4.134.695.19 4.254.614.98

The first column of Table 9 contains the number of variables n in the considered
Boolean functions. The last five columns contain information about values c(1)Lw

, . . . , c(5)Lw
in

the format minAvgmax (maximum values of Avg for each n are in bold).

Table 9. Results for Boolean functions: coverage of decision rules derived from decision trees with
minimum number of internal nodes.

Number of Variables n c(1)
Lw

c(2)
Lw

c(3)
Lw

c(4)
Lw

c(5)
Lw

3 1.252.143.00 1.382.223.63 1.502.273.63 1.382.223.63 1.502.273.63
4 1.632.515.38 1.502.566.44 1.502.635.44 1.502.566.44 1.502.635.44
5 1.882.794.19 1.942.914.59 1.752.824.34 1.942.914.59 1.752.824.34
6 2.162.884.09 2.093.164.58 2.272.994.11 2.093.164.58 2.272.994.11

7.3. Analysis of Experimental Results

The experimental results show that the decision rules derived from decision trees
with hypotheses in many cases are better than the ones derived from conventional decision
trees. In particular, in the case of decision trees with the minimum depth, for each row in
Tables 2–5, the results for type 2 decision trees are better than the results for type 1 decision
trees. In the case of decision trees with a minimum number of internal nodes, for each
row of Tables 6–9 (with the exception of the row ZOO-DATA in Table 7) there is a number
k ∈ {2, . . . , 5} such that the results for type k decision trees are superior compared to the
results for type 1 decision trees.

Note that for the decision trees with the minimum depth, for each decision table
from [16] considered in this paper, the best results related to the length and the coverage
among decision trees of types {2, . . . , 5} are close to the optimal ones obtained in [18] with
the help of dynamic programming algorithms for the construction of optimal decision
rules. Results for the decision trees of the type 1 are, generally, far from the optimal ones.

From the obtained experimental results, it follows that the decision rules derived from
optimal decision trees with hypotheses are more preferable as a tool for the representation
of information than the decision rules derived from optimal conventional decision trees.
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8. Conclusions

In this paper, we studied modified decision trees that use two types of queries. We
constructed optimal trees relative to two cost functions for a number of known datasets from
the UCI Machine Learning Repository and randomly generated Boolean functions, and
compared the length as well as coverage of decision rules extracted from the constructed
decision trees. The experimental results confirmed that the decision rules derived from
the decision trees with hypotheses in many cases are better than the ones derived from
conventional decision trees.
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